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Knowledge, data, and understanding of soils is key for advancing agriculture and

society. There is currently a critical need for sustainable soil management tools for

enhanced food security on Native American Tribal Lands. Tribal Reservations have basic

soil information and limited access to conservation programs provided to other U.S

producers. The objective of this study was to create first ever high-resolution digital soil

property maps of Quapaw Tribal Lands with limited data for sustainable soil resource

management. We used a digital soil mapping (DSM) approach based on fuzzy logic

to model the spatial distribution of 24 soil properties at 0–15 and 15–30 cm depths.

A digital elevation model with 3m resolution was used to derive terrain variables and

a total of 28 samples were collected at 0–30 cm over the 22,880-ha reservation.

Additionally, soil property maps were derived from Gridded Soil Survey Geographic

Database (gSSURGO) for comparison. When comparing properties modeled by DSM to

those derived from gSSURGO, DSM resulted in lower root mean squared error (RMSE)

for percent clay and sand at 0–15 cm, and cation exchange capacity, percent clay,

and pH at 15–30 cm. Conversely, gSSURGO-derived maps resulted in lower RMSE

for cation exchange capacity, pH, and percent silt at the 0–15 cm depth, and percent

sand and silt at the 15–30 cm depth. Although, some of the soil properties derived

from gSSURGO had lower RMSE, spatial soil property patterns modeled by DSM

were in better agreement with the topographic complexity and expected soil-landscape

relationships. The proposed DSM approach developed property maps at high-resolution,

which sets the baseline for production of new spatial soil information for Quapaw Tribal

soils. It is expected that these maps and future versions will be useful for soil, crop, and

land-use decisions at the farm and Tribal-level for increased agricultural productivity and

economic development. Overall, this study provides a framework for developing DSM on

Tribal Lands for improving the accuracy and detail of soil property maps (relative to off

the shelf products such as SSURGO) that better represents soil-forming environments

and the spatial variability of soil properties on Tribal Lands.
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INTRODUCTION

Soils provide essential ecosystem services, including water
filtration, flood control, medium for plant growth, and habitat
for soil biota. About 38% of the Earth’s ice-free surface is used
for agriculture—approximately 12% for croplands and 26% for
pastures (1). Information about soils is integral to sustainable soil
management. Overall, there is a high level of spatially explicit
soil information in the U.S. compared to emerging countries (2).
Nonetheless, not all of the U.S. has detailed, spatially resolved soil
information, such is the case with Native American Tribal Lands
(3, 4). Therefore, fine resolution soil maps are needed for land-
use decisions at farm and Tribal-levels for increased agricultural
productivity and economic growth to combat food insecurity on
U.S Reservations.

In most Tribal Lands, little-to-no actual soil data are
represented in national soil products as Tribal Lands are
autonomous Nations and with land ownership and data
acquisition requirements prior to sampling being challenging and
complex. This means that even the best soil information available
for these regions is inadequate for addressing soil management
needs at adequate scales. Oftentimes, Tribal Lands are faced
with greater food insecurity, as well as the desire to cultivate
culturally important crops (5). There is a need to deliver more
detailed and current soil information to these communities for
sustainable management of existing soil resources. A science-
based approach to soil and crop management that utilizes the
best available soil information is necessary to enable producers
to make farm-level decisions. Many producers and communities
will adopt land management practices when provided spatially
explicit soil information (6).

The Quapaw Tribal Lands are located in northeastern
Oklahoma, a region for which spatial soil information is
only available through the Soil Survey Geographic Database
(SSURGO), or through SSURGO’s gridded version (gSSURGO)
(7). In SSURGO, soil bodies are represented as discrete entities
(i.e., map units) that enclose soil types (components). SSURGO’s
map units are delineated following a pedologist’s mental
model of the soil-landscape patterns that describe the spatial
distribution of soil forming factors (8). Although SSURGO’s
map units are produced by expert pedologists through extensive
field work, the spatial scale of these units may restrict their
usefulness in supporting site-specific management. Moreover,
the discrete nature of SSURGO’s map units limits their use
as inputs for data-driven decision support tools that rely on
spatially continuous soil information. Technologic advances
in geographic information systems (GIS), global positioning
systems (GPS), remote and proximal soil sensing, and digital
elevation models (DEM) provide more efficient ways of assessing

Abbreviations: cLHS, conditioned Latin hypercube sampling; DSM, digital soil

mapping; DEM, digital elevation model; GIS, geographic information systems;

gSSURGO, Gridded Soil Survey Geographic Database; GPS, global positioning

systems; MAE, mean absolute error; PM, parent material; RMSE, root mean

squared error; SAGA, System for Automated Geoscientific Analyses; SGC, soil

generic class; SoLIM, Soil Landscape Inference Model; SSV, soil similarity vector;

RSPV, representative soil property value.

the continuous spatial variability of soils and overcome some of
the challenges implicit in SSURGO and other conventional soil
survey methods (9).

