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Background: Liquid crystal (LC) mesophases have an orientational and positional
order that can be found in both synthetic and biological materials. These orders
aremaintained until some parameter, mainly the temperature or concentration, is
changed, inducing a phase transition. Among these transitions, a special
sequence of mesophases has been observed, in which priority is given to the
direct smectic liquid crystal transition. The description of these transitions is
carried out using the Landau–de Gennes (LdG) model, which correlates the free
energy of the system with the orientational and positional order.

Methodology: This work explored the direct isotropic-to-smectic A transition
studying the free energy landscape constructed with the LdG model and its
relation to three curve families: (I) level-set curves, steepest descent, and critical
points; (II) lines of curvature (LOC) and geodesics, which are directly connected to
the principal curvatures; and (III) the Casorati curvature and shape coefficient that
describe the local surface geometries resemblance (sphere, cylinder, and saddle).

Results: The experimental data on 12-cyanobiphenyl were used to study the
three curve families. The presence of unstable nematic and metastable plastic
crystal information was found to add information to the already developed
smectic A phase diagram. The lines of curvature and geodesics were
calculated and laid out on the energy landscape, which highlighted the
energetic pathways connecting critical points. The Casorati curvature and
shape coefficient were computed, and in addition to the previous family, they
framed a geometric region that describes the phase transition zone.

Conclusion and significance: A direct link between the energy landscape’s
topological geometry, phase transitions, and relevant critical points was
established. The shape coefficient delineates a stability zone in which the
phase transition develops. The methodology significantly reduces the impact
of unknown parametric data. Symmetry breaking with two order parameters
(OPs) may lead to novel phase transformation kinetics and droplets with partially
ordered surface structures.
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1 Introduction

Synthetic and biological liquid crystals (LCs) are anisotropic soft
materials with partial degrees of orientational and positional order,
conveying fluidity as viscous liquids and anisotropy as in the
crystalline order (Rey and Denn, 2002; Donald et al., 2006; Rey,
2010; Sonnet and Virga, 2012; Petrov, 2013; Lagerwall, 2016;
Selinger, 2016; Collings and Goodby, 2019; Stewart, 2019;
Zannoni, 2022). Importantly, possible LC mesogens include rod-,
board-, disk-, and screw-like molecules with flexibilities ranging
from semi-flexible to rigid, involving monomers or main/side-chain
polymers and colloids (Donald et al., 2006; Demus et al., 2008b;
Demus et al., 2011). The synthesis and formation of these mesophase
materials follow equilibrium self-assembly processes driven by
temperature (thermotropic), concentration (lyotropic), or both
(Bowick et al., 2017; Wang et al., 2023b). The presence of
multiple components, as in nanoparticle-loaded mesophases,
gives rise to couplings between self-assembly and phase
separation with states that can combine the crystallinity
(positional order) of one component with the liquid crystallinity
(various degrees of positional and orientational order) of the other
(Soulé et al., 2012a; Soulé et al., 2012b; Soulé et al., 2012c; Soule and
Rey, 2012; Milette et al., 2013; Gurevich et al., 2014). Various
external fields (flow, electromagnetic, and thermal) can be used
to generate self-organized structures not seen in purely equilibrium
self-assembly. The natural setting to describe self-assembly starts
with the energy landscape and its geometrical properties (curvatures,
cusps, domes, etc.), while for non-equilibrium organization, the
natural setting will include the entropy production landscape and its
defining geometric measures. In this paper, we present a widely
applicable geometry-based methodology for describing self-
assembly in anisotropic soft matter and target one specific
transition that exhibits complex ordering processes. Without
ambiguity, for convenience and brevity, below we refer to self-
assembly as phase ordering and/or phase transition, as we do not
include phase separation and conserved quantities. In addition, we
refer to the degree of quench as the equivalent of the thermodynamic
driving force for phase ordering.

