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Affinity-mediated drug delivery utilizes electrostatic, hydrophobic, or other non-
covalent interactions betweenmolecules and a polymer to extend the timeframe
of drug release. Cyclodextrin polymers exhibit affinity interaction, however,
experimentally testing drug candidates for affinity is time-consuming, making
computational predictions more effective. One option, docking programs,
provide predictions of affinity, but lack reliability, as their accuracy with
cyclodextrin remains unverified experimentally. Alternatively, quantitative
structure-activity relationship models (QSARs), which analyze statistical
relationships between molecular properties, appear more promising.
Previously constructed QSARs for cyclodextrin are not publicly available,
necessitating an openly accessible model. Around 600 experimental affinities
between cyclodextrin and guest molecules were cleaned and imported from
published research. The software PaDEL-Descriptor calculated over
1,000 chemical descriptors for each molecule, which were then analyzed with
R to create several QSARs with different statistical methods. These QSARs proved
highly time efficient, calculating in minutes what docking programs could
accomplish in hours. Additionally, on test sets, QSARs reached R2 values of
around 0.7–0.8. The speed, accuracy, and accessibility of these QSARs
improve evaluation of individual drugs and facilitate screening of large
datasets for potential candidates in cyclodextrin affinity-based delivery
systems. An app was built to rapidly access model predictions for end users
using the Shiny library. To demonstrate the usability for drug release planning, the
QSAR predictions were coupled with a mechanistic model of diffusion within the
app. Integrating new modules should provide an accessible approach to use
other cheminformatic tools in the field of drug delivery.
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1 Introduction

Affinity delivery, which relies on interactions between a drug delivery system and drug
molecules, improves effectiveness of medication by extending the duration of drug release
and thereby lengthening the duration of the treatment (Rivera-Delgado et al., 2016).
Mathematical modeling of these affinity systems has shown that the strength of the affinity
interaction, the ratio of host binding sites to guest ligands, and the molecular path length of
diffusion influence the transport of molecules out of the system. Of these physical forces, the
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affinity strength plays an important role in the classification of the
system and the timescale of drug release (Fu et al., 2011). Affinity
interaction can be associated with a variety of physical properties,
including charge, hydrophobicity, Van der Waals forces, etc. In the
fields of biomaterials and drug delivery, affinity delivery has been
used with small molecule drugs (Wang and von Recum, 2011),
proteins (Rivera-Delgado et al., 2016), cytokines, and antibodies
(Ortiz et al., 2011).

Our lab tests rings of glucose molecules as affinity hosts called
cyclodextrins, which are particularly promising affinity drug delivery
hosts due to their structural properties, biocompatibility and versatility.
The most common cyclodextrin are composed of a ring 6, 7, or
8 glucose molecules (α, β, and γ-cyclodextrin, respectively), and the
conformation of the hydroxyl groups of the ring create a basket-like
structure with a hydrophobic interior and hydrophilic interior, allowing
for complexation with drug molecules (Figure 1). Additionally,
cyclodextrin can be polymerized into a variety of materials,
including microparticles, viscous gels, and solid films. Unfortunately,
experiments to confirm sustained release from the affinity guest-host
system often takes weeks, making testing large numbers of potential
candidates for cyclodextrin release systems impractical.

As an alternative to experimental testing, candidate molecules
can be analyzed computationally. Predicting the binding affinity
between cyclodextrin and drug molecules allows for the processing
of molecules on the scale of minutes rather than weeks. There are
two major methods for predicting molecular interaction: docking
models and QSARs. Docking models use molecular force fields,
which simulate interactions and potential energy between atoms.
Force field parameters may be derived from experiments,
calculations from quantum mechanics, or both (Jacob et al.,
2012). In addition to providing a numeric estimate for binding
affinity, docking programs produce visualizations of how molecules
interact. QSARs, or Quantitative Structure-Activity Relationship
models, statistically predict molecular interactions using
molecular descriptors. Molecular descriptors are certain physical
or chemical characteristics of molecules that can be evaluated
numerically (for example, the number of hydrogen atoms or the

length of the longest bond chain). Many different types of regression
models and statistical learning methods can be used as QSARs,
ranging in complexity from linear models to artificial neural
networks (Dehmer et al., 2012).

Previous investigations have been made on the accuracy of both
docking andQSARs in predicting cyclodextrin affinity, but examining a
sample of these papers reveals several concerns (Table 1). Notably, all of
the investigated models used software hidden behind a paywall or only
available with a license (Pérez-Garrido et al., 2009; Prakasvudhisarn
et al., 2009; Ghasemi et al., 2011; Merzlikine et al., 2011; Ahmadi and
Ghasemi, 2014; Veselinović et al., 2015; Xu et al., 2015; Mirrahimi et al.,
2016). Additionally, many models lacked proper verification. Following
Tropsha’s publication detailing best practices for QSAR development, a
completely verified model should undergo leave-one-out cross-
validation (LOO-CV) (reported as Q2), y-randomization, pass a
variety of internal accuracy tests, and be analyzed for applicability
domain. Additionally, models should be evaluated on multiple test sets
as well as a hold-out external validation set (Tropsha, 2010). Of the
papers investigated, none contained the full set of verification strategies.

