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This study investigates the electro-osmotic flow of a biological fluid (blood with
varying cholesterol levels) in annular flow to simulate a first approximation to arterial
occlusion. The fluid´s rheology is characterized by amulti-modal convectedMaxwell
model equation. Thechargedensity follows theBoltzmanndistribution, governing the
electrical field. Mathematically, this scenario can be modeled by the
Poisson–Boltzmann partial differential equation. Assuming a small zeta potential
(less than 25mV) using the Debye–Huckel approximation and considering a
pulsatile electrical field, analytical solutions are derived using the Fourier transform
formalism. These solutions, expressed in terms of the modified Bessel function,
provide transfer functions for axial velocity and volumetric flow as functions of
material parameters represented by characteristic dimensionless numbers. This
study further analyzes thermal, electric, inertial, viscoelastic, and various
interactions within the plasma, hematocrit, hematocrit–cholesterol, and
cholesterol–cholesterol as well as weight concentration through numerical
simulations. Finally, the flow and rheology predictions are validated using
experimental data on human blood with varying cholesterol levels. The obtained
transfer functions reveal that the electric–thermal–viscoelastic effects and the
multiple geometric relationships contribute to the dynamic response of the
interactions between the input electrical field and output volumetric flow and
shear stress functions, leading to and evolution of resonance curves. It is
noteworthy that electro-osmotic flow in blood with pathologies associated with
low and high cholesterol has been scarcely reported in the literature on rheology.
Thus, this work represents a significant contribution to the field.
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1 Introduction

1.1 Electro-osmotic flow

The research on nano-microfluidics has received much attention
from specialists in the field of momentum transport and rheology of
complex fluids (Teodoro et al., 2023). Microfluidics has utmost
priority in rheology and non-Newtonian fluid mechanics, especially
in lab-on-a-chip (LOC)-based microfluidics applications (Afonso
et al., 2009). In recent years, it has become well-established as a
micro-pumping technique that is used in many biological devices,
material physics, sample testing, intravenous delivery systems,
electrophoresis, electrochemistry, medical diagnostics, and lab-
on-a-chip biochemical reactive platforms (Alfonso et al., 2013;
Ali et al., 2020).

The combined effect of fluid mechanics and electrodynamics,
especially electro-osmotic flow, plays an important role in the field of
electro-osmotic flow (EOF) Arulanandam and Li, 2000).

EOF is the motion of the fluid adjacent to a charged surface due
to an externally imposed electric field (Baños et al., 2021). In EOF,
the surface charge always contains a solution of ions, and overall
charge neutrality is satisfied (Berli and Olivares 2008). The main
applications of the EOF are as follows: i) micro-flow injection
analysis, ii) microfluidic chromatography, iii) micro-reactors, iv)
micro-energy, and v) micro-electronic cooling systems, micro-
mixing, bio-rheology, and physiology of human blood (Burgreen
and Nakache 1964).

In this context, electro-osmosis is widely used for manipulating
and controlling fluid flows in channels with lengths of less than a
millimeter and is achieved by means of electrostatic interaction
between an external constant and the pulsating electric field and
electric double layer (EDL) (Chakraborty, 2005).

Capillary electrophoresis is a technique in which electric fields
are used to separate chemicals according to their electrophoretic
mobility by applying an electric field to a narrow capillary, usually
made of silica (Chakraborty, 2007).

In electrophoretic separations, EOF affects the elution time of
the analyses (Chakraborty and Srivastava 2007).

It is projected that microfluidic devices utilizing EOF will have
great application in medical research (Teodoro et al., 2024).
Controlling this flow will require a better understanding to
implement it in drug delivery systems (Das and Chakraborty
2006). Mixing fluids at the microscale is currently troublesome. It
is believed that electrically controlling fluids will be the method by
which small fluids will be successfully mixed (Dhinakaran
et al. 2010).

Electro-osmotic pumping is an important mechanism for
transport and control of flows (Dutta, and Beskok 2011).
Typically, the key parameters that determine the pumping
performance are i) the magnitude of the electrical field that is
externally applied (Dutta and Beskok 2011), ii) the cross-
sectional dimensions of the microchannel (Ferras et al. 2016), iii)
the surface charge density of the microchannel surface (Levine et al.,
1975), and iv) the ion density and pH of the fluid system (Mahapatra
and Bandopadhyay 2020).

One method to enhance the volumetric flow rate in a
microchannel is to increase the magnitude of the applied
electrical field (Mederos et al., 2020); however, this can cause an

increase in the temperature of the fluid as a result of the Joule heating
effect, which is undesirable (Medina et al., 2018).

Therefore, other mechanisms must be used to achieve higher
volumetric flow rates (Peralta et al., 2020). To this end, another
technique for controlling fluid flow is to use pulsatile or oscillating
flow (Herrera-Valencia et al., 2023). Enhancement of the volumetric
flow by the time-pulsating force has found application in different
branches of science, such as DNA dynamics (Jendrejack et al., 2013),
microcapillaries with slip conditions (Sanchez et al., 2013), blood
with cholesterol (Herrera-Valencia et al., 2017), structured fluids
(Herrera-Valencia et al., 2019), flexoelectric membranes (Herrera-
Valencia and Rey 2023), and mass transfer (Mederos et al., 2020).

The majority of the approaches have been focused on the study
of i) distributions of ions (Medina et al. 2018), ii) geometry of the
material (Peralta et al., 2020), and iii) the rheological nature of the
fluid (Mahapatra and Bandopadhyay 2021). The theoretical analysis
of EOF of Newtonian and non-Newtonian fluids in microchannels
(slit and capillary) has been the subject of several mathematical and
physical studies (Ribau et al., 2021).

The mathematical techniques used to solve the equations
involve i) linear ordinary and partial differential equations with
different boundary conditions (Sadek and Pinho, 2019), ii)
numerical methods such as finite differences (Rojas et al., 2019),
finite element and finite volume (Mahapatra and Bandopadhyay
2021), and iii) regular and irregular perturbation techniques (Vargas
et al., 2019).

Bandopadhyay et al. (2013a) analytically studied the impact of
finite-sized ions in cylindrical nanopores and their effects on the
thickening mechanism. Additionally, Bandopadhyay et al. (2016)
investigated the pulsating effect of pulsating EOF and its influence
on the volumetric flow rate as the function of the material properties
of the system.

The study also explored the role of energy in electrodynamic
energy conversion, focusing on the dissipation and storage
mechanisms within viscoelastic fluids in narrow channels, which
can be correlated with small coaxial cylinders (Bandopadhyay and
Chakraborty, 2012a, Bandopadhyay and Chakraborty, 2012b;
Bandopadhyay et al., 2013a, Bandopadhyay et al., 2013b).

Bazant et al. (2009) examined the effects of electrokinetics and
large applied voltages on concentrated solutions. To comprehend
the influence of material properties on EOF in nanochannels, Gogoi
et al. (2021) conducted molecular dynamics simulations to
investigate the impact of surface charge. Additionally, Iglič et al.
(2010) explored the effects of excluded volume and orientational
ordering near a charged surface in solutions of ions and Langevin
dipoles. In a similar vein, Kilic et al. (2007) investigated the steric
effects and the impact of large voltages on complex electrolytes,
particularly their influence on double-layer charging.

Silva et al. (2020), Silva et al. (2022) have explored the combined
effects of unsteady electromagnetic mechanisms and coupled stress
liquids in microchannel hydrodynamics.

Kumar-Metha and Kumar Mondal (2023a), Kumar-Metha and
Kumar Mondal (2023b) investigated the impact of electrothermal
mechanisms on enhancing solute mixing in a wavy microchannel
within a 3D numerical framework. Their findings indicate that the
wave amplitude of the mixer affects the Peclet number, and the absence
of vortices, particularly in non-Newtonian inelastic shear-thinning
mechanisms, plays a crucial role in the design of novel micromixers.
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Additionally, Kumar Metha et al. (2021) investigated the effects
of vortices in electro-osmotic mixing of non-Newtonian bio-fluids
by using numerical methods. Their research focused on the impact
of a non-uniformly charged wavy channel and the effect of
finite ion size.

Sanjav et al. (2020) investigated the importance of a patterned
soft layer in enhancing mixing efficiency in electro-osmotic systems.
Kaushik et al. (2019) explored the effects of a rotating electro-
osmotic system in polyelectrolyte-grafted microchannels through
direct analytical solutions.