The spectrum of self-assembly processes is significantly enriched
when considering the sequence of phase transformations. This
progression follows an increase in order as the magnitude of the
thermodynamic driving force is increased, corresponding to a
decrease in temperature for thermotropes or an increase in
concentration for lyotropes. The sequence then goes from a high-
symmetry isotropic state to an orientationally ordered (nematic)
state. This state is then followed by the addition of the positional
order (smectic). Then, the crystalline organization is reached with a
further increase in the driving force. The usual sequence of
isotropic–orientational–positional phase ordering (Oswald and
Pieranski, 2005a; Jákli and Saupe, 2006; Blinov, 2011) is
sometimes reordered to a direct isotropic–positional/orientational
ordering, as observed in monomeric thermotropes (certain cyano-
biphenyls (CB) and oxy-cyanobiphenyls (OCB)) (Oh, 1977; Idziak
et al., 1996; Oswald and Pieranski, 2005b; Donald et al., 2006;
Abukhdeir and Rey, 2008; Chahine et al., 2010; Gudimalla et al.,
2021; Nesrullajev, 2022) and biological liquid crystals (BLCs) such as
collagen mesophase precursors in the mussel byssus (Knight and
Vollrath, 1999; Viney, 2004; Donald et al., 2006; Rey, 2010; Rey and

Herrera-Valencia, 2012; Rey et al., 2013; Renner-Rao et al., 2019;
Manolakis and Azhar, 2020; Harrington and Fratzl, 2021; Berent
et al., 2022). This important and non-classical behavior is the focus
of this paper: the direct isotropic-to-smectic A (I-SmA) LC phase
transition, where SmA denotes the simplest smectic phase. A
collection of compounds exhibiting this scheme can be found
(Hawkins and April 1983; Idziak et al., 1996; Lenoble et al., 2007;
Abukhdeir and Rey, 2008; Mohieddin Abukhdeir and Rey, 2008a; Li
et al., 2009; Wojcik et al., 2009; Chahine et al., 2010; Pouget et al.,
2011; Salamonczyk et al., 2016; Bradley, 2019; Renner-Rao et al.,
2019; Gudimalla et al., 2021; Jackson et al., 2021; Jehle et al., 2021;
Khadem and Rey, 2021; Nesrullajev, 2022), which is largely driven
by attractive forces in thermotropic LCs [e.g., cyanobiphenyl family
(n-CB, n > 10) (Bellini et al., 2002)] and excluded volume
interactions in BLCs (e.g., collagen in mussel byssus and Ff
phages). In both cases, a common geometric feature is the
presence of rigid or semi-rigid rod-like cores and sufficiently long
semi-flexible ends. Currently, the best-characterized materials that
follow the direct I-SmA are low-molar mass thermotropic LCs, such
as 10CB and 12CB (Collings, 1997; Urban et al., 2005; Demus et al.,
2008a; Li et al., 2009; Chahine et al., 2010; Gudimalla et al., 2021;
Zaluzhnyy et al., 2022). To avoid introducing a plethora of unknown
parameters and material data, we focus on them as model systems.
In the future, our ultimate goal is to expand the findings to lyotropic
polymeric and colloidal smectics that are found in collagen
precursors of the mussel byssus (Renner-Rao et al., 2019; Jehle
et al., 2021; Waite and Harrington, 2022). It is noted that even
though we only consider thermotropic LCs in the current
manuscript, using correspondence principles such as those
provided in the following references (Picken, 1990; Soule and
Rey, 2011; Golmohammadi and Rey, 2009; Doi, 1981), we can, in
the future, use the current findings for collagen-based LCs.

A key feature of the I-SmA transition is the strong coupling of
the positional and orientational order parameters (OPs) (Pikin,
1991; Gorkunov et al., 2007; Blinov, 2011; Turek et al., 2020;
Gurin et al., 2021), which results in the enhancement of the
orientational OP over and above what a nematic phase could
show at these conditions of temperature or concentration. A
practical consequence of this, as we know from synthetic liquid
crystal polymers (LCPs), is that in the solid state, the enhanced
orientational order parameter has a strong impact on themechanical
properties (e.g., Young modulus) that can be seen in LCP fibers
(Ward, 1993; Ziabicki, 1993; Donald et al., 2006; Turek et al., 2020;
Bunsell et al., 2021). This order parameter coupling decreases the
free energy of the system to result in a smectic A phase at minimal
quenches from the stable disordered state. Polymeric and biological
liquid-crystalline materials, being part of the lyo/thermotropic
spectrum, also share the preferred native mode of fiber-
formation, as seen in their in vivo and in vitro states (Matthews
et al., 2002; Viney, 2004; Dierking and Al-Zangana, 2017; Renner-
Rao et al., 2019; Deng et al., 2021; Harrington and Fratzl, 2021;
Tortora and Jost, 2021; Cai et al., 2023; Zhang et al., 2023), which
reinforces the hypothesis of smecticity enhancing the material’s
mechanical properties through increased alignment.