In this study, the accuracy and usability of docking and QSARs
were compared in order to establish an appropriate framework for
the computational design of cyclodextrin based affinity delivery
devices. Autodock VINA, an open-source docking program
developed by Trott, was used to investigate docking methods
(Trott and Olson, 2010). A variety of statistical methods
presented in previous cyclodextrin QSARs were also investigated.
The performance of QSARs was evaluated on both a standard test set
as well as an external validation set to confirm accuracy. Properly
evaluating the use of docking and QSARs should improve selection
of possible guests for cyclodextrin, reducing the rejection of good
candidates (Type II error) and limiting experimental investigation of
bad candidates (Type I error).

Finally, though the coded models could be made freely available,
understanding the raw script remained a significant obstacle for new
users. Additionally, users would have to download multiple files and
programs to their own computers, creating potential issues with
device compatibility, storage restrictions, processor limitations, etc.

FIGURE 1
Cyclodextrin complexation.
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To overcome these obstacles and improve accessibility, the models
were then integrated into a web application built with the R library
“shiny” and then uploaded online. To demonstrate the ease of
extendability of the app and its value in planning drug delivery
strategies the results from the QSAR studies were then integrated
into a mechanistic model of drug release.

2 Materials and methods

In order to be accessible, the models use only open-source
software. Importing experimental data, cleaning data, and
creating QSAR models were performed using R in RStudio. Both
the coding language and the IDE are freely downloadable and easily
accessible on Windows, Mac OS, and Linux. Descriptors were
generated with PaDEL, also freely downloadable and open-
source. Only the original observations of cyclodextrin
complexation energies remain inaccessible to the public, but this
does not have any effect on using the models for new predictions.

2.1 Dataset

Many of the models in Table 1 work from the same data source, a
compilation of α- and β-CDaffinities published by Suzuki in 2001 (Suzuki,
2001) [additionally, the sources that cite a different paper by Katritzky
ultimately use this same data, as the Katritzky paper cites Suzuki for
observations (Katritzky et al., 2004)]. In addition to Suzuki, we also
compiled complexes of α- and β-CD Rekharsky and Inoue and Suzuki
(Rekharsky and Inoue, 1998). Complexes of γ-CD, missing from the
Suzuki dataset and sparse in the Rekharsky and Inoue data, were collected
fromConnors (Connors, 1995). Once compiled, the data were cleaned for
reliable information, one-to-one cyclodextrin complexes, a temperature of
298 ± 2 K, and a solvent of water with pH 7. To obtain structure-data files
(SDFs) of the ligands, the names of the guest molecules were passed
through the Chemical Identifier Resolver, a web interface provided by the

National Cancer Institute’s Computer-Aided Drug Design Group (NCI/
CADD). To handle the data, the R packages tidyverse, data. table, XML,
RCurl, and Matrix were used (Bates et al., 2017; Dowle et al., 2017;
Wickham, 2017; Duncan Temple Lang and the CRANT and eam, 2018a;
Duncan Temple Lang and the CRAN Team, 2018b).

Dataset splitting was performed using the R package caret (Kuhn
and Quinlan, 2018). First, the cleaned data was split between α-, β-,
and γ-CD. Structural and activity outliers in each category were
removed. Structural outliers were detected using a statistical method
relying on standard deviations of molecular descriptors (Roy et al.,
2015). For activity outliers, molecules with reported ΔG values
greater than 2.5 standard deviations from the mean were
removed. Though traditional practice advises classifies outliers as
values more than only two standard deviations away, in this case,
retaining data points remained a priority and a larger margin was
allowed. There were 9, 21, and 11 α-, β-, and γ-CD outliers,
respectively. After removal, around 200, 250, and 100 α-, β-, and
γ-CD observations remained.

The data was then split into training, testing data and external
validation. For each separate cyclodextrin, an external validation set
was created from a random 15% subset of the data. To create
multiple training and test sets, the remaining modeling data was
split with representative resampling of ΔG values into ten different
75:25 train to test data partitions. Though not as advanced as
maximum dissimilarity algorithms, this method proved more
practical due to the large number of descriptors (over 1,000)
generated for each guest molecule. Furthermore, maximum
dissimilarity algorithms, when implemented in this instance, had
the unfortunate tendency to select highly similar training and test
sets, defeating the purpose of creating multiple sets in the first place.

2.2 Docking calculations

The process of docking is based on two processes: sampling and
scoring (Jacob et al., 2012). Sampling refers to the capacity to search

TABLE 1 Results of previous cyclodextrin QSARs.

QSAR R2 Descriptors Feature selection Validation

Q2 y-rand AD EV

Cubist (Ghasemi et al., 2011) 0.945 Pfizer* ** ** ** Yes Yes

Random forest (Ghasemi et al., 2011) 0.912 Pfizer* ** ** ** Yes Yes

Partial least squares (PLS) (Veselinović et al., 2015) 0.68 ChemOffice, SYBYL, Pentacle* Genetic algorithm 0.64 ** Yes **

PLS (Pérez-Garrido et al., 2009) 0.74 SYBYL, Pentacle* Fractional factorial design 0.75 Yes Yes **

Multiple linear regression (MLR) (Xu et al., 2015) 0.943 ISIS/Draw, CODESSA* Forward selection 0.848 **

MLR (Mirrahimi et al., 2016) 0.841 ISIS/Draw, MOPAC, Web-DRAGON* Genetic algorithm 0.821 Yes Yes **

MLR (Prakasvudhisarn et al., 2009) 0.833 HyperChem, DRAGON* Forward selection 0.826 Yes Yes **

MLR (Tropsha, 2010) 0.78 SYBYL, MOE, AutoDock Tools, BINANA Genetic algorithm 0.82 ** Yes **

Artificial neural network (Prakasvudhisarn et al., 2009) 0.957 HyperChem, DRAGON* Forward selection 0.955 Yes Yes **

Support vector machine (Trott and Olson, 2010) 0.971 HyperChem, MOE* Particle swarm ** ** ** **

*Presence of a paywall, usually due to specialized software that requires a license.