Sarma et al. (2018) examined the non-Newtonian behavior of an
electro-osmotic complex fluid using the Phan–Thien and Tanner
model, particularly at high zeta potential. Their results highlight the
influence of rheological parameters and electro-thermal
mechanisms on the system.

Kaushick et al. (2017) studied the rotational
electrohydrodynamics of a non-Newtonian fluid in the presence
of electrical double layer phenomenon.

Kumar Mondal et al. (2013), Kumar Mondal et al. (2014)
investigated the effect of contact line dynamics and the electrical
double layer phenomenon in immiscible binary systems under a
pulsating electric field in narrow channels.

1.2 Bio-fluids

Bio-fluids are often solutions of macromolecules that impart a
non-Newtonian rheological behavior characterized by variable
viscosity, memory effects, normal stress effect, yield stress, and
hysteresis of fluid properties (Moyers-Gonzalez and Owens 2010;
Moreno et al., 2015). These fluids are encountered in chips used for
chemical and biological analysis or in micro-rheometers (Stone
et al., 2004). The theoretical research work of EOFs characterized
by non-Newtonian fluids has been previously reported by several
research groups (Peralta et al., 2018; Ribau et al., 2021).

Recent experimental and theoretical works on complex fluids
(Castillo and Wilson 2018; Ferras et al., 2019) have found that the
dynamic permeability can increase orders of magnitude at certain
frequencies; the dynamic permeability is an intrinsic property of the
system viscoelastic fluid-confining media (Flores et al., 2016), such
as electrorheological fluids under a magnetic field in annular ducts
and pulsatile and longitudinally vibrating tubes (Del Rio et al., 1998;
Corvera Poiré and Hernández-Machado 2016; Torres Rojas
et al., 2017).

The dynamic permeability is the response to different signals of the
pressure gradient (Flores et al., 2016). It can be considered a measure of
the resistance to flow; the larger the dynamic permeability, the less
resistance to flow (Flores et al., 2019, Flores et al., 2021). The maximum
peak shown in the dynamic permeability at certain frequencies suggests
that the magnitude of the flow might be increased by driving the fluid
with a pressure gradient that contains the frequency maximizing the
dynamic permeability (Ledesma-Aguilar et al., 2007). It has been
investigated that imposing a periodic pressure gradient at the
frequency that maximizes the dynamic permeability for the pressure
gradient with a properly chosen frequency provides a way of controlling
the magnitude of flow (Flores et al., 2019).

It was demonstrated that when an obstruction occurs, it is clear
that if one recovers the value of the real part of the dynamic

permeability (by driving the fluid at proper frequency), one
eliminates one of the two factors that provoke the dramatic
decrease in flow (de la Guerra and Corvera-Poiré 2022).

1.3 Human blood

Blood flow represents a challenge for theorists and
experimentalists due to the particular phenomena exhibited, such
as pseudoplasticity, coagulation (blood clotting) in the presence of
oxygen, and hemoglobin oxidation (Sousa et al., 2016). In many cases,
the flow of blood within vessels is strongly affected by cholesterol
levels and hyperglycemia in the veins (Apostolidis, and Beris, 2016). In
the past decade, attention has been paid to the study of blood with
different pathologies (Liu et al., 2022). From a mathematical and
physical point of view, the study of the pulsatile flow is a complex
problem due to the rheology and transport phenomena embedded in
the physics description (Moyers-Gonzalez and Owens, 2010;
Apostolidis and Beris, 2014; Apostolidis et al., 2015; Herrera-
Valencia and Rey, 2023). The combination of cholesterol and
calcium is one of the most common consequences, leading to
peripheral and central occlusions (Apostolidis et al., 2016). In
physics and engineering, the presence of an obstacle in the fluid
pumping system results in partial or total failure of a process
(Collepardo-Guevara and Corvera-Poiré, 2007). In particular, the
occlusion of veins and arteries in the human body represents an
important issue in many diseases (Siddiqui et al., 2009).

For instance, during arterial occlusion, the blood flow decreases
in velocity, and in critical cases, is effectively unable to flow through
the remaining space (Flore et al., 2016). Such a lack of movement
provokes tissue death (Neofytou and Tsangaris, 2006). Chronic
hypercholesterolemia can lead to accelerated atherosclerosis
angina pectoris, heart stroke, stenosis, obesity, and type
2 diabetes, caused due to eating disorders and genetic
predispositions (Beidokhti et al., 2017). In this context,
mathematical modeling can help in developing more efficient
anticoagulants, which can be an alternative for these diseases
(Bouchnita et al., 2022). The effect of these anticoagulants can be
predicted through constitutive modeling of blood (Moyers-
Gonzalez et al., 2008). The complex circulatory system (heart,
vein, and artery) can be modeled, at a first approach, as a
capillary flow under a simple stochastic pulsating-pressure
gradient (Herrera-Valencia et al., 2017, Herrera-Valencia et al.,
2019). The occlusions are proposed here as a concentric cylinder
system, where the central cylinder represents the occlusion and the
diameter of such a cylinder represents the size of the occlusion,
which is a simplification of the real case to study the analytical
relations between the different variables involved as a first
approximation to study this complex system, and flow is
considered completely developed with no transitions (Collepardo-
Guevara and Corvera-Poiré, 2007). Though very approximate to the
real case, this approach can shed some light on the optimization of
human valve prostheses for patients with blood diseases (Sacks and
Yoganathan, 2007). It can also pave the way to more realistic
approaches in blood flow simulations (Sun et al., 2022). Recent
reports have analyzed and studied at length the effect of varying
viscosity of a two-fluid model of pulsatile flow through blood vessels
with a porous region near walls (Tiwari and Chauhan, 2019).
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There are open questions and a lack of theoretical studies on
analytical solutions of pulsating EOF applied to human blood with
specific pathologies, in this case human blood with low and high
cholesterol (Moreno et al., 2015).

However, the first approach to model the pulsating EOF is to
consider the system in the regime of linear viscoelasticity (small
deformation gradients) and to model it using the Maxwell or Jeffreys
fluid models (Jiang et al., 2017). The Jeffreys constitutive equation
separates the contribution of the solvent (plasma) and the
viscoelastic polymer forces associated with the erythrocytes
(Horner et al., 2018).

One important contribution on the regime of small
deformations is the effect of cholesterol content (Horner et al.,
2018). This effect is associated with the formation of a blood clot and
is related to the occurrence of occlusions (Armstrong et al., 2016).
The effect of plasma (P), hematocrit (H), and the interaction
between hematocrit–cholesterol (HC) and cholesterol–cholesterol
(CC) in blood has been reported elsewhere (Armstrong et al., 2016;
Horner et al., 2018).

Here, our objective is to predict the complex transfer
function of EOF considering the viscoelastic properties of
blood containing varying cholesterol levels, while also
incorporating the effects of electro-osmotic forces. We model
the biological viscoelastic fluids using the multi-modal
convected Maxwell rheological equation of state (Armstrong
et al., 2016; Saengow et al., 2019).

These predictions involve determining the viscoelastic complex
transfer function between volumetric flow and the electric field,
taking into account the contributions of inertia, bulk viscosity,
viscoelasticity, electro-osmotic force, and indirectly the effect of
multiple relaxation times, which can significantly alter flow rates. As
a first approximation to model this complex system, we have
omitted the interactions between red blood cells (RBCs) and ions
of varying sizes. We will demonstrate that the resonance of average
power dissipation depends on material properties, as discussed by
Horner et al. (2019).

To achieve this, we utilize reliable rheometric data on blood
samples with varying cholesterol levels obtained from Moreno
et al. (2015).

It is important to clarify several aspects that are not addressed in
the present research:

(A) The interactions between red blood cells (RCBs) and
electrolytes under electric forces are not considered in
our study.

(B) The effect of the excluded volume is not included in
our analysis.

(C) Non-Newtonian effects such as i) thixotropy, ii) rheopexy, iii)
first normal stress difference, iv) second normal stress
difference, and v) flow instabilities are not taken into
account in this analysis.

The primary objectives of this original research are as follows:

(a) To investigate momentum transfer and rheology of the
dynamic response of human blood with low and high
cholesterol levels when subjected to an external time-
pulsating electric field in an annular region.

(b) To derive analytical expressions for the flow and stress
transfer functions.

(c) To analyze the thermal–electric–inertial–viscoelastic
mechanism using dimensionless characteristic groups
associated with each mechanism.

(d) To examine the dynamical response of the transfer functions
using rheometric data of human blood samples with low and
high cholesterol levels.