The computational liquid crystal phase-field methodology used
in this paper, largely based on the Landau–de Gennes (LdG) models
and their many generalizations, has been widely used to simulate
and predict self-assembly, self-organization, rheology, bulk,
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interfacial transport phenomena, and more for both thermotropic
and lyotropic LCs (Biscari et al., 2007; Hormann and Zimmer, 2007;
Popa-Nita and Sluckin, 2007; Saunders et al., 2007; Mohieddin
Abukhdeir and Rey, 2008b; Rey, 2010; Coles and Strazielle, 2011;
Garti et al., 2012; Mukherjee, 2014; Han et al., 2015; Selinger, 2016;
Collings and Hird, 2017; Vitral et al., 2019; Copic and Mertelj, 2020;
Vitral et al., 2020; Schimming et al., 2021; Bukharina et al., 2022;
Paget et al., 2022; Zaluzhnyy et al., 2022). As in other coupled OP
transitions, the challenges for a given energy landscape include the
following issues:

• What is the total number of local maxima, minima, and
saddles in the energy surface for a given quench?

• Where are the local minima and maxima located for a
given quench?

• When do we find bi-stability?
• What states exist when one of the OPs is zero (e.g., nematic
and plastic crystal)?

• What are the shortest path directions connecting minima?

Previous works have excellently characterized these mesophases
and phase transitions, including phase diagrams, orientation
distribution function profiles, bifurcation analysis, and the use of

imaging techniques, calorimetry characterization, and dynamic
simulations, accentuating the thermodynamic I-SmA phase
transition perspective (Palffy-Muhoray, 1999; Dogic and Fraden,
2001; Mukherjee et al., 2001; Larin, 2004; Urban et al., 2005; Biscari
et al., 2007; Das and Mukherjee, 2009; Chahine et al., 2010; Nandi
et al., 2012; Izzo and De Oliveira, 2019; Gudimalla et al., 2021; Khan
andMukherjee, 2021; Mukherjee, 2021). Given that the first four key
issues are essentially anchored in the spatial features of the energy
landscape, we develop, implement, and validate a novel geometric
methodology. The use of geometric methods to characterize
thermodynamics, phase transitions, and energy landscapes has
been widely recognized as a useful and complementary set of
tools (Miller, 1925; Hormann and Zimmer, 2007; Quevedo et al.,
2011; Wales, 2018; Wang et al., 2020; Demirci and Holland, 2022;
Liu et al., 2022; Quevedo et al., 2022). These approaches rely on
establishing a proper thermodynamic surface in terms of variables
such as pressure, temperature, and chemical potential. Here, we
extend and generalize these geometric-thermodynamic methods for
self-assembly in anisotropic soft matter in general and phase
ordering in the I-SmA transition. The methodology is
summarized in Figure 1. The triangle’s center is the key focus of
this paper, the direct isotropic-SmA transition, as characterized by
an energy landscape given by the Landau free energy F(ψ, SA) as a

FIGURE 1
Methodology of the geometric-thermodynamics formulated (Section 2) and implemented (Section 3) in this paper. The central energy landscape
corresponding to the direct I-SmA transition is characterized using three geometric methods (I) level sets/steepest descent/critical points, (II) geodesics
and curvature lines, and (III) shape and Casorati curvedness analysis; the bottom left shows changes in shape from cup (left), to rut, saddle, ridge, and cap
(right) and changes in the degree of curvedness for a rut patch (left) into a flat plane. The outer arrows show the connection and integration of the
three calculations.
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function of the positional (ψ) and orientational (SA) order
parameters for a given temperature T. Importantly, the surface
parametrization is explicit and known as Monge
parameterization, and it is the starting point for the geometric
methodology developed in this paper.

In (I), at the upper vertex from Figure 1, the critical points (dots) of
the surface (maxima,minima, and saddles) are determined as a function
of changes in temperature using level-set curves and curves of the
steepest descent. The closed loops in the former allow the detection of
minima/maxima and saddles, and the signs of the gradient curves
differentiate the stable from the unstable. In addition, saddles in the level
sets are unstable points. These calculations are guided and validated
using the powerful index theorem of polynomials, yielding a
conservation equation for the number of maxima Nmaxima, the
number of minima Nminima, and the number of saddles Nsaddles. At
a high temperature for a stable isotropic phase, the landscape is simple
and Nmaxima � Nsaddles � 0, but for low quenches with a stable SmA
phase, the landscape is complex, as we findNminima � Nsaddles � 4 and
Nmaxima � 1. In (II), at the lower right vertex, the geodesic lines of the
energy landscape are found using accurate ordinary differential
equation (ODE) solvers. Importantly, the lack of torsion in the
geodesic lines correlates with the energy heights of the maxima and
minima. In (II), we also compute the lines of curvature (LOC) that
define an orthogonal grid on the energy surface and indicate the
maximum or minimum directional curvature flow. In (III), the
shape coefficient, or shape index S, relates a given value with a
shape that comes from the spectrum S � ± 1 for up/down half-
spheres (cup and cap, respectively), S � ± 1/2 for up/down cylinders
(rut and ridge, respectively), and S � 0 for saddle-like shapes; the
positive scalar curvedness Casorati curvature C (surface deviation
from planarity) of the energy landscape and its critical points are
identified to determine aspects of the minima and maxima, such as
anisotropy, the presence or absence of umbilic S � ± 1 points, and the
degree of curvedness (magnitude of Casorati curvature), and detect
maxima/minima/saddles in a fast and efficient way.