Digital soil mapping (DSM) is a procedure for generating
model informed maps of soil variability and function and may be
used for optimizing soil management and use. Spatially explicit
soil information and high-resolution digital layers related to soil-
forming processes are used within DSM approaches to assess the
spatial variability of soil types and properties (10). DSM allows
for the presentation of the continuous nature of soils, as inherent
soil variability is captured through quantitative models that relate
soil attributes to the spatial distribution of soil-forming factors
(11, 12). Moreover, the use of explicit quantitative models, built
through DSM, allows soil scientists to evaluate the numerical
precision and associated uncertainty of mapping outcomes. A
quantitative-oriented evaluation of DSM outcomes is important
for the adequate use of digital soil spatial information. Among
DSM approaches [for a comprehensive review see (13)], inference
systems based on expert-driven fuzzy logic allows for DSM in
areas with limited access to soil information (11).When soil point
data are scarce, the inference systems formalize the pedologist’s
mental model of soil-landscape relationships for subsequent
spatial modeling of soil classes and properties. Data acquisition
engines allow inference systems to “mine” expert knowledge and
transfer it to quantitative frameworks for numerical modeling.
According to Malone et al. (13), the SoLIM (Soil Land Inference
Model) engine proposed by Zhu et al. (14) remains as one of the
most well-known inference systems for expert-driven DSM.

In the current study, a DSM approach based on SoLIM
is implemented for the spatially continuous modeling of
Quapaw Tribal Lands soil properties. This approach allows
for combining fuzzy logic-based SoLIM with data-mining
techniques, a combination that has proven useful for DSM when
expert knowledge is not available and soil point data are limited
(2, 11, 15, 16). The objective of this study is therefore to produce
first ever high-resolution soil property maps of the Quapaw
Tribal Lands following a data-driven, fuzzy logic framework
that accommodates limited data scenarios and compare this
approach with gSSURGO. Although limited by available soil
point data, it is expected that these soil property maps will set
the baseline for upcoming versioning and development of site-
specific spatial soil information for the Quapaw Tribal lands.
High resolution soil information is necessary for management on
small to medium size farms where efficiency gains can improve
farm income. USDA Soil Survey has been the baseline for soil
information for management; however, with increasing data
spatial data availability and increased computer processing, there
is an opportunity to resolve and improve soil information.

MATERIALS AND METHODS

Study Site and Current State of Spatial Soil
Information
The Quapaw Tribal Lands are located in the northeast corner
of Ottawa County in Oklahoma. The spatial extent of the study
site is about 22,880 ha, of which ∼24% is cropland and the
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FIGURE 1 | Map of the study site showing aerial imagery, excluded areas prior DSM activities, and location of collected soil samples.

FIGURE 2 | Map showing spatial subsets of two SSURGO soil series present in the study site and their slope-driven phases. SSURGO’s map units are outlined over

the study site’s shaded terrain (top). The outlined circle on the bottom right spatial subset shows an example of the underrepresentation of local topography by

SSURGO’s map units due to mapping scale.
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remaining 76% is forest, grassland, wetland, and urban land (17).
The average elevation of this area is 279m, and it ranges from

FIGURE 3 | Map of closest sampled pedons related to SSURGO’s map units

in the study site. Those map units whose related sampled pedon is more than

30 km away from the unit’s geometric centroid are excluded from the map.

229m in the west to 329m in the east. This reservation receives
an average annual rainfall of about 1,089mm, with a difference
of ∼88mm between the driest and wettest months. The average
temperature is 14.3◦C and the coldest and warmest month, on
average, is January (1.1◦C) and July (26.4◦C), respectively. The
parent material (PM) of the site is mainly characterized by
residuum from sandstone and shale in the west and residuum
from limestone, cherty limestone, and dolomite in the east with
alluvium from residuum sources and floodplains occurring on
river channels, valleys, and terraces. The landcover in the eastern
region is predominantly forested, while the western region is
used as grazing lands and crop production. In the late 1800s,
the Tri-State Mining District began mining and milling ore
(primarily lead and zinc) and produced more than 500 million
tons of waste material in this tribal area (primarily chat and
fine tailings; Figure 1). Consequently, the U.S. Environmental
Protection Agency established a Superfund site in Ottawa County
(18). The Quapaw Nation is the only U.S. tribe responsible for
cleanup of a Superfund Site, with 4M tons out of the 75M (∼6%)
source materials removed (324 ha for agricultural use).

