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Development of local P fertilizers using low-grade phosphate rock (PR) is expected to

overcome the low-stagnated crop yield in Sub-Saharan Africa. Calcination and partial

acidulation methods have been proposed to increase the phosphate (P) solubility of PRs.

However, the effects of fertilization with calcinated PR (CPR) and partially acidulated PR

(PAPR) on sorghum [Sorghum bicolor (L.)] and cowpea [Vigna unguiculata (L.) Walp.]

cultivation are poorly understood. Therefore, we conducted a 2-year field experiment in

Burkina Faso to identify the differences in sorghum and cowpea responses to CPR and

PAPR application. The following eight treatments were applied with six replicates using

a complete randomized block design: control without P fertilization, two types of CP

(CPs), triple superphosphate (TSP) as a positive control for CPs, three types of PAPR with

different degrees of acidulation (PAPRs), and single superphosphate (SSP) as a positive

control for PAPRs. SSP mostly comprised of water-soluble P fraction (WP), TSP and

PAPRs of WP and alkaline ammonium citrate-soluble P fraction (SP), and CPRs of SP

and 2% citric acid-soluble P fraction (CP). Their solubility was in the order WP > SP > CP.

The fertilization effects were evaluated by P use efficiency (PUE). In 2019, the biomass

and P uptake of sorghum was decreased by the low available soil water at the early

growth stage. On the contrary, cowpea survived the low available soil water because of

its shorter growing period compared to sorghum. P fertilization significantly increased the

grain yields. However, the effect size differed according to the crop and fertilizer types.

The SP, along with WP, significantly contributed to the PUE and grain yield of sorghum,

whereas only WP contributed to the PUE of cowpea. Therefore, CPs, mainly consisting

of SP and CP, had a disadvantage compared to TSP, especially for cowpea. We thus

concluded that PAPRs are effective for sorghum and would be effective for cowpea when

the acidulation level is sufficiently high. We also conclude that the long growing period

of sorghum is favorable for absorbing slow-release P, but is unfavorable for the variable

rainfall often observed in this region.
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INTRODUCTION

Sub-Saharan Africa (SSA) has the highest percentage of food
insecurity globally (1). In rural households, most food is
produced and consumed locally (2); thus, household agricultural
productivity is critical for improving food security (3). According
to previous studies, crop production in SSA is restricted by
low water availability, low soil fertility, and low fertilizer input
(4, 5). Agricultural production in SSA is mainly conducted under
rain-fed conditions and is particularly vulnerable to rainfall
variability (6). Furthermore, SSA has a wide distribution of
soils with low phosphorus (P) content, mainly due to the
high degree of weathering, and these are recognized as one
of the significant constraints for rice production (7). Although
P fertilizer application is the most promising approach to
overcome this problem (8), the total fertilizer application rate
[sum of nitrogen (N), P, and potassium (K)] in SSA is only
8 kg ha−1 which is far below the global average of 93 kg ha−1

mainly due to the high costs incurred from long-distance
transportation (9).

A vast amount of geological phosphate rock (PR) deposits
has been found throughout SSA (10). According to the Burkina
Faso Government, there are 100 million metric tons of PR in
the Kodjari region of Burkina Faso (11), which could serve
as an alternative source of P fertilizer (12). However, most of
these have not been utilized because of their low solubility and
reactivity (13). Methods for increasing the solubility of PR by
partial acidulation and calcination have been reported previously
(14–17). The International Fertilizer Development Center has
promoted partial acidulation with sulfuric acid. Acidulation of
PR produces the phosphate componentmonocalcium phosphate,
small amounts of dicalcium phosphate, and residual apatite
depending on the degree of acidulation (16). However, the
viscosity and acidity of the product increase with increasing
amounts of sulfuric acid because of the unbound sulfuric
acid (14, 15). Therefore, to secure adequate solubility and
usability, it is necessary to optimize the amount of sulfuric
acid added.

Akiyama et al. (14) developed a calcination procedure for
PR at a temperature of 900◦C, using alkaline additives to
convert fluoride apatite to α-tricalcium phosphate and Rhenania
phosphate. Nakamura et al. (17) modified this method for the
low-grade PR from Kodjari region and achieved high solubility
in 2% citric acid.

The Sudan Savanna (annual rainfall, 600–900mm) in West
Africa is a climatic transition zone between the Sahel (annual
rainfall, 200–600mm) and the Guinea Savanna (annual rainfall,
900–1200mm). Owing to its semi-arid conditions, sorghum
[Sorghum bicolor (L.)] and cowpea [Vigna unguiculata (L.)
Walp.] are widely cultivated in the Sudan Savanna. Sorghum
is an important food source for human consumption (13).
Sorghum is known as drought, heat, and waterlogging tolerant
crop, making it the second most grown cereal crop in SSA
(18). However, water stress at different growth stages is also
reported to affect grain yield and yield components (19–21).
Cowpea is a legume crop of vital importance to the livelihood
of millions of people in West and Central Africa, providing

TABLE 1 | Initial soil physicochemical properties.