Describing the shape using the dimensionless normalized shape
coefficient (S) avoids co-mingling properties associated with shape
with those associated with curvedness, such as when using the
classical differential geometry descriptions based on Gaussian
(K), mean (H), and deviatoric (D) curvatures. The shape
coefficient–Casorati curvedness (S, C) method has been
successfully applied to several soft-matter materials and
equilibrium and dissipative processes (Wang et al., 2020; Wang
et al., 2022b; Wang et al., 2022a; Wang et al., 2023b). For example,
for a saddle point, the classical approach yields K � −D2. On the
other hand, the (S, C) method detects a saddle simply when S � 0
and its curvedness is C � D � ���−K√

. Finally, the arrows on the
triangle side and toward the center denote the integration of the
methods to shed new light on the I-SmA transition.

This work builds on the fundamental studies on the self-
assembled smectic phase transition (Pleiner et al., 2000;
Mukherjee et al., 2001; Abukhdeir, 2009; Abukhdeir and Rey,
2009b; Mukherjee, 2021). The particular objectives of this paper
are the following:

• Characterize the energy landscape using a simple Monge
parametrization in terms of nematic and smectic order
parameters, including the number and type of critical

points and characteristic trajectories between stable,
metastable, and unstable isotropic, nematic, and smectic
states as a function of the changing degrees of quenching
from the isotropic state.

• Use classical curvatures (Gaussian and mean) and new soft
matter geometric methods (shape coefficient and Casorati
curvedness) to shed light on where saddles and cusps are
located and their curvedness, thus providing a broad picture of
the energy landscape.

• Integrate thermodynamic stability, polynomial-based charge
conservation methods, and geometric methods.

• Detect and characterize unstable nematic and metastable
plastic crystal states that emerge at medium and large
degrees of quenching.

The remainder of this paper is organized as follows: Section 2
presents the OPs, Landau free energy (Section 2.1), geometric
thermodynamics (Section 2.2), and computational methods
(Section 2.3). Section 3 presents the results and discussion.
Section 4 summarizes the key findings, their significance, and the
novelty of the geometric approach.

2 Methodology

2.1 Order parameters and Landau model

2.1.1 Nematic and smectic A phases: orientational
and positional order parameters

The SmA LC phase has partial 1D positional and orientational
order. Two order parameters, the orientational order parameter Q
and the positional order parameter Ψ, are used for this mesophase
characterization. These parameters capture the average molecular
order by the establishment of distinctive moduli at the transition,
with the moduli (SA, P) for the orientation and ψ for the position
(Oswald and Pieranski, 2005b; Rey, 2010; Mukherjee, 2014; Vitral
et al., 2020).

The theoretical characterization of the partial orientational
alignment in LCs is described by an orientation distribution
function, the tensor order parameter Q (De Gennes and Prost,
1993), which is as follows:

Q � SA nn − I
3

( ) + 1
3
P mm − ll( ), (2.1)

where n, m, and l are the molecular unit vectors and I is the unit
tensor. The Q tensor is expressed in terms of the orthonormal
director triad (n, m, and l), which are the eigenvectors of Q that
describe the molecular axes and the scalar moduli (SA, P) that
measure the magnitude of the average molecular orientation (De
Luca and Rey, 2006; Coles and Strazielle, 2011). The Q tensor is
symmetric and traceless, i.e., Q � QT and Q: I � 0, and it has five
independent components. It is comprised of uniaxial (SA andn) and
biaxial (P andm, l) contributions. The uniaxial contribution SA �
3
2 (nn: Q) corresponds to the major eigenvalue/eigenvector, and the
biaxial contribution P � 3

2 (mm − ll): Q corresponds to the minor
eigenvalues/eigenvectors. A free-energy expansion near the nematic
transition, as per the Landau formalism, was defined, yielding an
LdG free-energy expression for nematic orientational alignment FN
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(de Gennes and Prost, 1993), truncated up to the fourth-order term
with respect to SA as follows:

FN � F0 + 1
2
a Q: Q( ) − 1

3
b Q ·Q( ): Q + 1

4
c Q: Q( )2 + . . . , (2.2)

where F0 is the energy of the isotropic state, a � a0(T − T*
NI), T*

NI is
the critical nematic phase transition temperature, and a0, b, and c are
experimentally measured material parameters.