Spatial soil information for the Quapaw Tribal Lands is
currently available only through SSURGO. The current soil
survey (1:24,000 scale) suggests that 25 dominant soil series occur
across the study site (Soil Survey Staff, 2014). The occurrence of
these series, their phases (i.e., surface texture, percent slope), and
relationship with other series (through consociations, complexes,
and associations) are spatially represented by 40 map units. Only
3 of the 25 mapped soil series cover 56% of the study area.
Soils represented by these 3 series have a silt-loam texture and
coarse fragments that increase in size as the slope increases. An
important characteristic of the soils in the study site is that 9 of
the 25 series exist as multiple phases within the site boundary.
The occurrence of these phases responds to the heterogeneous
topography, as denoted by hills of varying slope commonly

FIGURE 4 | Map of parent material prepared for the study site.
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occurring across the site. This suggests the importance of
topography as a control for the spatial variability of soils in the
study site. Figure 2 shows four map units for two soil series (each
series with two phases according to the slope gradient). There
are two major limitations of SSURGO data for this reservation:
(i) the scale of the soil survey does not “capture” local patterns
of topographic variability (Figure 2), and (ii) actual data for the
study site are lacking. The latter is particularly important since
the study site covers roughly 22,000 ha and no pedons have been
sampled by the soil survey within the site’s boundaries. Figure 3
shows the closest sampled pedons that better relate to map units
of the study site.

Data Processing and Collection
Environmental Covariates
A bare-earth DEM of three-meter resolution was generated
for the study site using lidar (light detection and ranging)
data. The lidar data were obtained as a set of 133 point-
cloud scenes downloaded from the National Map of the
United States Geological Survey (https://apps.nationalmap.gov/
downloader/#/). The ground returns of the point clouds were
interpolated using the triangulated irregular network algorithm.
A kernel-based smoothing filter and hydrologic enforcement was
applied to the resulting DEM. A set of six terrain attributes were
derived from the DEM using the SAGA (System for Automated
Geoscientific Analyses) software (19), namely SAGA wetness
index, normalized height, mid-slope position, valley depth,
standardized height, and Strahler-based valley depth (20). The
selection of these attributes was based on hydro-geomorphologic
processes on the landscape, and the relationship of these
processes with soil formation and development.

The SAGA wetness index quantifies the steady-state soil
moisture potential as a function of the natural log ratio of
modified specific catchment area to local slope. The SAGA
wetness index has often been reported as an attribute of high
(relative) importance for the prediction of soil properties and
types (21–23). Normalized height, mid-slope position, and valley
depth were selected given their relationship with translocation
processes occurring at the catchment scale (20). Topography-
driven surface translocation processes are important owing to
their influence on the downslope movement of soil particles,
especially smaller particles (24, 25). Standardized height and
Strahler-based valley depth were selected to account for processes
occurring at a broader scale and related to altitudinal and
depressional gradients, as compared to the previously described
terrain attributes.

In addition to terrain attributes, a raster map of soil PM
was generated in four steps: (i) gSSURGO’s map units were
downloaded and tabular information derived for the study site
by utilizing the dominant PM identified for mapping units, (ii)
addition of PM as a new attribute for map units, (iii) aggregation
of PMs into four dominant classes based on official soil series
descriptions for the map units, and (iv) rasterization of the final
PM classes to match the spatial resolution and extent of terrain
attributes. The aggregation of PMs was performed to reduce the
number of PM classes (Figure 4). Presumably, the aggregation of

PM classes would reduce the number of soil samples required to
capture a more complete feature space (2).

Field Work and Lab Analysis
A set of 14 soil sampling locations was generated through the
conditioned Latin hypercube sampling (cLHS) technique (26)
and implemented in R language by Roudier (27). Sampling
locations captured unique and distinct landscape conditions
that influence soil development, without providing redundant
information. Previously described environmental covariates were
used as ancillary data for the cLHS. Once the sampling locations
were defined, a sampling campaign was conducted October 2019
following Quapaw Tribal government, landowner, and cultural
preservation approvals. A total of 28 Soil samples were collected
from 14 locations [e.g., two samples per location according to

TABLE 1 | Mehlich-3 extractable nutrients from soil samples collected in the

Quapaw Tribal Lands in 2019 at two depths (0–15 and 15–30).