Properties Saria (n = 106)

(Unit) mean sd cv

Coarse sand (%) 34.4 4.9 14.1

Fine sand (%) 47.4 4.4 9.3

Sand (%) 81.9 2.6 3.2

Silt (%) 7.5 1.7 22.8

Clay (%) 10.6 2.3 21.7

Total phosphate (mg P kg−1) 319.8 42.8 13.4

Bray1 8.4 3.3 40.0

Bray2 9.7 6.5 66.7

Total carbon (g C kg−1) 2.6 0.5 20.4

Total nitrogen (g N kg−1) 0.25 0.05 18.5

pH (H2O) 5.55 0.20 3.6

pH (KCl) 4.24 0.15 3.6

Electric conductivity (S m−1) 1.83 1.06 57.7

Exchangeable Na+ (cmolc kg−1) 0.01 0.01 45.7

Exchangeable K+ (cmolc kg−1) 0.09 0.04 46.4

Exchangeable Ca2+ (cmolc kg−1) 0.63 0.21 33.4

Exchangeable Mg2+ (cmolc kg−1) 0.28 0.09 32.1

Cation exchange capacity (cmolc kg−1) 1.74 0.50 29.0

Base saturation (%) 61.4 20.3 33.1

sd, standard deviation; cv, coefficient of variation.

a nutritious grain and an inexpensive protein source (22).
However, its average yield is substantially below the biological
potential (23).

Previous studies have shown a positive effect of partial
acidulated PR (PAPR) application on upland crops (24, 25).
Moreover, Nakamura et al. (17) showed good performance
of calcinated PR (CPR) on rice and maize production in
a pot experiment. Furthermore, Iwasaki et al. (26) and
Fukuda et al. (27) reported that CPR showed comparable
performance with imported P fertilizers. However, the
fertilization effect of CPR on upland crops under rainfed
conditions has never been studied. The P applied to soil
undergoes a series of physicochemical (dissolution-precipitation
and desorption-adsorption) transformations (28, 29). Thus,
the P solubility of local P fertilizer could be a critical
controlling factor of the P fertilization effect. However,
the fertilization effects of PAPR and CPR with different
P solubility on sorghum and cowpea cultivation under
rainfed conditions remain poorly understood, especially in
the Sudan Savanna.

Therefore, this study aimed to identify differences in
the responses of sorghum and cowpea to P fertilization
and soil moisture conditions under rainfed conditions
with the hypothesis that the P fertilization effect of local
P fertilizers differs according to crop type and climatic
conditions. We selected the Central Plateau of Burkina
Faso as the study site as it is a major sorghum and cowpea
producing area in the Sudan Savanna. Suppose PAPRs
and CPRs improve upland crops yield in fields with low
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TABLE 2 | Chemical properties of the phosphate rocks and fertilizers used in this study.

Solubility BPR CPk CPkca TSP PAPR50 PAPR75 PAPR100 SSP

(a): Water solubility % of TP 0.2 2.4 0 28.1 11.2 28.9 45 91.6

(b): Alkaline ammonium citrate solubility 2.5 36.8 45.4 93.6 41.6 56.9 83.9 96.8

(c): 2% citric acid solubility 31.1 74.2 96.2 100 62.6 67.3 83.9 96.8

P-fractions

WP [= (a)] % of TP 0.2 2.4 0 28.1 11.2 28.9 45 91.6

SP [= (b)–(a)] 2.3 34.4 45.4 65.5 30.4 28 38.9 5.2

CP [= (c)–(b)] 28.6 37.4 50.8 6.4 21 10.4 0 0

RP [=100–(c)] 68.9 25.8 3.8 0 37.4 32.7 16.1 3.2

Application rate

WP kg P2O5 kg−1 0.0 0.6 0.0 6.5 2.6 6.6 10.4 21.1

SP 0.5 7.9 10.4 15.1 7.0 6.4 8.9 1.2

CP 6.6 8.6 11.7 1.5 4.8 2.4 0.0 0.0

RP 15.8 5.9 0.9 0.0 8.6 7.5 3.7 0.7

Total P (TP) g P2O5 kg−1 26.6 15.5 20.1 45 21.4 21.1 18 19.1

pH (H2O) 7.4 12.3 12.3 3 3.4 2.8 2.7 3

BPR, Burkina Faso phosphate rock; CPk, phosphate rock calcinated with potassium carbonate (K2CO3); CPkca, phosphate rock calcinated with potassium carbonate (K2CO3) and

calcium carbonate (CaCO3 ); TSP, triple superphosphate; SSP, single superphosphate. PAPR50, 75, and 100, partially acidulated phosphate rock with different degrees of acidulation.

The degree of acidulation increases with an increase in the number. WP, water-soluble P fraction; SP, alkaline ammonium citrate-soluble P fraction; CP, 2% citric acid-soluble P fraction;

RP, residual P fraction; TP, total P. The pH (H2O) was measured at a solid: liquid extraction ratio of 1:10.

productivity, they could facilitate the efficient use of local P
resources and the addressing of frequent food shortages in the
Sudan Savanna.