This paper is organized as follows: Section 1 introduces the
problem and provides an overview of the previous work. Section 2
presents the constitutive rheological equation of state (mathematical
and physical properties). Section 3 shows the mathematical
modeling of the EOF. Section 4 describes the potential field
within the electric double layer, while Section 5 describes the
nondimensional variables and groups. The governing
nondimensional equations are presented in Section 6. Analytical
results are presented in Section 7. Finally, the concluding remarks
are provided in Section 8, and the proposed future work is provided
in Section 9, Figure 1 shows the article outline.

2 Modeling

2.1 Problem formulation

The depicted geometry in Figure 2 illustrates a viscoelastic
electrolyte fluid in a circular microchannel featuring a
hydrophobic surface with a uniform zeta potential, ψa. The
length of the microchannel, denoted as L, greatly exceeds the
radii, r = R1 and r = R2. Isothermal rectilinear flow is propelled
by pulsatile electro-osmotic force, induced by the combined effects
of the electrical double layer (EDL) formed at the
liquid–microchannel interface and the sudden imposition of an
external time-dependent electric field, as expressed by the
following equation:

E t( ) � E0n t( ). (1)

Here, n(t) is an oscillatory function, a subset of random
stochastic functions representing the change in the electrical field
over time, and can be simplified to a sinusoidal oscillatory function
as follows (Eq. 2):

n t( ) � Exp ω0t( ). (2)

In Eq. 1, E0 represents the amplitude of the oscillatory function,
ω0 is the frequency, and t represents the process time. A 2D
cylindrical coordinate system (r, z) is adopted, with the origin
situated at the lower left end of the capillary geometry.
Furthermore, the following assumptions are made:

(i) The Debye length, denoted as λD = (kBT/2e
2z2n∞ε)1/2, is

significantly smaller than r0, i.e., λD/r0 <<1. Here, ε, kB, T, e,
z, and n∞ represent the dielectric permittivity of the solvent,
Boltzmann constant, absolute temperature, elementary
charge, valence, and bulk concentrations, respectively.

(ii) The net charge density within EDL follows the well-known
Boltzmann distribution, remaining valid if the frequency of
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the external electric field is not very high (e.g., less
than 1 MHz).

(iii) Interactions between the red blood cells (RBCs) and
electrolytes are not considered in our system.

(iv) The gravitational and pressure gradient mechanisms are
neglected. In this context, the system is sheared by a
pulsating electro-osmotic force.

(v) The electrolyte is symmetric, i.e., we have the same number
of ions and counterions.

(vi) The effects of the excluded volume are disregarded in this
theory, along with slip mechanisms.

(vii) Joule heating and mass transfer mechanisms are not
pertinent in this initial approach.

2.2 Governing equations

2.2.1 Mass conservation and momentum equation
The governing equations that describe the physical system are

the mass balance equation without reaction and the
Cauchy equation

∂ρ
∂t

+ ∇ · ρv( ) � 0. (3)

ρDv
Dt

� ∇ · T + ρg + ρeE t( ). (4)

In addition, the total stress tensor T is given by the following
expression:

T � −pI + σ. (5a)
The material derivative of the velocity field vector is

Dv
Dt

� ∂v
∂t

+ v · ∇v. (5b)

In Eqs 3–5a, ρ is the density of the liquid, ∇ is the spatial nabla
operator, v is the velocity vector, ∂/∂t represents the time partial
derivative, T is the total stress tensor, p is the scalar pressure, g is the
acceleration of the gravitational forces, σ is a viscoelastic stress

FIGURE 1
Flow chart of the paper’s organization.

FIGURE 2
Charge distribution at the wall when the time-pulsating applied
electric field is oriented in the axial direction.
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tensor, E(t) is the input electrical field, and ρe is the electric charge
density of the liquid.

2.2.2 Mechanical model
The rheological model proposed here is a linear Burgers

model, which incorporates four material properties related to
the polymer–polymer contribution and relaxation mechanisms.
The mechanical analogy of the model is shown in Figure 3.

2.2.3 Rheological model
This constitutive equation contains three Maxwell models

associated with the plasma–hematocrit (PH),
hematocrit–hematocrit (HH), and hematocrit–cholesterol (HC)
interactions. The total deviatoric stress tensor can be represented
in the following analytical form:

σ � σPH + σHH + σHC. (6)

Then, the contributions from the hematocrit and cholesterol
interaction can be expressed in the following analytical form
(Eq. 79):

σHC � σHC + σCC. (7)

The constitutive rheological equation of state for
plasma–hematocrit is given by the following upper-convective
Maxwell equation:

σPH + λPHσ
∇
PH � ηPHD. (8)

The contribution from the hematocrit–hematocrit interaction is
given by the following upper-convected Maxwell equation:

σHH + λHHσ
∇
HC � ηHHD. (9)

The contribution from the hematocrit–cholesterol interactions
is given by the following upper-convected Maxwell equation:

σHC + λHCσ
∇
HC � ηHCD. (10)

The nonlinear time upper-convected Maxwell operator is given
by the following equations:

σPH
∇ � DσPH

Dt
− ∇VT · σPH − σPH · ∇V. (11)

σHH
∇ � DσHH

Dt
− ∇VT · σHH − σHH · ∇V. (12)

σHC
∇ � DσHC

Dt
− ∇VT · σHC − σHC · ∇V. (13)

In addition, the time substantial derivatives of the shear stress
for the three interactions (PH, HH, and HC) are given by the
following analytical expressions:

D
Dt

σPH � ∂
∂t

+ v · ∇( )σPH ;
D
Dt

σHH � ∂
∂t

+ v · ∇( )σHH;
D
Dt

σHH

� ∂
∂t

+ v · ∇( )σHH. (14)

The shear strain tensor is denoted by D, which is the symmetric
part of the spatial velocity gradient tensor; i.e., D = ∇vS.

D � ∇v + ∇v( )T
2

. (15)

By combining Eqs 6–15, a generalized rheological equation of
state is obtained, which describes all the interactions in the system as
follows (Eq. 16):

σ + Σλσ
∇ + Πλ σ

∇∇ + Pλ σ
∇∇∇ � 2Ση D + ΣλJD

∇ + ΠλJD
∇∇( ). (16)

In the regime of viscoelasticity (small deformations), the
rheological equation of state can be simplified to the well-known
family of Burgers rheological models:

σ � 1

ΟMM
Φ

∂
∂t( ) 2D. (17)

In Eq. 17, the fluidity operator OΦ
MM (∂/∂t) proposed by

Herrera-Valencia and Rey (2018), Herrera-Valencia et al. (2023)
is defined as follows:

ΟMM
Φ

∂
∂t

( ) � 1
Ση

1 + Σλ
∂
∂t + Πλ

∂2
∂t2 + Pλ

∂3
∂t3

1 + ΣλJ
∂
∂t + ΣGPλ

Ση
∂2
∂t2

. (18)

In Eq. 18, the combination of all material properties has been
defined through the following quantities as follows:

Ση � ηPH + ηHH + ηHC � GPHλPH + GHHλHH + GHCλHC

Σλ � λPH + λHH + λHC

ΣG � GPH + GHH + GHC

Πλ � λHHλPH + λPHλHC + λHHλHC

Ρλ � λPHλHHλHC

ΣλJ �
ηHH λPH + λHC( ) + ηPH λHH + λHC( ) + ηHC λPH + λHH( )

ηHH + ηPH + ηHC

. (19)

FIGURE 3
Mechanical configuration depicted features of three parallel
Maxwell elements. The first element (left side) represents the plasma
contribution, the middle element (center) represents the contribution
of the hematocrit, and the last one (right side) is associated with
the contributions of both hematocrit and cholesterol.
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In Eq. 19, Ση is the total bulk viscosity, Σλ is the total relaxation
time, ΣG is the total bulk elasticity, Πλ and Pλ are the quadratic and
cubic interaction between polymer–hematocrit/
hematocrit–hematocrit/hematocrit–cholesterol, respectively, and
finally, ΣλJ denotes the total retardation time.

3 Mathematical modeling of the EOF

3.1 Continuity equation

Assuming that the liquid is incompressible, meaning the density
is not a function of the position and time, the material time
derivative is given by the following equation:

Dρ r, t( )
Dt

� 05∇ · v � 0. (20)

Equation 20 implies that the axial velocity does not depend on
the z coordinate, i.e., ∂zvz = 0, and assumes that the cylindrical
symmetry ∂θvz = 0.