B

†

-Su B-Ss C-Su C-Ss Ca-Su Ca-Ss

Mean 0.51 0.39 1.68 1.03 1454.43 1181.14

StDev 0.19 0.06 0.61 0.38 1051.65 909.13

Range 0.3–0.9 0.3–0.5 0.93–2.80 0.6–1.96 375–3,740 238–3,503

CEC-Su CEC-Ss Clay-Su Clay-Ss C:N-Su C:N-Ss

Mean 11.64 10.57 18.23 21.78 10.47 10.30

StDev 5.77 5.97 10.14 10.78 2.29 2.67

Range 7–26 7–29 11.67–51.26 13.33–55 7.13–15.50 6.99–16.98

Cu-Su Cu-Ss EBSCa-Su EBSCa-Ss EBSK-Su EBSK-Ss

Mean 1.57 1.09 55.14 49.54 1.41 1.24

StDev 0.81 0.37 15.31 17.43 0.59 0.65

Range 0.6–3.2 0.6–1.7 22.6–83.1 15.2–73.9 0.7–2.5 0.6–2.7

EBSMg-Su EBSMg-Ss EBSNa-Su EBSNa-Ss EBSTotal-Su EBSTotal-Ss

Mean 7.36 6.96 1.31 2.65 65.19 60.36

StDev 3.04 3.70 1.32 3.93 15.49 18.34

Range 2.7–12.5 1.9–13.6 0.3–5.2 0.4–13.2 33.7–87.6 29.8–89.2

Fe-Su Fe-Ss K-Su K-Ss Mg-Su Mg-Ss

Mean 170.07 117.50 65.00 52.93 111.00 102.14

StDev 59.25 28.36 37.33 36.30 90.96 115.42

Range 87–276 76–170 25–142 18–149 29–397 19–486

Mn-Su Mn-Ss N-Su N-Ss Na-Su Na-Ss

Mean 76.86 48.14 0.16 0.11 38.79 80.43

StDev 46.46 29.24 0.05 0.04 45.46 129.19

Range 28–219 8–110 0.077–0.26 0.05–0.167 7–155 8–434

P-Su P-Ss pH-Su pH-Ss S-Su S-Ss

Mean 21.71 8.93 5.98 5.92 26.14 40.29

StDev 20.53 5.74 0.51 0.68 52.69 97.60

Range 3–82 4–26 5.2–6.8 4.9–7.1 9–209 6–378

Sand-Su Sand-Ss Silt-Su Silt-Ss Zn-Su Zn-Ss

Mean 34.17 31.79 47.53 46.51 41.12 12.18

StDev 7.69 9.86 9.20 9.44 44.31 11.46

Range 20–42.98 13–43.93 24.12–62 33–61 6.1–171.8 1.3–41.1

†

B, boron; C, carbon; Ca, calcium; CEC, cation exchange capacity; C:N, carbon/nitrogen

ratio; Cu, copper; EBS, effective base saturation; Fe, iron; K, potassium; Mg, magnesium;

Mn, manganese; N, nitrogen; Na, sodium; P, phosphorous; S, sulfur; Su, surface (0–

15 cm); Ss, subsurface (15–30 cm); Zn, zinc. Chemical elements are given in part per

million (ppm); CEC = cmolc/kg; EBS = % of effective CEC; carbon, clay, nitrogen, sand,

and silt = %.
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depth intervals of: (i) 0–15 cm, and (ii) 15–30 cm] using auger
boreholes (Figure 1).

Collected soil samples were air-dried and ground to pass
through a 2-mm sieve for analysis. Particle size analysis was
performed using a modified 12-h hydrometer method (28). Soil
pH was determined using a 1:10 soil mass to water volume
mixture. Mehlich-3 extractable nutrient concentrations (i.e., B,
Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn) were determined using
a 1:10 soil mass to extractant solution volume ratio (29) and
analyzed by inductively coupled argon-plasma spectrometry
(ICP, Agilent Technologies, Santa Clara, CA). Total N and TOC
were determined by combustion using a Vario Max CN analyzer
(Elementar Americas).Table 1 shows descriptive statistics for soil
properties and their corresponding units.

Digital Soil Mapping Approach
The DSM approach was based on the environmental similarity
model proposed by Zhu and Band (30), Zhu (31), and Zhu et al.
(14). These authors used expert pedologic knowledge to formalize
relationships between distinct soil-forming environments and
observed soil types. Parting from these relationships, a fuzzy
inference engine was used to quantify the degree of association
(i.e., membership) between soil-forming environments and
soil types. According to the similarity model, the higher the
membership value, the more favorable a distinct environment
is for the occurrence of a given soil type. These authors
referred to the complete set of memberships as the soil similarity
vector (SSV), which is the basis of the environmental similarity
model. Soil attributes like taxonomic classes and soil properties
can be derived through hardening or weighted averaging the
SSV, respectively. The environmental similarity model has been
integrated in the SoLIM (Soil-Landscape Inference Model),
which also supports knowledge acquisition routines and fuzzy
inference (14).

For the present study, the application of the environmental
similarity model for the continuous mapping of soil properties
followed a data mining approach, similar to that proposed
by Owens et al. (2). The data mining approach included the
following steps: (i) cluster analysis of terrain attributes, (ii)
construction of soil generic classes, (iii) construction of a ruleset
and fuzzy inference of the SSV, and (iv) modeling of a soil
property. Details of each step are presented next.

Cluster Analysis of Terrain Attributes
K-means cluster analysis based on the hill-climbing method
(32) was performed on the raster layers of terrain attributes. A
chain of clustering runs, each with a different number of clusters
(k), was performed to select the “optimal” k. A clustering run
with k clusters was considered optimal if the resulting clusters
delineated areas related to hillslope positions (33), channels,
and channel banks (local scale); further differentiated by
altitudinal/depressional gradient (broad scale). Terrain clusters
related to hillslope positions were desirable since erosional-
depositional models have suggested that hillslope position is a
factor influencing soil weathering, surface runoff, and lateral
movement of soil particles, among other processes (33, 34).
The further differentiation of hillslope positions based on
altitudinal/depressional gradient was necessary to account for the

broad scale at which topography might still exert control over
soil development.