MATERIALS AND METHODS

Study Site Description
A field experiment was conducted at the Saria station of the
Institute of Environment and Agricultural Research (Institut de
l’Environnement et de Recherches Agricoles: INERA) located
at the Central Plateau region of Burkina Faso. The study area
is characterized by a long dry season from November to April
and a short rainy season from May to October. The mean
annual precipitation is 800mm yr−1, and the mean annual
temperature is 28◦C, as recorded at INERA Saria station.
Meteorological data were recorded at 10-min intervals using
an automatic weather station with temperature and relative
humidity sensor (HygroVUETM5, Campbell Scientific) and a rain
gauge (TE525MM-L, Campbell Scientific).

According to the EU (30) and Ikazaki et al. (31), Ferric
Lixisols (Lxfr), Petric Plinthosols (PTpt), and Pisoplinthic Petric
Plinthosols (PTpt.px) are dominantly distributed in relation to
the local topography. In this study, a field of approximately 1.2
ha (80m × 150m) on LXfr was selected. The morphological,
physical, and chemical properties of the soil were previously
reported by Ikazaki et al. (31) (open access, see profile 1).
Soil samples were collected at randomly 106 selected points
to evaluate the initial soil fertility and spatial variation in soil
physico-chemical properties. The total P content was 319.8 ±

42.8 [mean ± sd (mg P kg−1)], and the available P contents
measured using the Bray-1 and Bray-2 methods was 8.4 ± 3.3
and 9.7± 6.5, respectively (Table 1).

Preparation of Calcinated and Partially
Acidulated Phosphate Rock
Two types of local P fertilizer were produced by calcination
and partial acidulation methods using PR from the Kodjari
deposit (12◦1′ N; 1◦55′ E) in Burkina Faso (BPR). BPR
contained 113 g P kg−1, and its 2% citric acid-solubility was
31.1% of the total P. The calcination procedure described by
Nakamura et al. (17) was employed to prepare calcinated PR
(CPs). Fine powdered BPR was mixed well with the respective
additives as follows: with K2CO3 to produce CPk (17) and
with K2CO3 + CaCO3 to produce CPkca (Nakamura et al.,
unpublished data). The components were mixed with distilled
water, pressed to form pellets, and then calcinated at 900◦C
for 10min using a muffle furnace (FP32; Yamato Scientific Co.,
Ltd., Japan).

To prepare partially acidulated PR (PAPR), we followed the
acidulation procedure described by Frederick and Roth (15).
The addition rate of sulfuric acid was determined based on
the mineral composition of BPR. To produce 100% acidulated
phosphate rock (PAPR100), 326.8mL of H2SO4 was added
to 1 kg of BPR. We also prepared 50% and 75% acidulated
phosphate rock (PAPR50 and PAPR75). The chemical properties
of CPs, PAPRs, TSP, and SSP were analyzed as described by
the Food and Agricultural Materials Inspection Center (32).
Water-solubility, alkaline ammonium citrate-solubility, and 2%
citric acid-solubility were measured. The water-soluble P fraction
(WP: equal to water solubility), alkaline ammonium citrate-
soluble P fraction (SP: alkaline ammonium citrate-solubility with
water solubility subtracted), 2% citric acid-soluble P fraction
(CP: 2% citric acid-solubility with alkaline ammonium citrate-
solubility subtracted), and residual P fraction (RP: the P fraction
not soluble in 2% citric acid) were calculated. Solubility and
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FIGURE 1 | Solar radiation (upper panel) and available soil water at 0–25 cm depth (lower panel) during the growing season The cropping season was divided

depending on the plant growth stage. Sorghum: SW1, early growth stage until the growing point differentiation (0–5 WAS); SW2, middle growth stage until the

flowering time (6–10 WAS); and SW3, late growth stage until physiological maturity (10–15 WAS); SW4, until the harvest (16∼ WAS). Cowpea: SW1, early growth

stage until the flowering time (0–4 WAS); SW2, middle growth stage until maximum vegetation (5–8 WAS); and SW3, late growth stage until harvest (9∼ WAS). The

difference between the 2 years was analyzed in each stage. DAS, days after sowing; **, p < 0.01; ns, not significant.

availability for plants are generally in the order WP > SP > CP
> RP.

Experimental Design and Setting
In 2017, sorghum (Sorghum bicolor (L.) Moench, var. Kapelga)
was cultivated without fertilization to reduce soil heterogeneity
and to obtain a uniform cropping history. In 2018, 48
plots were established both for sorghum and cowpea, with
a plot size of 6.0m × 4.0m for sorghum and 4.0m ×

4.0m for cowpea. According to the results of soil analysis
(Table 1), areas with high spatial variability in soil chemical
properties were excluded when preparing the 96 above-
mentioned plots.