3.2 Axial velocity, spatial gradient tensor, and
viscoelastic stress tensor

Additionally, assuming that it is an isothermal process and the
flow is only in the z-direction, the components of the velocity are
as follows:

v �
0
0

vz r, t( )
⎛⎜⎝ ⎞⎟⎠. (21)

The velocity gradient tensor ∇ v is given by the following Eq. 22:

∇⊗ vT �
∂
∂r
0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗ 0 0 vz r, t( )( ) � ∂vz r, t( )
∂r

0 0 1
0 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠. (22)

In addition, the second-order shear strain D tensor can be
calculated through Eq. 23.

2D � ∇v + ∇vT � ∂vz r, t( )
∂r

0 0 1
0 0 0
1 0 0

⎛⎜⎝ ⎞⎟⎠. (23)

The viscoelastic shear stress tensor σ is given by the following
Eq. 24:

σ �
σrr 0 σrz
0 σθθ 0
σzr 0 σzz

⎛⎜⎝ ⎞⎟⎠. (24)

3.3 Volumetric flow

The volumetric flow rate can be calculated through a double
integral with respect to the radial and polar coordinates, so the
following equation is admitted:

Q t( ) � ∫2π
0

∫R2

R1

vz r, t( )rdr dθ � 2π∫R2

R1

vz r, t( )rdr. (25)

In Eqs 25, 28, the non-slip velocity condition at the
wall was used.

4 Potential field within the electric
double layer

Following the formalism proposed by Rojas et al. (2017), the
flow investigated is steadily and fully developed, and the electric
double layers (EDLs) are thin so that there is no interference from
one wall into the other. These conditions simplify the Nernst–Planck
equations governing the ionic and electric potential field ψ
distributions. If a liquid is in contact with a dielectric surface,
there are interactions between the ions and the wall, leading to a
spontaneous charge distribution of the fluid at the wall. The wall
acquires a charge, and the counterions in the fluid are attracted by
the wall, while the co-ions are repelled. In Eq. 26, Φe is the applied
electrical field and ψ is the wall potential acquired on the wall by the
contact of the complex fluid with the wall.

∇2Φe + ∇2ψ � −1ερE r( ). (26)

Assumingmass conservation over the positive and negative ions,
the following expression is obtained (Eq. 27):

∂n±
i

∂t
� −∇ · −D∇n±

i + Vin
±
i[ ]. (27)

In the steady state, and assuming only changes in the axial
directions, and the axial velocity Viz = μiEz, then the z-potential is
defined by Ψ(r) = μiEz. Thus, the ions’ function is given by the
following analytical function:

n±
i � ni0 Exp ± −Vi

D
z( )[ ] � ni0 Exp ± − Ez

D/μi z( )[ ]
� ni0 Exp ±

−Ψ r( )( )
kBT/ze[ ]. (28)

So the total ion and counterions is given by the next Eq. 29:

ni � n+
i − n.−

i � ni0 Exp
−Ψ r( )( )
kBT/ze[ ] − Exp − −Ψ r( )( )

kBT/ze[ ]( ). (29)

Then Eq. 30 is obtained,

ρ r( ) � ∑∞
i�1
niezi � ∑∞

i�1
n+
i ezi −∑∞

i�1
n.−
i ezi. (30)

Here, the space charge density of the mobile ions can be
expressed in terms of a hyperbolic function (Eq. 31)

ρE r( ) � 2n0zeSinh
−ψ r( )
kBT/ze( ) � −2n0zeSinh

ψ r( )
kBT/ze( ). (31)

Assuming that the electrical fields are smaller zeψ(r)/kBT << 1,
and taking the Taylor expansion to first-order (Sinh(x) � x), Eq. 34
can be simplified in the following form:
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ρE r( ) � −2n0
z2e2

kBT
ψ r( ). (32)

If the applied electrical potential Φe satisfies the Laplace equation
∇2Φe = 0, and invoking this principle, the Poisson–Boltzmann equation
resulting from substitution of Eq. 32 into Eq. 26 takes the following
simpler linear form:

1
r
∂
∂r

r
∂
∂r

+ ∂2

∂z2
+ iα( )2{ }ψ r( ) � 0. (33)

In Eq. 33, the contribution ofψ(r) in the axial and angular directions
{z, θ} is neglected with respect to the radial position (L/a << 1), so the
following assumption was made: r−1∂/∂r{r∂ψ(r)/∂r} >> ∂2/∂z2ψ(r).

ir( )2∂
2ψ r( )
∂ ir( )2 + ir

∂ψ r( )
∂ir

+ iα( )2ψ r( ) � 0. (34)

In Eq. 34, the following parameter α2 = 2n0e
2z2/(εkBT) is the

Debye–Hückel parameter, which is related to the thickness of the
Debye layer, λD = 1/α (normally referred to as the EDL thickness).
This approximation is valid when the Debye length thickness is
small but finite, i.e., for a/λD ∈ [101, 103]. Consequently, the induced
potential is limited so that its energy does not exceed the thermal
energy in a similar way, as reported by Rojas et al. (2017).

The general solution of Eq. 34 is given in terms of a linear
combination of the modified Bessel functions (Eq. 35)

ψ r( ) � ψ2 C1I0 αr( ) + C2K0 αr( )( ). (35)

The two boundaries’ conditions are given by the following
expressions: ψ(R1) = ψ1 and ψ(R2) = ψ2. The solution of Eq. 38
is given in terms of the modified Bessel functions (Eqs 36, 37):

C1 � K0 αR1( ) − ψrK0 αR2( )
K0 αR1( )I0 αR2( ) − K0 αR2( )I0 αR1( ). (36)

C2 � ψrI0 αR2( ) − I0 αR1( )
K0 αR1( )I0 αR2( ) − K0 αR2( )I0 αR1( ). (37)

Here, the reduced z-potential is given by the following equation:

ψr �
ψ1

ψ2

. (38)

Finally, the net charge density distribution Eq. 32 reduces to
(Eq. 39)

ρE r( ) � −εα2ψ r( ), (39)
and

ρE r( ) � εα2 −ψ2( ) C1I0 αr( ) + C2K0 αr( )( ). (40)

Equation 40 is a measure of the bulk electronical density
distribution in the system.

5 Dimensionless variables and groups

5.1 Scaling laws

To facilitate the physical analysis, the following dimensionless
variables are suggested: i) axial velocity, ii) shear stress, iii) radial
coordinate, iv) volumetric flow, v) process-time, vi) transfer

function, vi) fluidity operator, vii) frequency, viii) beta function,
and ix) alpha parameter (Eq. 41).

vz � vz
VHS

; σzr � σzr
σE
; r � r

R2
;Q � Q

πR2VHS
; t � t

Σλ

Τ � Τ

1/ΣλΣG
;ΟMM

Φ � ΟMM
Φ

1/ΣλΣG
;ω � Σλω;ω0 � Σλω0

β � βR2; α � αR2

. (41)

Additionally, material properties of the rheological constitutive
equation are as follows (Eq. 42):

Πλ � Πλ

Σ2
λ
;Pλ � Pλ

Σ3
λ
;Ση � Ση

ΣGΣλ
;ΣλJ � ΣλJ

Σλ
. (42)

Note that the characteristic dimensionless variables are as
follows: i) axial velocity, ii) rz-shear stress, iii) radial coordinate,
iv) volumetric flow rate, v) process time, vi) complex transfer
function, vii) complex fluidity operator, viii) frequency, ix)
external frequency, and x) beta and alpha functions. In
particular, the characteristic variables are given by the following
expressions (Eq. 43):

VC � VHS � εΨwE0

ΣλΣG
; σC � σE � ΣλΣG

VHS

R2
; rC � R2;Qc � πR2VHS

tc � Σλ;Tc � /ΣλΣG;ΟC � 1/ΣλΣG;ωC � 1/Σλ

.

(43)
The characteristic velocity is the Helmholtz–Smoluchowski

(HS) velocity, the characteristic radial coordinate is R2, the
characteristic fluidity is the inverse of the product of the total
relaxation time and total bulk elasticity, and the characteristic
frequency is the inverse of the total relaxation times. All other
variables are a combination of these variables (shear stress and
volumetric flow rate).

Once the dimensionless variables are substituted into the
dynamical equations, the following dimensionless groups, which
describe all the macroscopical mechanisms, are obtained. The first
dimensionless group is the alpha parameter, which is given by the
following Eq. 44:

α �
���������
R2
2n0z2e2/ε
kBT

√
� Electric −Mechanisms
Thermal −Mechanisms

. (44)

The second group is total bulk viscosity, which is the sum of all
viscosities in the system (Eq. 45)

Ση � ηPH + ηHH + ηHC � GPHλPH + GHHλHH + GHCλHC. (45)

The third group is the total retardation time, which can be
interpreted as average relaxation time, weighted with the viscosities
(Eq. 46).