In addition to the orientational organization, due to its lamellar
configuration and the periodic structure of the uniaxial SmA phase,
a one-dimensional positional order parameter is required, and the
complex wave vector Ψ has been widely used for this purpose
(Mukherjee et al., 2001; Abukhdeir and Rey, 2009c; Vitral et al.,
2020). It is typified by the phase ϕ, and its modulus ψ characterizes a
one-dimensional density wave used to describe such a layered nature
as follows:

ψ � ψeiϕ. (2.3)

Then, a free-energy functional of the smectic positional order,
FS, is introduced, accounting for positional ordering, and the
material-dependent parameters are α � α0(T − T*

AI) and β

around the critical smectic transition temperature T*
AI.

FS � α ψ
∣∣∣∣ ∣∣∣∣2 + β ψ

∣∣∣∣ ∣∣∣∣4 +/. (2.4)

In the simplest case, the I-SmA transition is captured by
the free-energy contributions of the form F � FN + FS + FNS,
where FNS is the coupling free-energy term, which is given
as follows:

FNS � −δ ψ
∣∣∣∣ ∣∣∣∣ Q: Q( ) − 1

2
eQ: ∇ψ∇ψ( ) + 1

2
b1 ∇ψ
∣∣∣∣ ∣∣∣∣2 + 1

4
b2 ∇

2ψ
∣∣∣∣ ∣∣∣∣2.

(2.5)

2.1.2 Landau model for the isotropic–smectic A
transition

The well-established models have been formulated and used
to describe the I-SmA transition, including non-direct transitions
(Pleiner et al., 2000; Abukhdeir and Rey, 2009b; Nandi et al.,
2012; Pevnyi et al., 2014; Izzo and De Oliveira, 2019; Mukherjee,
2021; Paget et al., 2022). These models include the nematic and
smectic contributions (Eqs. 2.2, 2.4, and 2.5) and consolidate the
final total free-energy density using coupling terms (δ, e) that
favor one phase over the other and terms that account for the
energy cost from the coexistence of the positional
ordering (b1, b2):

Total Energy � ∫FdV

F � F0 + 1
2
a Q: Q( ) − 1

3
b Q ·Q( ): Q + 1

4
c Q: Q( )2 + α ψ

∣∣∣∣ ∣∣∣∣2 + β ψ
∣∣∣∣ ∣∣∣∣4

−δ ψ∣∣∣∣ ∣∣∣∣ Q: Q( ) − 1
2
eQ: ∇ψ∇ψ( ) + 1

2
b1 ∇ψ
∣∣∣∣ ∣∣∣∣2 + 1

4
b2 ∇

2ψ
∣∣∣∣ ∣∣∣∣2

.

(2.6)
Considering Equation 2.6, assuming a spatially homogenous

system, and performing reparameterization (see Supplementary
Appendix A1), we find the following governing free energy
density F(ψ, SA):

F ψ, SA( ) � 1
3
aS2A − 2

27
bS3A + 1

9
cS4A︸








︷︷








︸

FN

+ 1
2

α − b21
2b2

( )ψ2 + 1
4
βψ4

︸









︷︷









︸
FS

− e2 + 3δb2
9b2

( ) S2Aψ
2 − 3eb1

e2 + 3δb2( )( )SAψ2[ ]︸

















︷︷

















︸
FNS

,

(2.7)
where FN is the nematic contribution, FS is the smectic contribution,
and FNS is the crucial coupling contribution between the positional
and orientational OPs that are in their expanded form. In this paper,
we evaluate the OPs in their extended domain of dependence
F(ψ, SA): [−1, 1] × [−1/2, 1] → [−F0,∞) to fully capture the
important phenomena at the nematic axis (ψ � 0) and the
smectic axis (SA � 0); we note that negative nematic OP states
(molecular alignment normal to the director orientation) are usually
considered in nematostatics (Golmohammadi and Rey, 2010), but in
the particular equilibrium spatially homogeneous I-SmA transitions
considered in this study, these orientation states play no role.