**Insufficient verification. None of the models investigated were both fully validated and openly accessible.
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an active site on a protein, macromolecule or, in this case, affinity
host. This can be performed with distance matrices, matching
algorithms or incremental construction, multiple copy
simultaneous searching, stochastic methods, or any combination
of the aforementioned strategies. Scoring calculates the final binding
affinity between the guest and host and can be dependent on force-
field, empirical, or knowledge-based calculations. Docking generally
involves the use of a host and a guest molecule which can be either
rigid or flexible. Three types of conformation exist: rigid-rigid, rigid-
flexible and flexible-flexible. In this paper we use AutoDock Vina, a
version of AutoDock that uses Monte Carlo stochastic sampling
coupled with a force field based scoring function from a resample of
a drug like database to derive its weighted parameters. Vina in
particular uses a flexible drug guest and a rigid cyclodextrin host,
although it allows side chain mobility when docking ligands
onto proteins.

The PyRx Virtual Screening Tool provides a variety of services,
including molecular energy minimization, docking calculation, and
visualization of molecules. PyRx version 0.8 was used here, as further
editions require purchase (Dallakyan and J, 2015). Ostensibly, the
source code of newer versions of PyRx is freely available, but actually
implementing the code requires fairly advanced knowledge of
Python, making public usage difficult. To begin, all guest
molecules went through energy minimization to determine the
most likely atomic configurations. AutoDock Vina, integrated
within PyRx, calculated the change in Gibbs free energy (kcal/
mol). We tested the effect on the docking process of changes in
the search space, search exhaustiveness, and scoring force field type.

2.3 Descriptor generation

The open source software PaDEL-Descriptor calculated over
1,000 descriptors for the remaining molecules, including
fingerprints, structural details, and physical properties (Yap,
2011). Additionally, PaDEL-Descriptor removed salts and
minimized the energy of inputted files using an MM2 force field.
To improve model interpretability, more abstract predictors, such as
those related to eigenvalues for molecular matrices or
autocorrelation, were excluded from calculation. The elimination
of these descriptors did not produce any noticeable effect on final
model accuracy and made feature selection less resource intensive.

2.4 Feature selection

Recursive feature elimination (RFE), implemented with caret,
was used to subset the predictors used for model-building (Kuhn
2018). Using this method, a random forest model is created using
all available descriptors. Once trained, the relative importances of
the predictors are calculated and differently sized subsets
(defined by the user) of variables are selected to create and
evaluate new models. The best combination of predictors is
then returned by the model. RFE was performed on each of
the ten train-test splits. The predictors determined to be useful
for all folds were saved and used for tuning and training the
models. This resulted in 13 variables for ⍺-CD, 16 variables for β-
CD, and 39 variables for γ-CD.

2.5 QSAR development

We investigated the accuracy of several models that appeared in
previous attempts at cyclodextrin QSARS (Table 1), including
Cubist models, generalized linear models (GLM or GLMNet),
random forests, partial least squares models, and support vector
machines. Additionally, two QSAR methods not previously
published for cyclodextrin—multivariate adaptive regression
splines (MARS) and gradient-boosted models—were created and
evaluated. Model building was accomplished with R-packages
Cubist, glmnet, randomForest, pls, e1071, earth, and gbm,
respectively (Cutler and Wiener, 2015; Mevik and Liland, 2016;
Friedman et al., 2017; Kuhn et al., 2017; Meyer et al., 2017).

Cross-validation was used to determine ideal tuning parameters
for each QSAR. For faster QSARs—such as generalized linear
models (GLM) and partial least squares (PLS)—tuning was
performed using 10-fold cross validation. For more resource-
intensive models or models with large parameter spaces—such as
random forests, Cubist and support vector machines (SVM)– only
five folds were used. Optimized models, QSARs built with the tuned
parameters and trained on the entire training set, were used to
predict the test for each combination of test and training set. Further
fine tuning was also performed at this step. Themodel that produced
the lowest root-mean square error (RMSE) and highest R2 (or an
otherwise most ideal combination) on all the test sets became the
final model, i.e., the model saved for future use. Furthermore, the
models were evaluated according to Tropsha and Golbraikh
standards for QSARs (Golbraikh and Tropsha, 2002). Although
R2 and RMSE can be useful for generalizing predictive capacity, they
may be misleading in certain cases, necessitating stricter additional
standards of evaluation. As an additional test of reproducibility, the
final models were used in ensemble to predict the values of the
external validation set. Because this dataset was withheld from the
entire model training process, the external validation set served to
simulate model performance on new data.

2.6 Applicability domain

Applicability domain describes the range of molecules where the
model can be expected to generate reliable predictions. A new
molecule outside of the applicability domain is structurally quite
different from the set of data the model was trained on, and thus a
prediction will rely on extrapolation and may not be accurate. The
applicability domain of the models was determined with the same
method used to detect outliers when cleaning the dataset (Roy
et al., 2015).