The following eight treatments were assigned to the plots
with six replicates using a complete randomized block design.
(1) control without P fertilization (CT), (2) CPk, 3) CPkca, (4)
TSP as a positive control for CPs, (5) PAPR50, (6) PAPR75, (7)
PAPR100, (8) SSP as a positive control for PAPRs. According
to the blanket recommendation in Burkina Faso (IRAT 1978),
the application rate of N, P, and K was set at 37 kg N
ha−1, 23 Kg P2O5 ha−1, and 14 kg K2O ha−1 for sorghum,

and 14 kg N ha−1, 23 kg P2O5 ha−1, and 14 kg K2O ha−1

for cowpea. N and K were applied as urea and potassium
chloride. Planting density was set at 3.1 hills m−2 (80 cm
by 40 cm) following the recommendations. We employed the
improved varieties developed by INERA: Kapelga for Sorghum
and Nafi for cowpea. The land was prepared by ox plowing
for about 2 weeks before sowing. After harrowing using a
hoe, earth mounds of 10 cm height were established around
the plot to prevent water and nutrient contamination from
other plots.

Sorghum was planted manually on July 7 in 2018, and
on June 29 in 2019. If there were empty pockets in the
plot, replanting was conducted as required. After germination,
plants were thinned to three plants per hill. One-third of
N and the complete amount of P and K were applied at
2 weeks after sowing (WAS). Another one-third of N was
applied at 4 WAS and 6 WAS, respectively. Sorghum was
harvested on November 4 in 2018, and on November 7 in
2019. Cowpea was planted on July 14 in 2018 and on July
16 in 2019. After germination, plants were thinned to two
plants per hill. Insecticide was applied 2–3 times as needed.
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The harvest date was October 4 in 2018 and October 5
in 2019.

Measurement
Soil Volumetric Water Content

Soil volumetric water content (VWC) was continuously
measured every 10min using time domain reflectometry (TDR)
probes (CS616; Campbell Scientific, Logan, UT, USA) installed
at 0–10 and 10–25 cm. Soil temperature at the same depth was
also recorded using thermistor probes (107; Campbell Scientific,
Logan, UT, USA) to correct the temperature dependence of
the TDR probe. The estimated VWC was calibrated according
to the manufacturer’s instructions (33). Undisturbed soil cores
were collected every 2 weeks from each layer and subjected to
oven-drying at 105◦C to determine the gravimetric VWC.

Yield and Yield Components

All sorghum plants (39 hills plot−1) except those on the border
were harvested and subjected to the yield and yield components
survey. Panicles were harvested and then divided into rachises
and grains. The air-dried weights of stovers, rachises, and grains
were measured. The number of stems (m−2), number of panicles
(stem−1), ripening rate, number of grains (good panicle−1), and
1000-grain weight (g) were measured as yield components.

All cowpea plants (24 hills plot−1) except those on the border
were harvested and subjected to the yield and yield components
survey. Pods were threshed and divide into cobs and grains. The
air-dried weights of shoots, pods, and grains were measured. The
number of stems (m−2), number of grains (pod−1), and 100-
grain weight (g) were measured as yield components. For both
sorghum and cowpea, 100–200 g of air-dried stovers and shoots
from every plot were used to determine the oven-dried weight.
The grain moisture content was measured using a portable grain
moisture tester (MT-16, Agratronix). The harvest index was
determined as a portion of the grain mass in the total above-
ground biomass (hereafter biomass indicates the sum of stover,
rachis, and grain for sorghum and that of the shoot, cob, and
grain for cowpea). Grain yield was represented as Mg ha−1 at a
12% seed moisture content.

Plant P Concentration

The P concentration of sorghum and cowpea plant parts was
determined using a Handheld X-Ray Fluorescence Analyzer
[XRF (VANTA, OLYMPUS Scientific Solutions Americas Corp.,
MA, USA)] in 2018 and by a dry-combustion method in 2019.
First, plant samples were oven-dried at 70◦C and finely ground.
In 2018, the P concentration was measured using XRF according
to the manufacturer’s instruction (34). In 2019, the samples were
dry-ashed using a muffle furnace at 550◦C for 2 h and then
dissolved in 0.5M HCl. The concentration of P in the extract was
determined using inductively coupled plasma atomic emission
spectrophotometry (ICPE-9000, Shimadzu, Japan). The values
determined in 2018 and 2019 were corrected using the equations
obtained from the relationships with values calculated using the
wet-digestion method to fill the discrepancies between the two

TABLE 3 | Pearson’s correlation coefficient of yield components on grain yield.

Variables Unit Grain yield

(Mg ha−1)

2018 2019

(a) Sorghum

Number of stems (m−2) 0.37 0.25

Number of panicles (stem−1) 0.79* 0.43

Ripening rate (%) −0.29 0.73*

Number of grains (good panicle−1 ) 0.93* 0.11

1000 grain weight (g) 0.72* 0.64

(b) Cowpea

Number of pods (m−2) 0.97* 0.94*

Number of grains (pod−1) 0.29 −0.61

100 grain weight (g) 0.04 0.87*

*, Significant correlation (p < 0.05).

methods used as follows:

2018 : Pcorrected = 1.003PXRF

+0.098(R2 = 0.96, n = 60) (1)

2019 : Pcorrected = 0.961Pdry−combustion

+0.013(R2 = 0.98, n = 28) (2)

where Pcorrected is the P concentration after the correction (mg
P kg−1), PXRF and Pdry−combustion are the P concentrations
measured by the XRF and dry-combustion method, respectively.