ΣλJ �
ηPH λHH + λHC( ) + ηHH λHC + λPH( ) + ηHC λPH + λHH( )

ηPH + ηHH + ηHC

. (46)

The fourth group is the oscillatory Weissenberg number, which
is the product of the total relaxation Σλ and the external frequency ω0

Eq. 47

We0 � Σλω0. (47)
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The fifth group is associated with the inertial Deborah numbers,
which are given by the following expressions (Eq. 48):

DeI �
�������
ρR2

2/ΣG

√
Σλ

� Inertial −Mechanisms
Viscoelastic −Mechanisms

. (48)

The sixth and seventh groups are related with geometric
Deborah numbers (Eqs 49, 50)

DeG1 �
���
Πλ

√ � ����������������������
λPHλHH + λHHλHC + λHCλPH

√
. (49)

DeG2 �
��
Ρλ

3
√ � ���������

λHHλPHλHC
3
√

. (50)

In addition, the following restrictions associated with i) geometry,
ii) Maxwell relaxation times, and iii) bulk elasticity are found:

R < r< 1. (51)
λPH + λHH + λHC � 1. (52)
GPH + GHH + GHC � 1. (53)

In Eq. 51, R = R1/R2 is ratio of two characteristic lengths. This
number determines the level of occlusion in the capillary system. Eqs 52,
53 are the Lagrange multipliers for the material restrictions of the
equations and are the starting point for the numerical calculations.
These dimensionless numbers describe a material space where the
dynamical response between the input force (electrical force) and the
output volumetric flow is maximized.

6 Governing equation

In the dimensionless form, the axial component of the momentum
equation, which includes the inertial, viscoelastic, and electrolyte
distributions, is given by the following linear differential equation:

1
r
∂
∂r

r
∂
∂r

+ iβ( )2{ }vz r,ω( ) � OMM
φ iω( )α2 C1I0 αr( )(
+C2K0 αr( ))E ω( ). (54)

The parameter β, as defined in Eq. 54, is expressed in the following
form, which encapsulates its significance in the context of the analysis:

β �
�����������������
De2I · iω( ) · ΟMM

Φ iω( )
√

. (55)

In Equation 55, the fluidity operator in the Fourier space is given
by the following analytical equation:

ΟMM
Φ iω( ) � 1

Ση
1 + iω + DeG12 iω( )2 + DeG23 iω( )3

1 + ΣλJ iω( ) + DeG23
Ση iω( )2 . (56)

Equation 56 is derived from Eq. 18 by expressing it in a
dimensionless form and utilizing the dimensionless variables and
numbers introduced in the preceding section. This transformation
allows for a more generalized analysis and facilitates the
understanding of the underlying dynamics.

6.1 Axial electro-osmotic-viscoelastic flow

The general solution of the linear partial differential (Eq. 54) can be
decomposed into two contributions. The homogeneous contribution is
obtained by solving the parametric differential equation.

1
r
∂
∂r

r
∂
∂r

+ iβ( )2{ }vHz r,ω( ) � 0. (57)

The solution of Eq. 57 is given in terms of the modified Bessel
functions of the first and second class to zero order, denoted as {I0, K0}.

vHz r,ω( ) � C3I0 βr( ) + C4K0 βr( ). (58)

The particular solution for the axial velocity Vpz(r,ω) must
satisfy the linear partial differential equation, and it can be written in
the following form:

1
r
∂
∂r

r
∂
∂r

+ iβ( )2{ }vPz r,ω( ) � OMM
φ iω( )α2 C1I0 αr( ) + C2K0 αr( )( )E ω( ).

(59)

To solve Eq. 59, a solution is assumed for vpz(r,ω) in the
following form:

vPz r,ω( ) � AI0 αr( ) + BK0 αr( ). (60)

In Eq. 60, the letters A and B represent constants that need to be
calculated once the particular velocity profile Vp is substituted into
the partial linear differential equation (Eq. 59). Additionally, Eq. 60
satisfies the following linear differential Bessel equation:

1
r
∂
∂r

r
∂
∂r
vPz r,ω( ) � i2 iα( )2vPz r,ω( ). (61)

When Eq. 61 is substituted into Eq. 59, the following algebraic
equation is obtained:

i2 iβ( )2 + iα( )2( )vPz r,ω( ) � OMM
φ iω( )α2 AI0 αr( ) + BK0 αr( )( )E ω( ).

(62)
Substituting the particular axial profile Eq. 60 into Eq. 62 yields

the following analytical expression (Eq. 63):

i2 iβ( )2 + iα( )2( ) AI0 αr( ) + BK0 αr( )( )
� OMM

φ iω( )α2 C1I0 αr( ) + C2K0 αr( )( )E ω( ). (63)

When equating coefficients in Eq. 72, it becomes clear that the
constants A and B have the following closed form:

A � OMM
φ iω( ) α2

i2 iβ( )2 + iα( )2C1 ω( )E ω( ), (64)

and

B � OMM
φ iω( ) α2

i2 iβ( )2 + iα( )2C2 ω( )E ω( ). (65)

Equations 64 and 65 satisfy the following restriction (Eq. 66):

i2 iβ( )2 + iα( )2 ≠ 0. (66)

Subsequently, the particular axial velocity can be determined

vPz r,ω( ) � OMM
φ iω( ) α2

i2 iβ( )2 + iα( )2 C1 ω( )I0 αr( ) + C2 ω( )K0 αr( )( )E ω( ).

(67)

The total axial velocity is obtained as the sum of the
homogeneous and particular solutions provided by Eqs 58 and
67, which can be further simplified as follows:
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vz r,ω( ) � C3I0 βr( ) + C4K0 βr( ) +OMM
φ iω( )f r,ω( )E ω( ). (68)

The function f (r,ω) is defined as follows (Eq. 69):

f r,ω( ) � α2

i2 iβ( )2 + iα( )2 C1 ω( )I0 αr( ) + C2 ω( )K0 αr( )( ). (69)

Applying the boundary conditions: i) at r = R1, vz = 0, and ii) at
r = R2, vz = 0, the constants C1 y C2 take the following form:

I0 βR2( ) K0 βR2( )
I0 βR1( ) K0 βR1( )( ) C3

C4
( ) � −OMM

φ iω( ) f2 ω( )
f1 ω( )( )E ω( ). (70)

Upon solving Eq. 70, we obtain the constants C3(ω) and C4(ω) in
the following analytical forms:

C3 ω( ) � OMM
φ iω( )H3 ω( )E ω( ), (71)

and

C4 ω( ) � OMM
φ iω( )H4 ω( )E ω( ). (72)

Here, H1(ω) and H2(ω) are given by the following expressions:

H3 ω( ) � f1 ω( ) K0 βR2( ) − f2 ω( )K0 βR1( )
I0 βR2( )K0 βR1( ) − I0 βR1( )K0 βR2( ), (73)

and

H4 ω( ) � f2 ω( ) I0 βR1( ) − f1 ω( )I0 βR2( )
I0 βR2( )K0 βR1( ) − I0 βR1( )K0 βR2( ). (74)

In addition, the functions f1(ω) and f2(ω) are defined in the
following analytical expressions:

f1 ω( ) � α2

i2 iβ( )2 + iα( )2 C1 ω( )I0 αR1( ) + C2 ω( )K0 αR1( )( ). (75)

f2 ω( ) � α2

i2 iβ( )2 + iα( )2 C1 ω( )I0 αR2( ) + C2 ω( )K0 αR2( )( ). (76)

Equations 75 and 76 are substituted into Eqs 73 and 74,
subsequently into Eqs 71 and 72, and finally in the axial velocity
profile Eq. 68, arriving at the following simplified nonhomogeneous
transfer function for the axial velocity profile:

T r,ω( ) � vz r,ω( )
E ω( ) � Re TF[ ] + iIm TF[ ]. (77)

Equation 77 defines the following non-homogeneous
transfer function:

T r,ω( ) � OMM
φ iω( ) H3 ω( )I0 βr( ) +H4 ω( )K0 βr( ) + f r,ω( )( ). (78)

6.2 Volumetric flow rate

Integrating the complex velocity profile over a cross-sectional
area, the volumetric flow rate Q(ω) can be expressed in the following
analytical form (Eq. 79):