Construction of Soil Generic Classes
A soil generic class (SGC) is conceptualized as the spatial
representation of a particular soil-forming environment where
presumably landscape processes influence soil properties in a
distinct manner (8). As a result, a given soil property will retain
more homogeneity within a SGC compared to the heterogeneity
present across SGCs. The SGCs were constructed by spatially
intersecting the raster layers corresponding to terrain clusters and
PM classes. The raster-based spatial intersection was performed
through raster algebra (sum operator). Each resulting unit
(i.e., pixels with the same integer value) indicated a specific
combination of a hillslope position-related terrain feature and a
parent material class.

Construction of a Ruleset and Fuzzy Inference of the

SSV
Within SoLIM, rules determine the basis on which to quantify the
membership of each location (i.e., raster pixel) in the study site
to an SGC. The rule associated with an SGC was represented by
a composition of values from terrain attributes and a single PM
class value. For instance, SGC X was represented by moderate
steady-state saturation potential, relatively low topographic
position, and colluvial material, which in rule notation could
be expressed as: SAGA wetness index = 15, normalized height
= 0.25, and PM class = 1. Raster pixels that satisfied this rule
were assigned a membership of 100% to SGC X. Conversely,
raster pixels that did not satisfy this rule, received a partial
membership that increased as pixel values (in multivariate space)
approached values set in the rule (i.e., representative values).
Fuzzy membership functions were applied within SoLIM to
quantify the (partial) membership of every raster pixel to each
SGC. Themembership and its increase/decrease were adjusted by
defining representative and threshold values, as explained next.

Representative and threshold values for SGCs from each
terrain attribute were calculated through zonal statistics. The
mean and the mean ± two standard deviations of each terrain
attribute within the SGC served as the representative and
threshold values, respectively. A membership of 100% was given
to the representative value, whereas 50% was given to threshold
values. All values smaller or greater than threshold values were
automatically assigned a partial membership using the bell-
shaped function. Given its discrete nature, PM was treated as a
binary variable. Membership maps were constructed to associate
the presence (100% membership) or absence (0% membership)
of a PM class to each SGC. Once the ruleset was constructed,
the pixel-wise fuzzy inference of membership to SGCs was
performed. For a raster pixel, its overall membership to a SGC
was calculated as the mean value of the memberships to the SGC
calculated from each terrain attribute and PM class. The resulting
membership layers composed the SSV for the study site.

Modeling of a Soil Property
The inference of a soil property consisted of a two-step process.
In the first step, a representative soil property value (RSPV) was
assigned to each SGC. The RSPV of a SGC was obtained from
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soil observation within the area enclosed by the SGC (if any). Of
the 14 soil observations for this study, 11 (78%) were used for the
assignment of RSPV. In the second step, the following equation
(Equation 1) was applied pixel-wise:

Pxy =

∑n
z=1 m

k
xy

∗pk

∑n
z=1 m

k
xy

, (1)

where Pxy is the estimated soil property value P at pixel xy,

mk
xy is the membership value m at pixel xy for the kth SGC, and

pk is the representative soil property value p for the kth SGC.
This equation is equivalent to a weighted arithmetic mean, with
RSPV as the data points to average and membership values as
their corresponding weights. The continuous modeling of soil
properties from RSPV and membership maps has been proposed
by Zhu and Band (30). These authors suggested that given a
specific location xy, a soil property will be influenced by all soil-
forming conditions (e.g., SGCs in the present study). However,
this influence will be proportional to the similarity between soil-
forming conditions at xy and all conditions accounted for when
formalizing soil-landscape relationships into (expert) rules.

Evaluation of Statistical Performance
The statistical performance of the soil property modeling was
evaluated based on the root mean squared error (RMSE) and the
mean absolute error (MAE). Of the total soil observations for
this study, 21% were used for statistical evaluations of modeled

soil properties. The RMSE is calculated as shown in the equation
below (Equation 2):

√

√

√

√

1

n

n
∑

i=1

(ŷ− y)2 , (2)

where ŷ−y is the difference between the modeled value ŷ and the
observed value y for the soil property; that is, the error. The MAE
is calculated as shown in the equation below (Equation 3):

1

n

n
∑

i=1

|ŷ− y|, (3)

where |ŷ− y| is the absolute value of the error. Additionally, both
RMSE and MAE were calculated for soil property maps derived
from gSSURGO in order to evaluate the statistical performance of
the DSM approach in relation to existing spatial soil information.
These property maps were derived from the gSSURGO database
using the weighted average of the representative property values
for the components of the map units in the study site. Five
common properties (from SSURGO and DSM) are compared in
the next section.