Data Processing
Available Soil Water

The available soil water (mm) in each soil layer was calculated
according to Iseki et al. (35):

Available soil water = (VWCt − VWCthreshold)

×soil layer thickness (3)

where VWCt is VWC (%) at time t and VWCthreshold is VWC (%)
at pF 3.0 for each soil layer. The threshold of soil water potential
below which plant growth starts to be suppressed was set as pF
3.0. Then, the available soil water at 0–25 cm was calculated.
The growing period was divided into four stages for sorghum
and into three stages for cowpea. For sorghum, we used the
early growth stage until the growing point differentiation (0–5
WAS, SW1), middle growth stage until the flowering time (6–
10 WAS, SW2), late growth stage until physiological maturity
(10–15 WAS, SW), and the remain stage until harvest (∼16
WAS, SW4). For cowpea, we used the early growth stage until
flowering (0–4WAS, SW1), middle growth stage until maximum
vegetation (5–8 WAS, SW2), and late growth stage until harvest
(∼9 WAS, SW3).

Plant P Uptake

The plant P uptake (kg P ha−1) was calculated by multiplying
the above-ground biomass and P concentration. The P transfer
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TABLE 4 | Effects of the annual difference (year) and treatments on biomass, harvest index, grain yield, total P uptake, PTE, and grain P uptake.

(a) Sorghum

Source Biomass Harvest index Grain yield

df F-ratio P-value η
2 df F-ratio P-value η

2 df F-ratio P-value η
2

Year 1 133.3 *** 0.58 1 32.3 *** 0.26 1 191.7 *** 0.66

Treatment 7 1.7 0.13 0.05 7 0.7 0.68 0.04 7 1.9 + 0.05

Year × Treatment 7 0.5 0.84 0.01 7 1.1 0.34 0.06 7 0.6 0.73 0.02

Source Total P uptake PTE Grain P uptake

df F-ratio P-value η
2 df F-ratio P-value η

2 df F-ratio P-value eta2

Year 1 89.6 *** 0.48 1 102.5 *** 0.52 1 130.9 *** 0.57

Treatment 7 1.8 + 0.07 7 1.0 0.42 0.04 7 2.1 + 0.06

Year × Treatment 7 0.6 0.74 0.02 7 1.0 0.45 0.04 7 0.8 0.59 0.02

(b) Cowpea

Source Biomass Harvest index Grain yield

df F-ratio P-value η
2 df F-ratio P-value η

2 df F-ratio P-value η
2

Year 1 1.4 0.24 0.01 1 148.8 *** 0.54 1 144.8 *** 0.54

Treatment 7 14.5 *** 0.48 7 2.8 * 0.07 7 5.8 *** 0.15

Year × Treatment 7 4.2 *** 0.14 7 4.0 *** 0.10 7 0.5 0.80 0.01

Source Total P uptake PTE Grain P uptake

df F-ratio P-value η
2 df F-ratio P-value η

2 df F-ratio P-value η
2

Year 1 16.6 *** 0.22 1 35.6 *** 0.26 1 82.2 *** 0.33

Treatment 7 18.0 *** 0.12 7 1.6 0.16 0.08 7 12.5 *** 0.35

Year × Treatment 7 2.9 * 0.01 7 1.8 0.11 0.09 7 0.9 0.93 0.01

df, degree of freedom; +, p < 0.1; *, p < 0.05; ***, p < 0.001.

efficiency (PTE in %) was calculated as a ratio of grain P to total
P (sum of stover, rachis, and grain for sorghum, and that of the
shoot, cob, and grain for cowpea).

The fertilization effects were evaluated by the increase in grain
yield and P use efficiency (PUE in %). PUE was calculated as
described by Gitari et al. (36):

PUE = (TUPTreatments − TUPCT) / application rate of P × 100 (4)

where TUPTreatments is the total P uptake in the P fertilization
treatments (kg P ha−1) and TUPCT is the total P uptake in CT
treatment (kg P ha−1).

Statistical Analysis
Statistical analysis and figure drawing were performed using R
version 4.0.0 (37). The difference in the mean available soil water
between the 2 years was analyzed using an unpaired t-test in
each period. Pearson’s correlation coefficient was employed to
show the correlation of the yield components with the grain yield.
The effects of year and treatment on the biomass, harvest index,
grain yield, total P uptake, PTE, and grain P were analyzed by
two-way analysis of variance (ANOVA). The effects of year, crop,
and treatment on PUE were analyzed by three-way ANOVA.
Differences in PUE were evaluated by comparison with the

positive controls (TSP for CPs, and SSP for PAPRs). Multiple
comparisons using Shaffer’s Modified Sequentially Rejective
Bonferroni Procedure (38) were conducted if a significant
difference was detected. The effect size of the sources was
evaluated using the eta squared (η2). High η

2 suggests a high
contribution to the total variance. The effects of P fractions (WP,
SP, CP, and RP) on the PUE and grain yield were analyzed
using stepwise multiple regression analysis. Standardized partial
regression coefficients were estimated. Selection of explanatory
variables was based on Akaike’s information criterion (AIC) (39).
In this analysis, the 2-year averages of PUE and grain yields in
each treatment were used.