Q ω( ) � 2∫1
R

vz r,ω( )rdr. (79)

The flow transfer function TF (ω) is given by the following
expression:

TF ω( ) � Q ω( )
E ω( ) � Re TF ω( )[ ] + iIm TF ω( )[ ] � 2∫1

R

T ω, r( )rdr. (80)

Equation 80 relates the electrically driven force (input) with the
volumetric flow rate (output). Finally, the flow transfer function is
given by the following expression:

TF ω( ) � OMM
Φ iω( )

2H3 ω( ) I1 β( ) − I1 βR( )
β2

+ 2H4 ω( )K1 β( ) − K1 βR( )
β2

+

2
α2

i2 iβ( )2 + iα( )2 C1 ω( ) I1 α( ) − I1 αR( )
α2 + C2 ω( )K1 α( ) − K1 αR( )

α2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(81)

6.3 Shear stress transfer function

The rz-component of the shear stress tensor can be calculated
from the following constitutive equation:

σw ω( ) � i2σrz|r�1 � i2

OMM
Φ iω( )

∂vz r,ω( )
∂r

∣∣∣∣∣∣∣∣
r�1
. (82)

Substituting the axial velocity Eq. 68 into Eq. 82, the following
expression is obtained (Eq. 83):

TS ω( ) � σw ω( )
E ω( ) � Re TS r,ω( )[ ] + iIm TS r,ω( )[ ]

� i2

OMM
Φ iω( )

∂T r,ω( )
∂r

∣∣∣∣∣∣∣∣
r�1
. (83)

Once the velocity transfer function is substituted into Eq. 83

TS ω( ) � i2 H3 ω( )βI1 β( ) + i2H4 ω( )βK1 β( ) + α3

i2 iβ( )2 + iα( )2 C1 ω( )I1 α( )((
+ i2C2 ω( )K1 α( ))). (84)

As a partial summary, Eq. 78 represents the non-
homogenous transfer function for the axial velocity profile
(VTF). This complex transfer function was integrated to
obtain the flow transfer function (FTF), as shown in Eq. 81.
By taking the radial spatial derivative of the complex velocity
transfer function, we arrive at the stress transfer function (STF),
which is shown in Eq. 84. It is worth noting that all transfer
functions are analytical, which is one of the objectives of this
work, and they depend on the rheology through the fluidity
operator ΟΦ

MM (iω), geometry occlusions through R, and
inertial, electric–thermal, and viscoelastic forces. Furthermore,
the solution for this particular configuration is expressed in
terms of oscillatory complex Bessel functions of the first and
second order to zero order. These equations contain seven
dimensionless numbers, associated with inertia,
electric–thermal effects, geometry, and viscoelastic
mechanisms, as defined in Section 5.1.

7 Results

7.1 Numerical predictions

In this section, we present the main results of this research,
which are based on the complex transfer function derived from the
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analysis. Programming was conducted using the software
application Mathematica version 13.3, and the results were
exported to a graphical program.

7.2 Inertial–viscoelastic mechanisms

In Figures 4A, B, the norm of the flow transfer function is plotted
against frequency as a function of the Deborah number. The
dimensionless numbers used in the simulation are shown inside
the chart. In Figure 4A, the parameter α = 1 indicates that the
electrical and thermal mechanisms are equal. At low frequencies, the
flow transfer function does not exhibit any resonance curves,
indicating that there are critical resonance frequencies where the
system shows resonance peaks, where the maximum of the peak is
determined by coupled mechanisms associated with
electrical–thermal–inertial and viscoelastic forces. The highest
response is observed for case “a,” while for increasing inertial
Deborah number, the maximum of the resonance peak is greatly
diminished, which is associated with the reduced elasticity of the
system. At certain frequencies, the system exhibits a train of
secondary peaks, which asymptotically decrease to 0 as the
frequency increases. The inset of Figure 4A shows the dynamic
response of the flow transfer function with different values of the
Deborah number. In Figure 4B, the value of the alpha number is α =
10−4, indicating that thermal forces dominate over the electrical
processes. Unlike Figure 4A, the first resonance peak is not observed
for the case “a,”maintaining all the other resonance peaks almost the
same, suggesting that the first resonance is determined by a
competition between thermal and electrical mechanisms. Lastly,
Figure 4C shows the stress transfer function plotted against
frequency as a function of the Deborah number. Here, several
secondary peaks are observed, indicating that the interaction
between the solid wall and the viscoelastic liquid induces more
resonant behavior.

7.3 Thermal–electric mechanisms

In Figure 5, both transfer functions (flow a–b, stress c) are
plotted against frequency. The effect of the electrical and thermal
mechanisms is analyzed as follows. The parameter a represents the
competition between electrical and thermal forces. The other
parameters employed in the simulation are given by i) DeI = 1.0,
ii) SlJ = 0.01, DeG1

2 = 0.01, and DeG1
3 = 0.001. In Figures 5A, B, all

curves exhibit a plateau where the flow transfer function is
independent of the frequency; the value of this plateau depends
on the parameter a, i.e., for low a values, the plateau value tends to be
0 (thermal forces dominate over electrical ones), while the value of
the plateau increases for increasing values of a (thermal and
electrical forces are in balance). At a critical frequency, a
maximum resonance peak is observed, and the value of this peak
is also dependent on a; the maximum peak decreases for decreasing
a, which indicates that thermal forces tend to decrease the maximum
resonance value and electrical forces tend to increase it. This peak
occurs at a specific frequency called the resonant frequency.

The maximum resonance is reached due to coupled mechanisms
associated with inertial–viscoelastic, thermal–electric, and multiple

relaxation times in the system. At a second critical frequency beyond
the resonance frequency, the system undergoes transitions from
higher to lower resonance states, followed by a significant train of
secondary peaks.

The important findings of Figures 5A, B are summarized
as follows:

(A) The effect of the inertial–viscoelastic mechanisms influences
the resonance response in the system. The system requires
storage mechanisms through the material parameters to
exhibit resonance.

(B) The effect of the parameter a is similar to that of thixotropy in
complex fluids.

(C) The electrical forces augment the value of the peak, while
thermal forces decrease it.

(D) The interactions between stress transfer functions show an
intensity of secondary peaks, some of which do not decrease

FIGURE 4
Flow transfer function vs. frequency as a function of the Deborah
number and (A) α = 1 and (B) α = 10−4. In Panel (C), the stress transfer
function vs. frequency is shown.
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with frequency. This may be due tomultiple interactions with
relation times (see, for example, Figure 7C).

7.4 Rheological mechanisms

In the case of three modes, the dimensionless numbers that
describe the physics in the system are the following:

(A) Materials: i) total bulk-viscosity (Sh), ii) inertia (DeI), iii) first
geometric Deborah (DeG1), iv) second geometric Deborah
(DeG2), and v) retardation mechanisms (SlJ).

(B) Electrical–thermal: i) electric–thermal (α) and ii) reduced
wall electric potential (ψr).

(C) Geometry: i) occlusion geometry (R).

These eight numbers control the flow and rheology in the
physical system, and they are the key parameters for the

dynamical response of the flow and stress transfer functions. In
the upcoming simulations, the following numerical values are fixed:
a) asymmetry wall electric potential, ψr = 0.01, and b) small
occlusion, R = 0.01.

According to our material analysis (see, for example,
Supplementary Appendix SA), the system can be classified into
the following important modes. These modes are linked to the
Lagrange multipliers and were previously studied by Herrera-
Valencia et al. (2017), Herrera-Valencia et al. (2019), Herrera-
Valencia et al. (2023).

(a) First parametric material mode: i) small inertial Deborah
number (0 <DeI <∞), ii) small bulk-viscosity (Sh = 10−4), iii)
small geometric Deborah numbers (DeG1 = 10−4 and DeG2 =
10−5 DeG2 < DeG1), and iv) small retardation mechanisms
(SlJ = 10−4).

(b) Second parametric material mode: i) small inertial Deborah
number (0 < DeI < ∞), ii) large bulk-viscosity (Sh = 1), iii)
small geometric Deborah numbers (DeG1 = 10−4 and DeG2 =
10−5; DeG2 < DeG1), and iv) small retardation mechanisms
(SlJ = 10−4).

(c) Third parametric material mode: i) small inertial Deborah
number (0 < DeI <∞), ii) equal bulk-viscosity (Sh at 1/3), iii)
first geometric Deborah numbers (DeG1 = 1/3 and DeG2 = 1/
27; DeG2 < DeG1), and iv) small retardation
mechanisms (SlJ = 2/3).