2.7 Y-randomization

Y-randomization was used to further verify the significance of
the results. Many advanced QSAR methods are powerful enough to
model data off of noise, so y-randomization ensures that the
modelling process produces results significantly more accurate
than what could be obtained by chance. Randomization can be
achieved by permutation (randomly changing the positions of
observed values) or random number generation (replacing
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observed values with completely new data). Different combinations
of permutation and/or random generation yields five different
modes of y-randomization to investigate: 1) original ΔG values vs
randomly generated descriptors, 2) permuted ΔG vs original
descriptors, 3) random ΔG vs original descriptors, 4) random ΔG
vs random descriptors, and 5) permuted ΔG vs random descriptors.
(Combinations including permutation of descriptors are not
included because the large number of predictors in QSARs
renders the effects of such a process virtually indistinguishable
from random number generation.) However, because the
y-randomization process is extremely resource-intensive (as each
mode requires that several randomized iterations undergo the
modeling process), only mode 1, the most common
interpretation of y-randomization, was investigated (Rücker et al.,
2007). The observed ΔG values were randomly assigned to guest
molecules, and the entire model refitting process was re-done, from
feature selection to external validation.

2.8 Creating an app

Using R’s “shiny” package, most of the process of running the
QSAR could be implemented in a web app. The app was split into
three main pages: Download, Upload, and Explore. “Download”
accesses Chemical Identifier Resolver and obtain SDFs. The page
also draws the obtained molecule using the package “ChemmineR,”
allowing the user to check that the SDF is accurate. “Upload”
implements the QSARs after the user provides the app with a
CSV of the descriptors from PaDEL-descriptor. After calculating
the affinity and analyzing the applicability domain of the molecules,
the user is provided with both a graph and a table of the results. The
third page “Explore,” stores the results of using the ensemble on
FDA-approved drugs, as obtained from the annual publication
“Orange Book: Approved Drug Products with Therapeutic
Equivalence Evaluations.” (Food and Drug Administration, 2019)

2.9 Modeling release curves

Partial differential equations that model drug diffusion were solved
using the R package deSolve (Soetaert et al., 2018) using the method of
lines as previously done by Fu et al. (2011). In the model, the release
media was assumed to be water and the delivery systemwas assumed to
be flat, thin circular cyclodextrin disc. The boundary condition between
the polymer and the media was approached as described by Wang and
von Recum (2011). Diffusivities of drugmolecules were calculated from
molecular weight and viscosity using a modified Stokes-Einstein-
Sutherland equation, as done by Vulic et al. (2015).

3 Results and discussion

3.1 Performance of docking

When predicting on the entire cleaned dataset (all modeling data,
which includes the training, testing, and external validation set),
AutoDock Vina yielded an R2 of 0.18 and a RMSE of 5.00 kJ/mol
(Figure 2). Of the 547 cleaned complexes, docking provided calculations

for 458, failing to provide data on 89 complexes. Adjusting settings in
Vina, such as the minimization algorithm size of the steps in the
calculation, did not yield significant differences in accuracy. In
comparison, the affinity of only around 40 cleaned molecules could
not be obtained by the ensemble QSAR. In these cases, the withheld
molecules were determined to be outliers, and the actual QSAR model
could still be used to predict a value.

3.2 Performance of QSARs

The results of predicting on the test data for each QSAR and
cyclodextrin type are markedly higher than docking (with the
exception of γ-CD), reaching an R2 of around 0.5 to 0.7, as seen
in Table 2 and Figure 3. The reported R2 for each QSAR type is
calculated from an average of the performance of the model on all
test splits. Additionally, Table 2 contains information on verification
of all the QSAR types (3-VII Validation methods). Of the types
investigated, only PLS and GLMNet failed to pass the salvo of
verification criteria, both falling short of attaining an R2 of 0.6.

In terms of reliability, most models were able to handle the
available data well, providing calculations for all providedmolecules.
Only the Random Forest and Cubist models failed to calculate the
affinity of some molecules, possibly due to being based around
decision-trees. The algorithm underlying both models attempts to
draw predictions by categorizing entries based on their features. If
they encounter a molecules entirely different from the data they
trained on, the models may fail to create a prediction.
Advantageously for our approach, the failure to calculate some
values becomes less important where models are combined in an
ensemble where the final prediction is averaged over many models.

The results of ensemble prediction (averaging the results of
many different QSARs) can be seen in Figure 4. While ⍺- and β-CD
models managed to reach moderately high predictive performance
metrics, unfortunately, all γ-CD models lacked useable
predictive power.

The models passing the verification in Table 2 were further
verified using y-randomization. To ensure accuracy was not the
result of the models building off of noise, 25 different permutations
of ΔG values were created. All Q2 values of the models created from
the original data were calculated to lie well outside 3 standard
deviations of the mean Q2 of the randomized data. Additionally,
the R2 values of the ensemble QSARs were significantly greater than
the R2 values obtained from the ensemble models created from
permuted data (means of 0.021 and 0.027 and standard deviations of
0.011 and 0.016 for ⍺- and β-CD, respectively).

3.3 Variable importance

Interpretability of a model provides a rough check if a model is
calculating off of random noise or if the model is drawing logical
calculations from physical properties to molecular behavior. Each
model, due to differences in statistical algorithms and approaches,
has differing levels of interpretability. GLM, being similar to linear
models, have easily accessible coefficients associated with each
predictor, so the relative impact of each factor can be compared
with reasonable confidence. Cubist models, on the other hand, tend
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to be difficult to interpret as variables are processed throughmultiple
levels of decision trees.