RESULTS

Chemical Properties of P Fertilizers
Partial acidulation and calcination methods resulted in increased
solubility compared with that of raw BPR (Table 2). The
RP fraction decreased from 68.9% in BPR to 25.8% (CPk),
3.8% (CPkca), 21.4% (PAPR50), 21.1% (PAPR75), and 18.0%
(PAPR100). PAPR mainly consisted of WP and SP, whereas CPR
contained almost equal amounts of SP and CP. Among the CPs,
CPkca contained higher total P and lower RP compared to CPk.
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FIGURE 2 | Annual differences in biomass, harvest index, grain yield, total phosphorus (P) uptake, PTE, and grain P uptake. Lowercase letters indicate a significant

difference between the treatments. PTE, P transfer efficiency; *, p < 0.05; ***, p < 0.001; ns, not significant.

A higher degree of acidulation increased the water-, alkaline
ammonium citrate-, and 2% citric acid-solubility. The pH (H2O)
values at a solid: liquid extraction ratio of 1:10 for BPR, TSP, SSP,
CPs, and PAPRs were 7.4, 3.0, 3.0, 12.3, and 3.4–2.7, respectively.

Solar Radiation and Available Soil Water
Time-course changes in solar radiation and available soil
water (mm) at 0–25 cm depth are shown in Figure 1

(raw data of precipitation and VWC are provided in
Supplementary Figure S1). The solar radiation in 2019
decreased to 400 (W m−1) when compared to that in 2018,
which was a 2-fold decrease. For sorghum, the mean available
soil water during SW1 and SW4 was significantly different
between the 2 years. Notably, the mean available soil water
was particularly low in the first 2 weeks of 2019 (ranging from
0 to 4.2mm). On the contrary, for cowpea, no significant
difference was observed in the mean available soil water between
2 years.

Yield and P Uptake
Pearson’s correlation coefficients of yield components to grain
yield are shown in Table 3. For sorghum, the number of
panicles, number of grains per panicle, and 1000-grain weight

were positively correlated with grain yield in 2018, whereas
only the ripening rate showed a significant correlation with
grain yield in 2019. For cowpea, the number of pods positively
correlated with the grain yield in both years, and a significant
contribution of the 100-grain weight was observed only
in 2019.

The results of two-way ANOVA are summarized in Table 4.
For sorghum, the year effect was significant for all properties
with high values of η2. The treatment effect showed an increasing
trend in grain yield, total P uptake, and grain P uptake (p
< 0.1), but this was not significant. For cowpea, the year
effect was significant in all properties except for biomass.
The η

2 values were generally lower than those for sorghum
except for the harvest index. In contrast with sorghum, the
treatment effect was significant for all properties of cowpea,
except for PTE with high values of η

2, suggesting that the
effect of P fertilization was more obvious for cowpea than for
sorghum. Significant interactions between the year and treatment
were observed in biomass, harvest index, and total P uptake
for cowpea.

Annual differences in parameters concerning the yield and
P uptake are shown in Figure 2. The grain yield of sorghum
was 1.47 ± 0.24 [mean ± sd (Mg ha−1)] in 2018 and 0.34
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FIGURE 3 | Relationship between phosphorus (P) use efficiency (PUE) and grain yield. Error bar indicates standard deviation (n = 6). CPk, phosphate rock calcinated

with potassium carbonate (K2CO3); CPkca, phosphate rock calcinated with potassium carbonate (K2CO3) and calcium carbonate (CaCO3); TSP, triple

superphosphate; SSP, single superphosphate. PAPR50, 75, and 100, partially acidulated phosphate rock with different degrees of acidulation. The degree of

acidulation increases with an increase in the number.

± 0.11 in 2019; the other components were similarly lower in
2019 than in 2018 (p < 0.001). In contrast, the grain yield of
cowpea was 0.99 ± 0.14 in 2018 and 0.60 ± 0.09 in 2019, and
the other components except for biomass were similarly lower in
2019 than in 2018 (p < 0.05). The annual difference was more
prominent in PTE (p < 0.001) than in the total P uptake (p <

0.05) for cowpea.

P Fertilization Effect
The increased grain yield of sorghum and cowpea was positively
correlated with the PUE (0.43< R2 < 0.97) (Figure 3). The result
of three-way ANOVA for PUE are summarized in Table 5. The
effects of plants and treatments were significant with significant
interactions between the year and plant, and the plant and
treatment. The highest η

2 value was observed in the treatment
effect. According to the three-way ANOVA, Figures 4A,B were
prepared to compare the PUE between two crops and between
2 years, respectively. Figure 4C was also prepared to evaluate
the effect of P treatment on the PUE. Although there was no
significant difference in the PUE between the plants in 2018, the
PUE for cowpea was significantly higher than that for sorghum
in 2019 (Figure 4A). The PUE for sorghum was significantly
higher in 2018 than in 2019 (Figure 4B). In contrast, there was
no significant difference in the PUE for cowpea between 2 years
(Figure 4B). The PUE for sorghum was significantly different
among the CPs but not among the PAPRs (Figure 4C). However,
the PUE for cowpea differed significantly among the treatments
for both CPs and PAPRs (Figure 4C). The PUE in CPs was
significantly smaller than that in TSP for both sorghum and
cowpea. PAPR50 and 75 had a significantly smaller PUE than SSP,

whereas PAPR100 showed a comparable performance with SSP
for cowpea (Figure 4C).