Figure 6 shows the effect of rheology on the dynamical
response of the system. It is clear that a large viscosity
induces a small dynamical response in the EOF (α = 0.1).
Additionally, the α number related to electrical and thermal
mechanisms is crucial in the resonance behavior of the
viscoelastic electrolyte.

Noticeably, when the system is dominated by electrical
forces, several secondary resonance peaks appear, which is a
consequence of the orientation (Figure 6A), whereas when the
electrical mechanisms decrease, the system shows a dominant
resonance peak with smaller secondary resonance
peaks (Figure 6B).

Figure 6C shows the interaction between the wall stress and the
electro-viscoelastic fluid. At small frequencies, the dynamical
response is constant, and for a critical frequency, the system
shows a dominant resonance peak followed by a secondary train
of peaks, which are damped by the effect of intermediate and high
frequencies.

In partial conclusion, in both systems, the maximum resonance
peak is reached through the following important issues: a) low
viscosity, b) small memory, and c) small retardation times. In other
cases, the linear dynamical response is much lower due to the
interaction with other mechanisms, such as i) viscous
(dissipation), ii) elastic (storage), and iii) retardation (multiple
relaxation times) contributions.

7.5 Rheometric data

The experimental section, including rheological characterization
of blood with low and high cholesterol material properties, is given

FIGURE 5
(A–C). Flow transfer function (A, B) vs. frequency as a function of
electric–thermal mechanisms associated with α number. (C)
Frequency response of the stress transfer function with the same
material conditions.
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in Table 1 and taken from Moreno et al. (2015). The main
assumptions of the rheometric data are summarized as follows:

(a) The parameters correspond to a total cholesterol sample,
where the values of low and high cholesterol in human
blood are around 187 mg/dL and 400 mg/dL, respectively.

(b) The hematocrit in all the samples was approximately
constant at 48%.

(c) The temperature was kept at 37°C to emulate the conditions
of blood within the human body.

(d) The fitting of the rheometric data was performed using a
Wolfram Mathematica code with a multi-modal Maxwell
model, employing three modes.

In Figure 7 storage and loss moduli vs. frequency as a function of
low and high cholesterol are shown. At intermediate frequency,
blood with high cholesterol exhibits a predominantly viscous

mechanism associated with dissipation processes, while elastic
forces are associated with the storage modulus. The effect of low
cholesterol induces a predominantly viscous-dissipation behavior;
however, the system shows a predominant viscoelastic relaxation
associated with a possible crossover frequency close to 100 rad/s.
Moreno et al. (2015) demonstrated that as the cholesterol
macromolecule increases, the system induces a transition from
fluid-like to solid-like behavior associated with an elastic–plastic
behavior. The dimensionless equations for electrolytic distribution,
axial profile velocity, and volumetric flow rate are given in the
upcoming section, where we delve into the mathematical
formulations governing these parameters.

7.6 Dimensionless numbers at low- and
high-cholesterol samples

In this section, we utilize both low and high human blood
rheometric data to calculate the flow and stress transfer
functions (Moreno et al., 2015). To model the data, we
employ the multi-modal Maxwell equation to determine the
fluidity function (Eq. 21). The simulation also incorporates the
following parameters:

(a) The ratio wall potential, i.e., Yr = Y2/Y1 = 0.01.
(b) The total blood density, i.e., r = rP + rH ~ (1,060, 1,088) kg/m3.
(c) The average ratio of the vein: (2 × 10−5 £ R2 £ 3.5 × 10−4) m.
(d) Oscillatory Weissenberg number We0 = 0.1.
(d) Maxwell relaxation times LC: Sl = l1 +l2 + l3 = 1.6383 s.
(e) Maxwell relaxation times HC: Sl = l1 +l2 + l3, = 1.4695 s.
(f) Bulk elasticity LC: (SG)LC = G1 +G2 + G3 = 0.6523 Pa.
(g) Bulk elasticity HC: (SG)HC = G1 +G2 + G3 = 62.521 Pa.
(h) Viscosity LC: (Sη)LC = l1G1 + l2G2 + l3G3 = 0.037582.
(i) Viscosity HC: (Sη)HC = l1G1 + l2G2 + l3G3 = 1.65214.

These geometric and rheology material properties led us to
calculate the inertial-bulk elastic/viscoelastic dimensionless
numbers for high and low cholesterol, which are calculated
as follows:

Inertial Deborah number LC:

4.9 × 10−4 �
��������������������
ρ 2.5 x 10−5m( )2/ ΣG( )LC

√
Σλ( )LC ≤DeI ≤

����������
ρR2

2/ ΣG( )LC
√

Σλ( )LC

�
��������������������
ρ 3.5 x 10−4m( )2/ ΣG( )LC

√
Σλ( )LC � 8.66 × 10−3.

Inertial Deborah number HC:

5.64 × 10−5 �
��������������������
ρ 2.5 x 10−5m( )2/ ΣG( )HC

√
Σλ( )HC

≤DeI ≤

����������
ρR2

2/ ΣG( )HC

√
Σλ( )HC

�
��������������������
ρ 3.5 x 10−4m( )2/ ΣG( )HC

√
Σλ( )HC

� 8.4 × 10−4.

Total bulk viscosity at low cholesterol:

Ση( )
LC

� Ση

ΣG( )LC Σλ( )LC � 0.03516.

FIGURE 6
(A–C). Flow and stress (c) transfer functions vs. frequency for
different rheological conditions: i) mode I: small viscoelasticity and
small bulk viscosity, ii) mode II: high viscosity and small viscoelasticity,
and III) mode III: intermediate viscosity and high viscoelasticity.
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Total bulk viscosity at high cholesterol:

Ση( )
HC

� Ση

ΣG( )HC Σλ( )HC

� 0.01798.

Geometric Deborah numbers LC:

De2G1
� λ1λ2 + λ2λ3 + λ1λ3

Σλ( )2LC
� 0.1270

De3G2
� λ1λ2λ3

Σλ( )3LC
� 0.0027

.

Geometric Deborah number HC:

De2G1
� λ1λ2 + λ2λ3 + λ1λ3

Σλ( )2HC

� 0.0403

De3G2
� λ1λ2λ3

Σλ( )3HC

� 0.0039

.

Retardation mechanisms LC:

ΣλJ �
ΣλJ
Σλ( )LC � η1 λ2 + λ3( ) + η2 λ1 + λ3( ) + η3 λ1 + λ2( )( )/ Ση( )

LC

Σλ( )LC
� 0.81628.

Retardation mechanisms HC:

ΣλJ �
ΣλJ
Σλ( )HC

� η1 λ2 + λ3( ) + η2 λ1 + λ3( ) + η3 λ1 + λ2( )( )/ Σλ( )HC

Σλ( )HC

� 0.8967.

In the following section, the dimensionless numbers for low and
high cholesterol are used to obtain the resonance curves.

Figure 8A illustrates the influence of geometry, inertia, bulk
elasticity, and viscoelasticity, as represented by the Deborah number,
on the resonance peak for blood with low cholesterol content. A
primary resonance peak is observed at a characteristic frequency for
curves (a, b). However, simulations (c, d) do not exhibit resonance
behavior due to geometric, internal, and bulk elastic forces. It is
noteworthy that a mechanical response (plateau) is evident at low
frequencies, which is a characteristic effect observed in vibratile
systems within complex fluids such as micellar solutions (Herrera-
Valencia et al., 2023). Figure 8B demonstrates the effect of the
electric and thermal mechanisms on the resonance peak for blood
with low cholesterol content. A primary resonance peak is observed
at a characteristic frequency for all curves. Additionally, the
influence of parameter a is evident in Figure 8B; as a decreases,
the thermal mechanism predominates over the electric mechanism,
leading to a reduction in the maximum value of the resonance peak.

In Figures 9A, B, the impact of the inertial–viscoelastic and
electric–thermal mechanisms as a function of frequency for various

TABLE 1 Material properties of blood with high cholesterol.

Cholesterol levels λ01 [s] λ02 [s] λ03 [s] G01 [Pa] G02 [Pa] G03 [Pa]

LC 0.04423 0.1909 1.3887 0.6271 0.0161 0.004894

HC 0.02371 0.03738 1.4068 61.4 1 0.113

FIGURE 8
Flow transfer function vs. frequency for human blood with low
content of cholesterol (A) and high content of cholesterol (B).