The possible states are obtained by the minimization of the
homogeneous free energy in Equation 2.7 concerning the two non-
conserved OPs (ψ, SA). This yields a system of ODEs (see
Supplementary Appendix A1). Then, at a given temperature T,
different phases arise according to the ordering contributions. As
mentioned in the introduction, positional and orientational ordering
define an LC state, which varies in accordance with the combination
of these order parameters. In this paper, we consider the following:

Isotropic Iso( ): SA � ψ � 0.
Nematic N( ): SA > 0,ψ � 0.
Plastic crystal Pc( ): SA � 0,ψ > 0.
Smectic − A SmA( ): SA > 0,ψ > 0.

(2.8)

The isotropic-liquid state is characterized by the absence of
positional and orientational orders, the nematic LC possesses only
average molecular orientation, the plastic crystal phase
(characterized by the density wave) describes a material with
positional order and very small-to-none orientational order, and
the smectic A LC exhibits positional and orientational orders
(Oswald and Pieranski, 2005a; Oswald and Pieranski, 2005b; De
Gennes, 2007; Demus et al., 2008a; DiLisi, 2019; Mukherjee, 2021).
We note that the density wave behavior, designated as the plastic
crystal state in this study, has been reported even for some rod-like
systems (Kyrylyuk et al., 2011; Liu et al., 2014; Sato et al., 2023). In
this work, the metastable plastic crystal emerges at deep quenches
when the isotropic state becomes unstable, the nematic and coupling
energies vanish, and the stable phase is SmA. Similarly, since (e2 +
3δb2)/9b2 > 0 and [S2Aψ2 − (3eb1/(e2 + 3δb2))SAψ2]> 0 for the SmA
state in Equation 2.7, the important coupling term FNS promotes the
emergence of SmA with the positional and orientational order.

2.2 Geometric thermodynamics for phase
ordering in the isotropic–smectic A
transition

In this section, we investigate the surface geometry of the energy
landscape F(ψ, SA), with a particular emphasis on understanding
and characterizing the essential nature of all the critical points.
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These critical points, derived from Equation 2.7, include the local
maxima, local minima, and saddle points. As mentioned at the end
of the introduction, their significance extends across many research
fields in liquid crystals, such as self-assembly, kinematics, and
thermodynamics of these systems.

Next, we briefly mention the basic argument to keep all
critical points, forgoing complex mathematical details. For
instance, the time-dependent Ginzburg–Landau model (Popa-
Nita, 1999) provides a quantitative study of the spatiotemporal
evolution of thermodynamic behaviors on a non-conserved OPs
vector p.

∂p
∂t

∝
∂ f + fe( )

δp
� ∂ F + Fe( )

∂p
− ∇ · ∂ F + Fe( )

∂∇p
, p � ψ

SA
[ ], (2.9)

where Fe ∝∇p: ∇p is the elastic energy dependent on the
deformation; note that p is the OP vector for the smectic A
phase. A special solution of Equation 2.9 describes a front
propagation that could describe growing smectic droplets in an
isotropic matrix. For example, the wave-like property has been
intensively studied by De Luca and Rey (2004) for the case of
chiral nematic fronts propagating into an unstable isotropic phase.
In our present smectic model, the wave-like solution
p � p(x − vt) � p(~x); ~x � x − vt with constant velocity v
simplifies Eq. 2.9 to a more compact form, ∂F

∂p � (v · ~∇ + ~∇
2)p,

where all the coefficients are not included for clarity. At ∂F
∂p � 0,

the critical points lay inside the kernel of the linear map defined by
the velocity (v · ~∇ + ~∇

2). The polynomial decomposition of
F(ψ, SA) (see Eq. 2.7 for the quartic polynomial expression in
two variables (ψ, SA)) then gives the governing equation for
phase transformation, (v · ~∇ + ~∇

2)p � ∏
i

(p − p̂i), where p̂i are

the critical points at critical points (∂ψF � ∂SAF � 0) and

∏
i

(p − p̂i) is the product function that expresses the polynomial

F(ψ, SA). The phase transformation depends on the
polynomial decomposition of the free energy involving all the
critical points. Given the significance of all the critical points on
growth, kinematics, and interfaces, we explore their behavior in
this section.