Evaluation for the relative importance of variables are shown in
Figure 5. Random forest was the only QSAR type with a pre-
packaged importance function for variable analysis. PLS variables
were analyzed using a function obtainable from Mevik et al. (2007).
Max Kuhn’s caret package was used to evaluate GLMNet, the two
SVM kernels, and Cubist. Unfortunately, caret was unable to process
the final models for GLMNet and SVM, and the reported variable
importance values were actually derived frommodels created within
caret’s “train” function, and are thus slightly different from the
models saved in the ensemble. To determine importance, the “train”
function removes a variable, rebuilds the model, and analyzes the

effect on accuracy. The more important a variable, the larger the
drop in accuracy. After each variable has been tested, the function
can then rank the importance of the descriptors.

For β-CD, XLogP, a measure of lipophilicity, appears to be
important for all models, consistent with how the structure of
cyclodextrin allows for easier complexation with small
hydrophobic drugs. The same reasoning can be extended to
LipoAffinityIndex and MLogP, additional approaches to
quantifying lipophilicity. The number of carbons, nC, is also
consistently important, possibly due to a relationship with
molecule size. WTPT-2 is the PaDEL weighted path descriptor
divided by the number of atoms, and also may be important due
to encoding information on molecular size.

FIGURE 2
Results of PyRx docking.

TABLE 2 Evaluation of QSARs on test sets.

QSAR α-CD β-CD γ-CD

A B C D A B C D A B C D

Cubist 0.63 0.56 0.07 0.93 0.75 0.59 0.02 0.97 0.08* −0.19* 0 0.98

GBM 0.78 0.5 0.05 0.95 0.83 0.73 0.02 0.98 0.35* 0.03* 0.68* 0.96

GLMNet 0.53* 0.54 0 0.94 0.52* 0.45 0.03 0.95 0.36* −0.26* 0.17* 0.97

MARS 0.65 0.58 0.03 0.99 0.73 0.58 0 0.98 0.40* −0.33* 0.33* 0.97

PLS 0.55* 0.47 0.05 0.93 0.55* 0.47 0.02 0.95 0.16* −0.1* 0.28* 0.97

Polynomial SVM 0.65 0.55 0 0.98 0.74 0.56 0 0.98 0.45* −0.28* 0.05 1

Random Forest 0.76 0.63 0.02 0.96 0.84 0.67 0.03 0.98 0.69 0.28* 0.24* 0.98

RBF SVM 0.74 0.64 0.02 0.96 0.85 0.61 0 0.98 0.35* −0.19* 0.05 0.98

Sigmoid SVM 0.51* 0.52 0.05 0.93 0.50* 0.56 0.27 0.92 0.32* −0.11* 0 0.98

The columns labeled A-D indicate the four conditions outlined by Golbraikh and Tropsha. A: R2 > 0.6; B: q2 > 0.5, where q2 is the result from leave one out cross-validation on the training set; C:

|R2—R′20|/R2 < 0.1, indicating that the R2 when the axes are flipped (R’2
0) is close to the original R2; D: 0.85 < k < 1.15, where k, the slope of the regression line through the points is close to 1.

*Model failed condition.
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FIGURE 3
Results of QSARs on test sets.

FIGURE 4
QSAR ensemble prediction.
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However, not all the variables can be linked to set chemical
properties. SpMax and SpMin relates to eigenvalues of a modified
connectivity matrix, a numerical representation of atomic and
molecular bonds, and may not be associated with any
interpretable physical property (the same analysis can also be
used for GATS predictors). To aid interpretability, building a
model with predictors easily attributed to physical or chemical
properties may be advised. The extent to which interpretability
should trade off with accuracy remains in question. Our findings go
in accordance to those in the general literature were lipophilicity
tends to highly influence model output.

3.4 Web application and FDA database

After collecting a list of FDA-approved drugs and drug
combinations from the Orange Book, an annual publication
listing all approved pharmaceuticals, the names were cleaned for
individual active compounds. In total, 1,401 unique molecules could
be extracted. Of these, 1,116 could be downloaded from Cactus and
1,031 could be processed by PaDEL. Many of the molecules that
could not be analyzed by PaDEL would have proven impractical for
cyclodextrin delivery, such as simple ionic salts (e.g., potassium
chloride), or large molecules made of more than 100 atoms. Running
the remaining guests through applicability domain analysis yielded
638molecules, 45.5% of the original set.While less than half of FDA-
approved drugs could pass through the model, the 600 available
guests spans a wide range of properties and uses, allowing the page to
be useful for candidate selection (Figure 6).

Though the app could be uploaded online through shinyapps. io,
server time limitations on the account hosting the app make it
impractical for usage by a large number of individuals
simultaneously. In order to run the app for more than a few

hours, such as with screening a large dataset of molecules, the
code would have to be downloaded through GitHub. In addition,
the user would need to download the R libraries and the IDE
RStudio, potentially negating the goal of creating an accessible,
intuitive interface. The “Explore” page partially alleviates this
obstacle, as it allows the user to perform a quick search of a pre-
predicted affinity rather than spend time downloading the structure
file, launching PaDEL, and running the QSAR.