RESULTS

Cluster Analysis and Soil Generic Classes
Clustering analysis led to the identification of several generic soil
classes, which possess similar parent material and topographic

FIGURE 5 | Elevation of the study site (A), terrain cluster (B) and 3D spatial subsets of regions within the Ozark Uplift (C), and the Cherokee Platform (D). Color

blocks on the bottom of the figure indicate each one of the terrain clusters.
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positions. Close examination of clusters with different k and
overlaying a raster layer of shaded terrain suggested k = 17 as
a reasonable number of clusters to represent the topographic
complexity of the study area. The resulting terrain clusters
successfully discriminated between features resembling hillslope

positions across the altitudinal gradient of the study site
(Figure 5).

The spatial intersection between the 17 terrain clusters and the
4 PM classes resulted in a total of 66 SGCs. When compared to
gSSURGO map units for the study site, SGCs indicated gain in

FIGURE 6 | Spatial subset of the soil generic classes (SGCs) with gSSURGO map units overlaying the Soil Generic Classes as black-outlined polygons.

TABLE 2 | Root mean squared error (RMSE) and mean absolute error (MAE) for the soil properties modeled by the proposed DSM approach and those derived from

gSSURGO.

DSM approach B
†

C Ca CEC Clay C:N

0–15 cm MAE 0.35 1.00 879.87 4.71 3.52 1.63

RMSE 0.35 1.10 959.09 5.43 4.46 1.84

15–30 cm MAE 0.12 0.27 533.01 1.60 2.57 2.02

RMSE 0.13 0.31 631.14 1.88 2.78 2.96

Cu EBSCa EBSK EBSMg EBSNa EBSTotal

0–15 cm MAE 1.45 13.04 0.74 0.36 0.51 12.53

RMSE 1.47 14.55 0.78 0.40 0.59 14.33

15–30 cm MAE 0.33 15.92 0.17 2.65 2.95 18.51

RMSE 0.34 20.46 0.20 2.93 4.58 21.38

Fe K Mg Mn N Na

0–15 cm MAE 77.42 22.99 36.34 21.72 0.07 12.09

RMSE 95.96 31.91 37.11 21.88 0.09 15.09

15–30 cm MAE 21.85 3.06 63.72 24.62 0.04 115.67

RMSE 22.27 3.42 94.10 29.80 0.04 185.27

P pH S Sand Silt Zn

0–15 cm MAE 28.10 0.48 35.44 8.53 11.72 23.97

RMSE 43.03 0.56 55.70 8.76 11.84 26.65

15–30 cm MAE 2.42 0.83 57.02 8.73 9.62 11.05

RMSE 2.70 0.96 92.85 9.67 10.14 12.74

gSSURGO-derived CEC Clay pH Sand Silt –

0–15 cm MAE 4.00 6.87 0.33 12.23 9.03 –

RMSE 4.58 7.02 0.38 13.54 9.75 –

15–30 cm MAE 4.13 7.00 0.90 7.33 6.23 –

RMSE 4.39 7.30 1.01 9.11 7.04 –

†

B, boron; C, carbon; Ca, calcium; CEC, cation exchange capacity; C:N, carbon/nitrogen ratio; Cu, copper; EBS, effective base saturation; Fe, iron; K, potassium; Mg, magnesium;

Mn, manganese; N, nitrogen; Na, sodium; P, phosphorous; S, sulfur; Su, surface (0–15 cm); Ss, subsurface (15–30 cm); Zn, zinc. Chemical elements are given in part per million (ppm);

CEC = cmolc/kg; EBS = % of effective CEC; carbon, clay, nitrogen, sand, and silt = %.
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spatial detail of the resulting units (Figure 6). This increase was
expected as terrain clusters and inputs for the construction of
SGCs were created from terrain attributes derived from a 3-meter
DEM. Moreover, SGCs better discriminated among topographic
patterns, as compared to gSSURGO map units. However, SGCs
are not proposed as a replacement for gSSURGO map units,
as SGCs in the present study are focused on high resolution
interactions with topography and parent material where water
redistribution at the local scale is the primary driver of soil
property differences.