2.2.1 Polynomial index theorem and critical points
of the F(ψ, SA)-energy landscape

Since the two-OP model considered in this study is of quartic
order in each of the parameters, a proliferation of critical points
and a complex energy landscape are expected. Hence, tools that
set upper limits on the number and type of critical points are
essential to achieving or enhancing tractability. In this section, we
formulate an approach tailored to the I-SmA transition, keeping
the complex mathematics to a minimum.

Let f(x, y) be a polynomial of degree d> 1. Then, f has a critical
point (x0, y0), if ∂kf(x0, y0) � 0, where the following notation (∂k)
is adopted for partial derivatives of a given function with respect to k.
The number of critical points Ncp is then defined by (d − 1)2. In
general, for a given polynomial h in two variables x, y of degree dx
and dy, respectively, we expect at most dxdy critical points (Durfee
et al., 1993). Thus, the computation of ψ and SA from the solution of
the ODEs (see Supplementary Appendix A2) that minimize the free
energy F will yield at most Ncp � 9 critical points and at least one
critical point Ncp � 1. These points include the degenerate and

nondegenerate points that follow the well-known nondegeneracy
criteria, which are as follows:

∂ψψ F ψ, SA( )( )> 0, ∂SS F ψ, SA( )( )> 0 , (2.10)

det
∂ψψ F ψ, SA( )( ) ∂ψS F ψ, SA( )( )
∂Sψ F ψ, SA( )( ) ∂SS F ψ, SA( )( )[ ] ≠ 0. (2.11)

The number of critical points Ncp is bound by the
Poincaré–Hopf index theorem (Knill, 2012). The index if of the
gradient vector ∇f is computed based on the nondegeneracy of all
critical points of f , which assigns a value of (+1) to a maximum or
minimum and a value of (−1) to a saddle (Durfee et al., 1993) in the
following definition:

if � Nmaxima × +1( ) +Nminima × +1( ) +Nsaddles × −1( )
� Nmaxima +Nminima −Nsaddles. (2.12)

Here, the index of the free-energy polynomial of Equation 2.7
was computed as iF � +1 in an area homeomorphic to a disk, which
importantly puts a cap on the number of saddlesNsaddles. Thus, from
the index theorem, we conclude that saddles play a crucial role in
this transformation across various temperature ranges.

2.2.2 Level-set and steepest descent
In addition to the index iF � +1, the gradient vector∇f stores the

information required to compute the directional derivative of
f(x, y) for any direction at any point (xi, yi), which provides the
rate of change in f as it approaches (xi, yi). This directional
derivative is just the inner product of the gradient and the
direction of a certain vector u:

Duf x, y( ) � ∇f x, y( ) · u i, j( ). (2.13)

The gradient then contains the direction of the greatest change
of f , known as the steepest descent, or ascent, as the opposite
direction that may be computed with −∇f . Contrary to this, a
vector orthogonal to ∇f will point toward a zero change in f .
These are vectors that lie on the tangent plane and are normal to
a surface that can be constructed by the level set of the scalar-valued
function f : Rn → R. These are cross-sections of the (x, y)-frame,
individually representing its different levels c and containing any
real solution of f(x, y).

x, y( ) ∈ R2 f| x, y( ) � c{ }. (2.14)

The energy landscape F(ψ, SA) is a surface whose main features
are characterized by the shape of the level-set curves, the direction of
the steepest descent curves, and the location and nature of the
critical points. For a given set of critical point locations, the level sets
and steepest descent indicate how and if local minima can be
reached. For example, local minima (maxima) on the energy
surface are characterized by ellipses, and the steepest descent
curves are converging (diverging) splay curves (see Figure 2).
This is similar to the minimum energy path (MEP) approach
(Massi and Straub, 2001; Liu et al., 2022), which seeks to locate
and characterize the conformation changes between chemical states
based on their relationship with their characteristic energy
hypersurface (Fischer and Karplus, 1992; Wang et al., 1996; Liu
et al., 2022) that describes the thermodynamic equilibrium and self-
assembly process.
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Figure 2 presents the connection between the polynomial index
and the level set and steepest descent curves. By assigning
topological charges to the critical points based on their
nondegeneracy, the polynomial index is constructed. Each
nondegenerate point is then linked to the expected local behavior
of the gradient vector.