3.5 Drug release module

To demonstrate the extensibility of the shiny app and its value in
the design of drug delivery strategies the results of the QSAR
predictions can be fed into a mechanistic model of drug delivery
(Figure 7). The results demonstrate the ranges of values expected
from the strongest affinity binding predictions and from the
weakest. As expected, strong predictions produce much slower
release profiles and weak predictions produce faster release
profiles. Conservation of mass was verified as the sum of all mass
within the system from the polymer and media compartment across
all times as a test of the implementation. Notably, the
implementation in R required a modification of the method of
lines for appropriate modeling of the polymer to liquid media
interface. (Linge and Langtangen, 2016). Future efforts in
creating new modules could explore substructure searching to
identify alternative strategies for weak binders or drugs that
demonstrate unsuitable release profiles. It is expected that not all
drugs will follow this simplistic model of drug release. For those
cases our lab has built a whole suite of approaches to alter elution
rates such as a wide range of formulations, supramolecular
interactions, Schiff-base formation and multi-arm PEG
substitutions.

FIGURE 5
Variable importance.
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4 Conclusion

In predicting the binding affinity of cyclodextrin with small
drug molecules, QSARS such as Cubist, GBM, MARS, random
forest, and SVM models can be created using accessible open-
source software. These models outperform available docking
software in both accuracy and time consumption and pass
statistical verification of reliability. The additional accuracy

afforded by QSARs can be integrated into the previously
published mechanistic model for predicting drug release
curves for candidate molecules. This would both help narrow
down candidates for cyclodextrin affinity-based drug delivery as
well as help advise which molecules are most appropriate to
tailor the release rate from a delivery system for a given
biomedical application. Furthermore, the QSAR models can
be used to evaluate existing marketed pharmaceutical

FIGURE 7
Drug release curves.

FIGURE 6
User interface of the Shiny App.
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formulations for their small molecule interaction with
cyclodextrin to better understand the extent that the strength
of binding between the cyclodextrin and the drug is of
importance for the marketed product formulation (Braga,
2023; Puskás et al., 2023). Both of these goals can be
achieved by any reader interested in the current work by
accessing the github repository for this manuscript (https://
github.com/awqx/qsar-app). The current model is limited to
predictions in the experimental space of the training data and
applications outside its applicability, for example, at low or very
high pH, should be employed with caution and tested
experimentally.

The integration of these machine learning models in
combination with the mechanistic models of drug delivery all
within a web application allows for a novel framework to plan
drug delivery strategies. The application allows for a “design
before you build” approach where others can bring their library
of small molecules and determine which ones make the best
candidates for an affinity release strategy. The mechanistic
models of other geometries or drug delivery forms such as
microparticles and injectable polymers can be readily included
in the application to further extend the capabilities for other
biomedical applications.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: QSAR model building
package repository https://github.com/awqx/qsarr Drug Release
Module Code https://github.com/eriveradelgado/ODE_Practice/
blob/master/09_ODE-drug-release.Rmd QSAR Application https://

github.com/awqx/qsar-app Walkthrough on how to use the models
https://github.com/awqx/qsar-app Enter subfile process. Rmd.

Author contributions

AX: Investigation, Software, Writing—original draft, Data
curation. ER-D: Conceptualization, Supervision, Investigation,
Software, Writing—original draft. HR: Conceptualization,
Funding acquisition, Supervision, Writing—review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmadi, P., and Ghasemi, J. B. (2014). 3D-QSAR and docking studies of the stability
constants of different guest molecules with beta-cyclodextrin. J. Incl. Phenom.
Macrocycl. Chem. 79, 401–413. doi:10.1007/s10847-013-0363-5

Bates, D., Maechler, M., Davis, T. A., Amd, C., Oehlschlägel, J., Riedy, J., et al. (2017).
Matrix: sparse and dense matrix classes and methods. Available at: https://cran.r-
project.org/web/packages/Matrix/index.html.

Braga, S. S. (2023). Molecular mind games: the medicinal action of cyclodextrins in
neurodegenerative diseases. Biomolecules 13 (4), 666. doi:10.3390/biom13040666

Connors, K. A. (1995). Population characteristics of cyclodextrin complex stabilities
in aqueous solution. J. Pharm. Sci. 84, 843–848. doi:10.1002/jps.2600840712

Cutler, F., and Wiener, R. (2015). randomForest: Breiman and Cutler’s random
forests for classification and regression. Available at: https://cran.r-project.org/web/
packages/randomForest/index.html.

Dallakyan, S., and J, Olson A. (2015). Small-molecule library screening by docking
with PyRx. Methods Mol. Biol. (Clifton, NJ) 1263, 243–250. doi:10.1007/978-1-4939-
2269-7_19

Dehmer, M., Varmuza, K., and Bonchev, D. (2012). Statistical modelling of molecular
descriptors in QSAR/QSPR. John Wiley and Sons.

Dowle, M., Srinivasan, A., Gorecki, J., Short, T., Lianoglou, S., and Antonyan, E.
(2017). data.table: extension of “data.frame”. Available at: https://cran.r-project.org/
web/packages/data.table/index.html.

Duncan Temple Lang and the CRAN Team (2018a). RCurl: general network (HTTP/
FTP/. . .) client interface for R. Available at: https://cran.r-project.org/web/packages/
RCurl/index.html.

Duncan Temple Lang and the CRAN Team (2018b). XML: tools for parsing and
generating XML within R and S-plus. Available at: https://cran.r-project.org/web/
packages/XML/index.html.

Food and Drug Administration (2019). Approved drug products with therapeutic
equivalence evaluations. Available at: https://www.fda.gov/media/71474/download
(Accessed May 31, 2019).

Friedman, J., Hastie, T., Simon, N., Qian, J., and Tibshirani, R. (2017). Glmnet: lasso
and elastic-net regularized generalized linear models. Available at: https://cran.r-
project.org/web/packages/glmnet/index.html.