Soil Property Maps
Thirteen out of the 24 modeled properties resulted in lower
MAE and RMSE at the 15–30 cm depth, reflected by the lower
standard deviation of their values at the subsurface vs. the surface
(Table 1). For physical properties, only percent sand resulted in
lower MAE and RMSE at the 0–15 cm depth. Conversely, percent
clay and silt were better modeled at the 15–30 cm depth (Table 2).
Of the seven macronutrients (C, Ca, K, Mg, N, P, and S), all
but two (Mg and S) resulted in lower MAE and RMSE at the
15–30 cm depth (Table 2). Similar results were obtained for the
micronutrients (B, Cu, Fe, Mn, Na, and Zn), where all but two
(Mn and Na) resulted in lower MAE and RMSE at the 15–30 cm
depth (Table 2). Conversely, the majority of the effective base
saturations were better modeled at the 0–15 cm depth, which
was also the case for C:N and pH (Table 2). When compared
to gSSURGO-derived maps, some of the properties modeled by
the DSM approach resulted in lower MAE and RMSE. For the 0–
15 cm depth, DSM resulted in lower MAE and RMSE for percent

clay and sand. Contrary, gSSURGO-derivedmaps for percent silt,
pH, and CEC resulted in lower MAE and RMSE at this depth.
For the 15–30 cm depth, the DSM approach resulted in lower
MAE and RMSE for percent clay, pH, and CEC, while gSSURGO-
derivedmaps for percent sand and silt resulted in lowerMAE and
RMSE at this depth (Table 2).

DISCUSSION

Overall, hillslope-related terrain features were more developed
at medium-to-high altitudes, compared to lower altitudes. This
result was expected given the difference in age and composition
of the surface geologic material between regions in high and
low altitudes (Figure 5). The region at higher altitudes is part
of the Ozark Uplift, which is mainly composed of cherty
marine limestone from the Early Mississippian (35). Given
this region’s age and the relatively higher rate of weathering
in limestone, dissected hills with well-developed slopes are
dominant. Conversely, the lower altitude region is part of the
Cherokee Platform, which is mainly composed of marine shale
interbedded with sandstone from the Middle Pennsylvanian
(35). Material in this region is younger and more resistant to
weathering; therefore, hills are less dissected, and slopes are
less developed. Overall, the selected terrain attributes and the
cluster analysis were useful in modeling terrain patterns at
both local (hillslope) and broad (altitude) scales. The selected
terrain attributes and resulting clusters were also in agreement
with the surficial geologic settings. Although not the focus
of this study, the concordance between terrain patterns and

FIGURE 7 | Boxplots showing the variability in soil property values across the two depths for measured data, gSSURGO-derived maps, and maps developed through

the DSM approach.

Frontiers in Soil Science | www.frontiersin.org 9 July 2021 | Volume 1 | Article 695386

https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/soil-science#articles


Fuentes et al. Digital Soil Mapping Tribal Lands

the geology of the study site exposes the potential of high-
resolution digital terrain modeling for the spatial assessment of
surficial geology.

Overall, modeling of soil properties by DSM did not show
a consistent trend related to the statistical performance as a
function of soil depth. Some studies have suggested that DSM
approaches tend to perform better when modeling properties
near the soil surface (21). From a qualitative standpoint,
the DSM approach produced property maps with variability
in values more similar to that of the measured data, as
compared to gSSURGO-derived maps (Figure 7). The variability
of property values resulting from the DSM approach was in
accordance with the topographic complexity of the study area.
As a result, soil surface property maps produced using the
DSM approach were in better agreement with expected soil-
landscape relationships. For instance, percent sand, as modeled
by the DSM approach, was higher for soils developing over
material with interbedded shale and sandstone, as compared
to those soils developing on cherty limestone. Conversely,
the gSSURGO-derived percent sand map resulted in lower

values for soils developing on shale/sandstone interbedding,
as compared to soils from cherty limestone. Sandier soils
tend to form from sandstones as compared to limestone,
thus, the percent sand modeled by the DSM approach agreed
with expected sand content, given distinct PMs. Furthermore,
the hillslope-scale patterns of percent sand, as modeled by
the DSM approach, showed higher sand content for soils
developing on shoulder-to-backslope positions (Figure 8). This
trend was expected as finer soil particles developed at these
positions and are more prone to lateral downslope transportation
by surface runoff than coarser particles like sand, thus
resulting in greater sand concentrations in these positions.
For gSSURGO-derived sand percent, this expected hillslope-
scale variability was not found. Presumably, the spatial detail
of gSSURGO map unit delineations was not high enough to
capture the spatial variability of soil properties at the hillslope
scale. Moreover, the assignment of a single soil property
value for the whole area enclosed by a map unit does not
represent the within-unit soil-continuum in gSSURGO-derived
property maps.

FIGURE 8 | Spatial subsets of percent sand (0–15 cm). Subsets show the spatial variability of percent sand within the Ozark Uplift, as modeled by the DSM approach

(A) and gSSURGO-derived (B), and within the Cherokee Platform, as modeled by the DSM approach (C) and gSSURGO-derived (D).
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FIGURE 9 | Spatial subsets of pH (0–15 cm). Subsets show the spatial variability of pH within the Ozark Uplift, as modeled by the DSM approach (A) and

gSSURGO-derived (B), and within the Cherokee Platform, as modeled by the DSM approach (C) and gSSURGO-derived (D).