Effects of P Solubility on the Yield, Yield
Components, and P Uptake
The results of multiple regression for the PUE and grain yield
are shown in Table 6. All regression equations were significant (p
< 0.05) with a high R2 (0.59–0.88). However, the contribution
of P fractions differed between the crops. For sorghum, the
standardized partial regression coefficients suggest that the WP
and SP fractions contributed equally to the PUE and grain
yield. On the other hand, for cowpea, the contribution of SP
to the PUE and grain yield was only 43 and 54% that of WP,
respectively. Moreover, the contribution of SP to the grain yield
was not significant.

DISCUSSION

Fertilization Effect of Local P Fertilizers
A strong positive correlation between the PUE and increased
grain yield (Figure 3) emphasized the importance of P uptake
on increasing the grain yield (36, 40). Therefore, the fertilization
effect of local P fertilizers is hereafter discussed using the PUE.

The significantly smaller PUE of CPs compared to TSP
and the comparable performance of PAPRs with SSP both for
sorghum and cowpea (Figure 4C) can be explained by the
effective P fractions (Table 6). CP with relatively low solubility
(41) did not significantly contribute to the PUE and grain
yield compared with WP and SP. For sorghum, WP and SP
had an almost equal contribution to the PUE and grain yield
whereas the contribution was much smaller than that of WP
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TABLE 5 | Effects of year, plant, and treatment on phosphate use efficiency.

Source df F-ratio P-value η
2

Year 1 0.0 0.98 0.00

Plant 1 14.9 *** 0.07

Treatment 6 5.6 *** 0.15

Year × Plant 1 5.2 * 0.02

Year × Treatment 6 1.5 0.18 0.04

Plant × Treatment 6 2.5 * 0.07

Year × Plant × Treatment 6 1.1 0.34 0.03

df, degree of freedom; +, p < 0.1; *, p < 0.05; ***, p < 0.001.

for cowpea. Therefore, CPs, which mainly consisted of SP and
CP fractions, had a disadvantage compared to TSP (Table 2),
especially for cowpea. In contrast, PAPRs contained WP and
SP, and their composition increased with increasing acidulation
levels (Table 2) as described by Chien and Menon et al. (25) and
Mizane and Rehamnia (16). From these results, we concluded
that PAPRs were effective for sorghum, and that when the
acidulation level is sufficiently high, they would be effective for
cowpea as well. This conclusion was supported by the difference
in the period of demand for P between sorghum and cowpea.
First, the growing period of sorghum, 130 days (128 and 131
days in this study), is much longer than that of cowpea, 80 days
(79 and 82 days in this study). Second, the highest correlation
with grain yield was observed in the number of grains in 2018
and the ripening rate in 2019 (Table 2) for sorghum. These
yield components are determined in the later growth stage. In
contrast, the grain yield of cowpea was strongly controlled by
the pod number, which is determined in the early growth stage
(42, 43). Therefore, sorghum is more favorable for absorbing the
slow-release P fraction i.e., SP. Moreover, Gambín and Borrás,
(44) documented the plasticity of one-grain weight of sorghum
to increase assimilate availability, suggesting that even if the
sorghum plant fails to establish a sufficient number of kernels,
it could recover the grain yield by increasing the one-grain
weight. From these results, we concluded that the effects of local
P fertilizer application were generally higher for sorghum than
for cowpea (Figure 4C). The results of the present study could
facilitate the development of local fertilizers in Burkina Faso,
as well as in other countries in the Sudan Savanna. Further
research using locally developed P fertilizers in different regions
could also facilitate the determination of optimal P fertilization
methods and guide the development of fertilizers adapted to the
local conditions.

Annual Differences in Grain Yield and P
Uptake
The annual difference in grain yield was observed both for
sorghum and cowpea (Figure 2), and the difference for sorghum
was clearer than that for cowpea (η2 in Table 4). In 2019,
the sorghum and cowpea yields were reduced by 77 and 39%,
respectively, compared with those in 2018. These results may
also be attributed to the different growth periods between two
crops. The rainy season generally starts from May in this
region; however, in 2019, only a small amount of rainfall was