Fu, A. S., Thatiparti, T. R., Saidel, G. M., and von Recum, H. A. (2011). Experimental
studies and modeling of drug release from a tunable affinity-based drug delivery
platform. Ann. Biomed. Eng. 39, 2466–2475. doi:10.1007/s10439-011-0336-z

Ghasemi, J. B., Salahinejad, M., and Rofouei, M. K. (2011). An alignment independent
3D-QSAR study for predicting the stability constants of structurally diverse compounds
with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 71, 195–206. doi:10.1007/
s10847-011-9927-4

Golbraikh, A., and Tropsha, A. (2002). Beware of q2!. J. Mol. Graph. Model. 20,
269–276. doi:10.1016/S1093-3263(01)00123-1

Jacob, R. B., Andersen, T., and McDougal, O. M. (2012). Accessible high-throughput
virtual screening molecular docking software for students and educators. PLOS Comput.
Biol. 8, e1002499. doi:10.1371/journal.pcbi.1002499

Katritzky, A. R., Fara, D. C., Yang, H., Karelson, M., Suzuki, T., Solov’ev, V. P., et al.
(2004). Quantitative Structure−Property relationship modeling of β-cyclodextrin
complexation free energies. J. Chem. Inf. Comput. Sci. 44, 529–541. doi:10.1021/
ci034190j

Kuhn, M., and Quinlan, R. (2018). Caret: classification and regression training.
Available at: https://CRAN.R-project.org/package=caret.

Kuhn, M., Steve, W., Chris, K., Nathan, C., and Quinlan, R. (2017). Cubist: rule- and
instance-based regression modeling. Available at: https://cran.r-project.org/web/
packages/Cubist/index.html.

Frontiers in Soft Matter frontiersin.org10

Xin et al. 10.3389/frsfm.2024.1402702

https://github.com/awqx/qsar-app
https://github.com/awqx/qsar-app
https://github.com/awqx/qsarr
https://github.com/eriveradelgado/ODE_Practice/blob/master/09_ODE-drug-release.Rmd
https://github.com/eriveradelgado/ODE_Practice/blob/master/09_ODE-drug-release.Rmd
https://github.com/awqx/qsar-app
https://github.com/awqx/qsar-app
https://github.com/awqx/qsar-app
https://doi.org/10.1007/s10847-013-0363-5
https://cran.r-project.org/web/packages/Matrix/index.html
https://cran.r-project.org/web/packages/Matrix/index.html
https://doi.org/10.3390/biom13040666
https://doi.org/10.1002/jps.2600840712
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://doi.org/10.1007/978-1-4939-2269-7_19
https://doi.org/10.1007/978-1-4939-2269-7_19
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://www.fda.gov/media/71474/download
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://doi.org/10.1007/s10439-011-0336-z
https://doi.org/10.1007/s10847-011-9927-4
https://doi.org/10.1007/s10847-011-9927-4
https://doi.org/10.1016/S1093-3263(01)00123-1
https://doi.org/10.1371/journal.pcbi.1002499
https://doi.org/10.1021/ci034190j
https://doi.org/10.1021/ci034190j
https://CRAN.R-project.org/package=caret
https://cran.r-project.org/web/packages/Cubist/index.html
https://cran.r-project.org/web/packages/Cubist/index.html
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1402702


Linge, S., and Langtangen, H. P. (2016) “Texts in computational science and
engineering,” in Programming for computations - Python. doi:10.1007/978-3-319-
32428-9

Merzlikine, A., Abramov, Y. A., Kowsz, S. J., Thomas, V. H., and Mano, T. (2011).
Development of machine learning models of β-cyclodextrin and sulfobutylether-β-
cyclodextrin complexation free energies. Int. J. Pharm. 418, 207–216. doi:10.1016/j.
ijpharm.2011.03.065

Mevik, B.-H. (2007). VIP.R: implementation of VIP (variable importance in
projection) (*) for the “pls” package. Available at: http://mevik.net/work/software/
VIP.R.

Mevik, B.-H., and Liland, R. W. (2016). Pls: partial least squares and principal component
regression. Available at: https://cran.r-project.org/web/packages/pls/index.html.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2017) e1071:
Misc Functions of the Department of Statistics, Probability Theory Group (Formerly:
E1071) TU Wien. Available at: https://cran.r-project.org/web/packages/e1071/index.
html.

Mirrahimi, F., Salahinejad, M., and Ghasemi, J. B. (2016). QSPR approaches to
elucidate the stability constants between β-cyclodextrin and some organic compounds:
docking based 3D conformer. J. Mol. Liq. 219, 1036–1043. doi:10.1016/j.molliq.2016.
04.037

Ortiz, M., Fragoso, A., and O’Sullivan, C. K. (2011). Amperometric detection of
antibodies in serum: performance of self-assembled cyclodextrin/cellulose polymer
interfaces as antigen carriers. Org. Biomol. Chem. 9, 4770–4773. doi:10.1039/
C1OB05473B

Pérez-Garrido, A., Helguera, A.M., Guillén, A. A., Cordeiro,MNDS, and Escudero, A.
G. (2009). Convenient QSAR model for predicting the complexation of structurally
diverse compounds with β-cyclodextrins. Bioorg. Med. Chem. 17, 896–904. doi:10.1016/
j.bmc.2008.11.040

Prakasvudhisarn, C., Wolschann, P., and Lawtrakul, L. (2009). Predicting
complexation thermodynamic parameters of β-cyclodextrin with chiral guests by
using swarm intelligence and support vector machines. Int. J. Mol. Sci. 10,
2107–2121. doi:10.3390/ijms10052107