In addition to percent sand, patterns in soil pH from the DSM
approach also agreed with the expected variability at hillslope-
scales. Specifically, soil pH values from the DSM approach were
lower in areas where the slope and relatively higher sand content
allows for better soil drainage (i.e., shoulder and backslopes),
compared to flat areas with relatively higher clay content (i.e.,
summit and toeslopes) which might lead to poor drainage or
ponding (Figure 9). The compound effect of a steeper slope
and sandier texture may result in lower amounts of organic
matter and better drainage. These conditions may promote
a lower buffering capacity and higher rates of infiltration.
Ultimately, these conditions promote leaching of basic cations
from soil, which results in a lower pH (36). As with percent
sand, gSSURGO-derived pH did not show this hillslope-related
spatial variability (Figure 9). Nonetheless, gSSURGO-derived pH
did show a coarser spatial pattern in soil pH consistent with
that expected for study site conditions. As previously noted, the
coarser patterns in soil pH of gSSURGO-derived maps are likely
due to the lower detail in delineations and that a single soil
property value is allocated across the area enclosed by each map

unit (Figure 9). It is important to note, however, that pH can
be heavily influenced by anthropogenic inputs such as lime or
fertilizers; thus, this should be taken into consideration when
interpreting results obtained by both approaches.

The CEC map produced via DSM showed a spatial
distribution consistent with that of percent clay and clay
activity, the latter as indicated by taxonomic descriptions of
dominant soil series in the study site (Soil Survey Staff, 2020;
Figure 10). Soil CEC is largely determined by the amount and
type of clay minerals (37, 38). A higher content of active
clay promotes a higher soil CEC. For the study site, soils
developing on the Ozark Uplift are mainly described as Ultisols
containing inactive clays (Soil Survey Staff, 2020). Contrary,
those developing on the Cherokee Platform are mainly described
as Alfisols containing active clays (Soil Survey Staff, 2020).
The CEC values, as modeled by the DSM approach, were
consistent with this difference in clay type; that is, modeled
CEC values were generally greater in soils developed on the
Cherokee Platform, as compared to those from the Ozark Uplift.
Overall, highest CEC values were found in soils of channels
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FIGURE 10 | Cation exchange capacity (CEC) as modeled by the DSM

approach (A), and gSSURGO-derived (B). Units of CEC are given in cmolc/kg.

Areas with spatial gaps resulted for the gSSURGO derived CEC maps due to

the lack of representative values for some map units.

and floodplains, especially those formed in recent alluvium.
According to the existing soil survey, these soils contain the
highest clay content and most active clays in the study site
(Soil Survey Staff, 2020). As with pH, the gSSURGO-derived
CEC maps displayed similar but coarser patterns in CEC values
than those modeled by DSM (Figure 10). This spatially explicit
soil property information may be used in Agricultural Resource
Management Plans at the Tribal Nation Level for improved
agricultural management decision making and ultimately for
improved food security.

CONCLUSION

To improve management and efficiency of agricultural practices
and ultimately food security on Tribal Lands, high-resolution
and detailed soil information is needed to understand the
functional variability across landscapes. Inevitably, soil point data
are limited in most areas where high-resolution information is
needed for farm-level decisions. Statistical procedures combined
with knowledge and soil point data can be used to generate initial
versions of spatial soil predictions. This study was conducted
to produce up-to-date and high-resolution soil property maps
for the Quapaw Tribal Lands with limited data for more
sustainable food systems. These property maps are a considerable
advancement in the current state of spatial soil information for
Quapaw Tribal Lands, a site for which no SSURGO pedon data
have been collected. The collection of soil information specific for
Quapaw Tribal Lands, in addition to the use of high-resolution
inputs for DSM, allowed for the production of soil property maps
that were in better agreement with hillslope-scale soil-landscape
relationships observed in the study site, as compared to the over-
simplified and discretized representation of soil spatial variability
by gSSURGO’s map units.

Soil property maps produced by the DSM approach represents
advancement in the state of spatial soil information for
Quapaw Tribal Lands. Overall, this effort is aimed at producing
spatially explicit and site-specific information to support Tribal
Lands’ soil-land resource management. As future work, map
versioning should be adopted to improve the DSM outputs
in terms of statistical performance and pedological reasoning.
Future work will also evaluate current DSM approaches’
ability to predict soil properties on the reclaimed Super
Fund site. Lastly, future work will focus on developing crop
suitability index and soil health maps based on this DSM base
information for optimized soil management plans at the Tribal
Nation level.

This study provides a framework for conducting future
DSM activities on Tribal Lands for improving the accuracy
and detail of soil property maps (relative to off the shelf
products such as SSURGO) that better represents soil-forming
environments and the spatial variability of soil properties
on Tribal Lands. Considering, current users of soil data are
relying on a published a soil survey which has zero data
points represented in this area, maps and methods provided
herein provides a framework for versioning where future data
collection can be added to improve the later versions. This
soil property modeling ultimately provides soil information
for precision management and more sustainable food
production systems.
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