FIGURE 7
Storage and loss modulus vs. frequency for the rheometric data
of human bloodwith cholesterol. The experimental data were fitted by
the four multimodal Maxwell rheological equations to take into
account the plasma–hematocrit–cholesterol interaction.
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values of the Deborah and α numbers is analyzed. It is evident that
for blood with high cholesterol, resonance peaks are not observed.

The Deborah number tends to decrease the plateau as inertial
forces increase. At a specific frequency, the transfer function relaxes,
induced by the multiple Maxwell relaxation times.

This absence of resonance behavior is attributed to the high
viscosity of the sample, which dominates over elastic mechanisms.

8 Conclusion

Analytical solutions were derived for annular flow involving
EOF of viscoelastic fluids obeying a multi-modal Maxwell model (3-
modes). Antisymmetric boundary conditions with different zeta
potentials at the walls were assumed. The dynamical equations
include a linearized Poisson–Boltzmann equation governing the
electrical double-layer field that was included in the
momentum equations.

The modified Navier–Stokes equation was solved using the
Fourier transform integral, assuming non-slip conditions at
the capillary. Analytical expressions for the axial velocity
profile, volumetric flow rate, and wall shear stress were obtained.
The important material parameters are i) electrical (ψ1,ψ2), ii)
thermal (T), iii) geometric (R1, R2, and L), and iv) rheological
(Gi, λi; i = 1, . . . , n). The adjustment of blood weight
concentration is achieved through material conditions and
statistical analysis using a Mathematica code.

Some of the key results are summarized below:

The physics and rheology of the system can be represented
through nine dimensionless numbers associated with all the
mechanisms:

(A) Viscoelastic fluid: i) total bulk viscosity (Ση), ii)
inertial–viscoelastic Deborah number (DeI), ii) geometric
Deborah numbers {DeG1 and DeG2}, and iii) average
retardation time (ΣλJ).

(B) External viscoelastic force: We0.
(C) Electric double layer: Ψr.
(D) Geometrical constriction ratio: R.
(E) Geometrical constriction ratio: R.

The key issues include the following:

• Parameters α and β associated with the
electric–thermal–inertial–bulk elastic, viscoelasticity, and
compliance mechanisms control the dynamical response of
the flow and stress transfer functions in the following way:
elasticity and electrical mechanisms increase the resonant
peak maximum value of the system, while thermal and
viscous mechanisms diminish it.

• The methodology is applicable to any linear or fractional
constitutive equation and can be explored with modes with
several relaxation times.

• The system is described by two analytical transfer functions
{TF (w) and TS (w)} governing the interactions between the
driven electrical field force and the corresponding volumetric
and stress–inertial outputs.

• The dominant relaxation time is related with the maximum
peak resonant, while a train of secondary peaks is determined
by secondary Maxwell relaxation times and the mathematical
architecture of the complex Bessel functions to the zeroth and
first orders.

• The electrical mechanisms are associated with the energy
required to reach the resonance peak. When the electrical
field mechanism is smaller, the system needs more energy to
reach the maximum. In contrast, when the electrical forces
dominate over the thermal mechanisms, the system needs less
energy to reach the maximum peak.

• Blood with low cholesterol content exhibits a large resonant
peak; while no resonance is observed for high cholesterol
content due to high viscosity (low elasticity) dominance in
the response.

• Resonance dominates at a critical Deborah number, while
higher values lead to a train of secondary resonance peaks due
to the relaxation time spectrum.

The results obtained show that the electro-thermal
mechanisms induce a dynamical response in the context of
oscillatory flow. When the system is dominated by electric
mechanisms, the resonance is larger when compared with the
thermal fluctuations. This methodology is completely general
and can be fitted to any rheometric data of blood with other
pathologies. For the geometric conditions explored in this
research, i.e., R < 0, the system can be interpreted as an
arterial central occlusion.

FIGURE 9
Flow transfer function vs. frequency for human blood with high
cholesterol as a function of (A) viscoelastic and (B) electro-
thermal forces.
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9 Future work

Finally, a natural extension of this work would be to study
moderate and large deformations with a model developed by our
research group. This model would incorporate effects such as
thixotropy, rheopexy, shear-thinning, shear-thickening, and
shear-banding. The present work represents a starting point to
promote experimental investigations of blood flow with different
cholesterol levels in EOF.
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Glossary

EDL Electric double flow

EOF Electro-osmotic flow

Nomenclature

a Capillary radius [m]

R1 Radius of the inner capillary [m]

R2 Radius of the external capillary [m]

R Capillary ratio [1]

e Elementary charge [C]

G0i, i = 1, . . . ,4 Shear elastic modules [Pa]

I0 First modified Bessel functions to zeroth order [1]

I1 First modified Bessel functions to first order [1]

kB Boltzmann constant [J K−1]

K0 Second modified Bessel functions to zeroth order [1]

K1 Second modified Bessel functions to first order [1]

L Microchannel length L [m]

n0 Ionic concentration [m−3]

n(t) Oscillatory function [1]

M Molar concentration [mol/m3]

NA Avogadro number

p Pressure [Pa]

Q Volumetric flow rate [m3/s]

r Radial coordinate [m]

t Time [s]

T Absolute temperature [K]

TF(ω) Flow transfer function [1/Pas]

TS(ω) Stress transfer function [1/Pas]

VHS Helmholtz–Smoluchowski velocity [m/s]

vH Homogeneous velocity [m/s]

vp Particular velocity [m/s]

x Axial direction [m]

y Transverse coordinate [m]

Z Valence of ions [1]

Tensors and vectors

D Rate of deformation tensor [s−1]

E External applied electric field [V m−1]

E0 Amplitude of the electrical field [V m−1]

I Unit tensor [1]

T Total stress tensor [Pa]

v Velocity vector [m s−1]

σ Viscoelastic stress tensor [Pa]

Tensor operations

› Dyadic product [1]

 Upper convective Maxwell operator [s−1]

Greek letters

α Debye–Hückel parameter [1/m]

Δ Delta [1]

Φe Applied electrical field [V]

εr Dielectric permittivity [C/mV]

ψ Z-potential field [V]

ψw1 Wall Z-potential field at R1 [V]

ψw2 Wall Z-potential field at R2 [V]

ω Frequency [kHz]

φ0 Fluidity at low shear rate [Pa−1s−1]

ϕ Electric potential in the stream wise direction imposed [V]

α Debye–Hückel parameter [m−1]

λ0i; i = 1, . . . 4 Maxwell relaxation times at low shear rate [s]

λD Debye layer thickness [nm]

ρ Blood density [kg/m−3]

ρe Electric charge density [C/m3]

σw Wall stress [Pa]

σzr rz-component of the stress tensor [Pa]

σzz zz-component of the shear tensor [Pa]

σrr rr-component of the shear tensor [Pa]

σθθ θθ-component of the shear tensor [Pa]

Derivatives and mathematical operators

∂/∂t First-order partial derivative [s−1]

∂2/∂t2 Second-order partial derivative [s−2]

 Nabla spatial operator [ m−1]

D/Dt Time material derivative [s−1]

Oη
MM(∂t) Viscosity operator [Pas]

OΦ
MM(∂t) Fluidity operator [1/Pas]

dγ/dt Shear strain scalar [s−1]

Functions

Exp Exponential function [1]

Dimensionless groups

α Electrical and thermal mechanisms [1]

DeI Inertial Deborah [1]

DeG1 First geometric Deborah number [1]

DeG2 Second geometric Deborah number [1]

We0 Weissenberg number [1]

Ση Total bulk viscosity [1]

Πλ Memory [1]
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ΣλJ Retardation time [1]

PJ Triple memory interaction [1]

ΠλJ Retardation product [1]

R Geometric ratio [1]

Ψr Wall electrical potential ratio [1]

Others symbols

<> Average [1]

IID Second invariant of the shear strain tensor [1]

Material constants

E0 = 100 Electrical amplitude [V/nm]

ρ ~ 10−3 Micellar density [kg/m−3]

L ~ 10−2 Microchannel length [m]

a = 5–100 Height [μm]

α ~ O (10−3) Alpha-parameter

NA = 6.022 × 1023Avogadro number [1/mol]

z = 1 Valence [1]

εr ~ O (102) Dielectric permittivity [1]

kB = 1.38 × 10−23 Boltzmann constant [J K−1 ]

e = 1.602 × 10−19 C elementary charge [C]

T = 298 K Absolute temperature [K]

ω ~ 400–360 Frequency [Hz, kHz]

λD ~ 15 to 300 Debye length [nm]
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