Puskás, I., Szente, L., Szőcs, L., and Fenyvesi, E. (2023). Recent list of cyclodextrin-
containing drug products. Period. Polytech. Chem. Eng. 67 (1), 11–17. doi:10.3311/ppch.21222

Rekharsky, M. V., and Inoue, Y. (1998). Complexation thermodynamics of
cyclodextrins. Chem. Rev. 98, 1875–1918. doi:10.1021/cr970015o

Rivera-Delgado, E., Ward, E., and von Recum, H. A. (2016). Providing sustained
transgene induction through affinity-based drug delivery. J. Biomed. Mater Res. 104,
1135–1142. doi:10.1002/jbm.a.35643

Roy, K., Kar, S., and Ambure, P. (2015). On a simple approach for determining
applicability domain of QSARmodels. Chemom. Intelligent Laboratory Syst. 145, 22–29.
doi:10.1016/j.chemolab.2015.04.013

Rücker, C., Rücker, G., andMeringer, M. (2007). y-Randomization and its Variants in
QSPR/QSAR. J. Chem. Inf. Model 47, 2345–2357. doi:10.1021/ci700157b

Soetaert, K., Petzoldt, T., and Setzer, R. W. (2018). deSolve: solvers for initial value
problems of differential equations (“ODE”, “DAE”, “DDE”). Available at: https://
CRAN.R-project.org/package=deSolve.

Suzuki, T. (2001). A nonlinear group contribution method for predicting the free
energies of inclusion complexation of organic molecules with α- and β-cyclodextrins.
J. Chem. Inf. Comput. Sci. 41, 1266–1273. doi:10.1021/ci010295f

Tropsha, A. (2010). Best practices for QSAR model development, validation, and
exploitation. Mol. Inf. 29, 476–488. doi:10.1002/minf.201000061

Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy
of docking with a new scoring function, efficient optimization, and multithreading.
J. Comput. Chem. 31, 455–461. doi:10.1002/jcc.21334

Veselinović, A. M., Veselinović, J. B., Toropov, A. A., Toropova, A. P., and Nikolić, G.
M. (2015). In silico prediction of the β-cyclodextrin complexation based onMonte Carlo
method. Int. J. Pharm. 495, 404–409. doi:10.1016/j.ijpharm.2015.08.078

Vulic, K., Pakulska, M. M., Sonthalia, R., Ramachandran, A., and Shoichet, M. S.
(2015). Mathematical model accurately predicts protein release from an affinity-based
delivery system. J. Control. Release 197, 69–77. doi:10.1016/j.jconrel.2014.10.032

Wang, N. X., and von Recum, H. A. (2011). Affinity-based drug delivery. Macromol.
Biosci. 11, 321–332. doi:10.1002/mabi.201000206

Wickham, H. (2017). Tidyverse: easily install and load’tidyverse’packages. R. package
version 1.

Xu, Q., Wei, C., Liu, R., Gu, S., and Xu, J. (2015). Quantitative structure–property
relationship study of β-cyclodextrin complexation free energies of organic
compounds. Chemom. Intelligent Laboratory Syst. 146, 313–321. doi:10.1016/j.
chemolab.2015.06.001

Yap, C. W. (2011). PaDEL-descriptor: an open source software to calculate molecular
descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474. doi:10.1002/jcc.21707

Frontiers in Soft Matter frontiersin.org11

Xin et al. 10.3389/frsfm.2024.1402702

https://doi.org/10.1007/978-3-319-32428-9
https://doi.org/10.1007/978-3-319-32428-9
https://doi.org/10.1016/j.ijpharm.2011.03.065
https://doi.org/10.1016/j.ijpharm.2011.03.065
http://mevik.net/work/software/VIP.R
http://mevik.net/work/software/VIP.R
https://cran.r-project.org/web/packages/pls/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://doi.org/10.1016/j.molliq.2016.04.037
https://doi.org/10.1016/j.molliq.2016.04.037
https://doi.org/10.1039/C1OB05473B
https://doi.org/10.1039/C1OB05473B
https://doi.org/10.1016/j.bmc.2008.11.040
https://doi.org/10.1016/j.bmc.2008.11.040
https://doi.org/10.3390/ijms10052107
https://doi.org/10.3311/ppch.21222
https://doi.org/10.1021/cr970015o
https://doi.org/10.1002/jbm.a.35643
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1021/ci700157b
https://CRAN.R-project.org/package=deSolve
https://CRAN.R-project.org/package=deSolve
https://doi.org/10.1021/ci010295f
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1016/j.ijpharm.2015.08.078
https://doi.org/10.1016/j.jconrel.2014.10.032
https://doi.org/10.1002/mabi.201000206
https://doi.org/10.1016/j.chemolab.2015.06.001
https://doi.org/10.1016/j.chemolab.2015.06.001
https://doi.org/10.1002/jcc.21707
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1402702

	Using QSAR to predict polymer-drug interactions for drug delivery
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Docking calculations
	2.3 Descriptor generation
	2.4 Feature selection
	2.5 QSAR development
	2.6 Applicability domain
	2.7 Y-randomization
	2.8 Creating an app
	2.9 Modeling release curves

	3 Results and discussion
	3.1 Performance of docking
	3.2 Performance of QSARs
	3.3 Variable importance
	3.4 Web application and FDA database
	3.5 Drug release module

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