observed in June (Supplementary Figure S1) and the available
soil water in SW1 for sorghum was significantly lower in 2019
than in 2018 (Figure 1) and was particularly low at 0–2 WAS
in 2019 (< 4.2mm). As a result, a substantial number of
plants died (0–41%), resulting in a small grain yield (Figure 2).
Sorghum is known as a drought-tolerant crop (18). However,
yield depression by water stress at some growth stages has also
been documented (19–21, 45, 46). Mastrorilli et al. (20) reported
that the impact of water stress on grain yield was the largest
in the early flowering period. The different sensitivity against
water stress was explained by the different water requirement at
each growth stage (19, 46). In this study, water stress was only
observed in SW1 during which water requirement is generally
low (47), but sorghum plants were suffering from intense water
stress. This might be because a sufficient amount of water is
generally irrigated before sowing in the previous studies in
US and thus, water stress was not observed at 0–2 WAS. In
India, Yadav et al. (21) showed that the influence of water
deficit was the highest at the vegetative stage (corresponding
to SW1 in this study) compared to the flowering and grain
filling stages.

On the contrary, cowpea was sowed at 2 WAS of
sorghum when a sufficient amount of rainfall was obtained
(Supplementary Figure S1), and the available soil water in SW1
for cowpea was constantly high in both 2018 and 2019 (Figure 1).
Furthermore, cowpea was harvested from the end of September
to the beginning of October when the soil had enough moisture
(Figure 1). The cowpea could avoid water stress because of
its short growth duration, indicating that the cowpea is more
tolerant to water shortage at the beginning of the rainy season.
However, annual differences in the grain yield and grain P
uptakes were still observed for cowpea, and the difference was
more obvious in the harvest index rather than in the biomass
and in PTE rather than the total P uptake (Figure 2). Thus,
water stress might not be the factor that decreased the harvest
index and PTE in cowpea. Among the yield components, the
number of pods (m2) had the highest contribution to the
grain yield of cowpea (r = 0.97 and 0.94 in 2018 and 2019,
respectively) as reported in previous studies (48–50). Despite
the similar biomass in 2018 and 2019 (Figure 2), the pod
number was significantly smaller in 2019 than in 2018 (Table 3;
Supplementary Figure S2). Ziska and Hall (50) indicated the
importance of solar radiation during the flowering period on
the pod number. The solar radiation around the 50% flowering
(40 and 42 DAS in 2018 and 2019, respectively) in this study
was relatively lower in 2019 than in 2018. Therefore, solar
radiation can be an important factor limiting the pod number
and consequently the grain yield as described by Tesfaye et al.
(51), even though the annual yield variation of cowpea in this
region was reported to be primarily caused by a difference in the
amount of available soil water (35).

CONCLUSIONS

P fertilization significantly increased the grain yield of sorghum
and cowpea. The WP and SP equally contributed to the PUE
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FIGURE 4 | Effects of fertilizer types on phosphorus use efficiency (PUE). Comparison between the year (A), crop type (B), and fertilizer type (C). Lowercase letters

indicate a significant difference between the treatments. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001. CPs, calcinated phosphate rocks; PAPRs, partial

acidulated phosphate rocks; CPk, phosphate rock calcinated with potassium carbonate (K2CO3); CPkca, phosphate rock calcinated with potassium carbonate

(K2CO3) and calcium carbonate (CaCO3); TSP, triple superphosphate; SSP, single superphosphate. PAPR50, 75, and 100, partially acidulated phosphate rock with

different degrees of acidulation. The degree of acidulation increases with an increase in the number.

TABLE 6 | Factors controlling phosphate use efficiency and grain yield.

Plant Equation P-value R2 SE AIC

Sorghum PUE (%) = 0.66 WP* + 0.71 SP* + 0.64 < 0.05 0.59 4.10 24.8

Cowpea 0.97 WP** + 0.42 SP* + 0.99 < 0.01 0.88 3.56 22.6

Sorghum Grain yield (Mg ha−1) = 0.73 WP* + 0.72 SP* + 0.64** < 0.05 0.72 0.09 −37.2

Cowpea 0.83 WP* + 0.45 SP + 0.65** < 0.05 0.60 0.07 −40.6

Equations were obtained by stepwise multiple regression analysis. PUE, phosphate use efficiency; WP, water-soluble P fraction; SP, alkaline ammonium citrate-soluble P fraction; SE,

standard error; AIC, Akaike’s information criterion; *, p < 0.05; **, p < 0.01.

and grain yield for sorghum. However, only the WP significantly
contributed to these parameters for cowpea. Therefore, CPs,
which mainly consisted of SP and CP fractions, had a
disadvantage, especially for cowpea. The annual difference in

grain yield was clearly observed for sorghum compared with
cowpea. Sorghum yield was significantly decreased by water
stress at the early growth stage in the 2nd year. In contrast,
cowpea could avoid water stress owing to its short growing
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period. We thus concluded that PAPRs were effective for
sorghum cultivation, and would be effective for cowpea as
well, when the acidulation level is increased. We also conclude
that the long growing period for sorghum is favorable for
absorbing slow-release P (i.e., SP fraction), but is unfavorable
for the variable rainfall often observed in this region. The
results of the present study could facilitate the development
of local fertilizers and establishment of optimal P fertilization
approaches in Burkina Faso, as well as in other countries in the
Sudan Savanna.
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