2.2.3 Lines of curvature and geodesics
The lines of curvature are computed by solving a set of equations

defined by the coefficients of the first (g) and second (b) fundamental
forms, as shown in Supplementary Appendix A2 (Maekawa, 1996;
Farouki, 1998). The LOC have been used to describe the relationship
between entropy production in membranes and interfaces (Wang et al.,
2020) and the curvature of isotropic–smectic interfaces under self-
organization (equilibrium) and self-assembly (dynamic) states (Vitral
et al., 2019) using an orthonormal network. These LOC applied to the
free-energy landscape describe the change in the order parameters with
respect to the arc-length s, following the principal direction of the
tangent vectors (Eq. A.6) along γ: dγ/ds � rk/‖rk‖, where γ is a line of
curvature. Thus,

dψ
ds

� η M − κA( ) and
dSA
ds

� −η L − κE( ), (2.15)
or

dψ
ds

� μ N − κG( ) and
dSA
ds

� −μ M − κA( ), (2.16)

where κ represents the principal curvatures (κ1, κ2), (E, A, G), and
(L,M,N) are the coefficients of the first and second fundamental
forms (see Supplementary Appendix A2) and (η, μ) are non-zero
coefficients defined by

η � E M − κA( )2 − 2A M − κA( ) L − κE( ) + G L − κE( )2( )−1/2
μ � E N − κG( )2 − 2A M − κA( ) N − κG( ) + G M − κA( )2( )−1/2 ,

(2.17)

ds �
�������������������������
E dψ( )2 + 2AdψdSA + G dSA( )2

√
. (2.18)

Under our free-energy framework F(ψ, SA), the geodesic lines
indicate the shortest path between two points in the thermodynamic
equilibrium state (Do Carmo, 2016; Wang et al., 2020), which can
also show the self-assembly path connecting the phases expected in
the I-SmA energy landscape. This is similar to what is found in the
analysis of the geometry of thermodynamic stable states of ideal
gases (Quevedo et al., 2008). This is described by a curve with the
smallest arc length connecting two points on a given surface, and it is
given by the following equation (Do Carmo, 2016; Wang
et al., 2020):

d2yk

ds2
+ Γkij

dyi

ds

dyj

ds
� 0, (2.19)

where E, A, and G are the first fundamental form coefficients, Γkij are
the Christoffel symbols, and the geodesic curve is yi for the ith
component of the quantities that define the free-energy
parametrized surface (ψ, SA) (see Supplementary Appendix A3).

2.2.4 Casorati curvature and shape coefficient
In this section, we provide details of the Casorati curvature (C)

and shape coefficient (S) given in the introduction and Figure 1
(lower left vertex). A method presented by Wang et al. (2020)
redefines a thermodynamic hypersurface into a Monge shape-
curvedness surface patch for the characterization of entropy
production in LC membranes and interfaces. As mentioned
above, in this paper, we use this methodology to describe the
local geometry of the I-SmA phase transition energy landscape
using a normalized shape coefficient (S) that distinguishes
between three primary shapes: cup/cap (spherical), rut/ridge
(cylindrical), and saddle, and the Casorati curvature (C) for the
curvature magnitude measurement (Koenderink and van Doorn,
1992; Aguilar Gutierrez and Rey, 2018). This requires the
reparameterization of the energy landscape F(ψ, SA) into a

FIGURE 2
Schematic of the first family of the free-energy landscape F(ψ, SA): level-sets, steepest descent, and polynomial index (Sections 2.2.1–2) and their
relationship. The symbols on the top right are kept throughout the paper to designate the nondegenerate points: maximum, minimum, and saddle. The
polynomial index is then computed based on the topological charge assigned to these points. The representation of the local steepest gradient field is
included for each point. Here, χ denotes the Euler characteristic of the area enclosed by the level-set curve.
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Monge patch (Abbena et al., 2017) comprised of the shape
coefficient (S) and Casorati curvature (C).

Classical curvature concepts, in addition to the Casorati
curvature (C) and shape coefficient (S) (Wang et al., 2023a), are
used in the description of the curvedness and shape, such as the (i)
mean (H), (ii) deviatoric (D), and (iii) Gaussian (K) curvature (see
Supplementary Appendix A2), whose information is stored in the
surface gradient of the surface unit normal −∇sk, where ∇s �
(I − kk) · ∇ is the surface gradient and ∇ is the gradient operator.
From this, the symmetric curvature tensor is defined as
b � −∇sk � κ1e1e1 + κ2e2e2, where (κ1, κ2) are its eigenvalues (see
Figure 1II) characterizing the principal curvatures (Aguilar
Gutierrez and Rey, 2018). The Casorati curvature is defined by
C �

���������
(κ21 + κ22)/2

√
, the mean curvature by H � (κ1 + κ2)/2, the

deviatoric curvature by D � (κ1 − κ2)/2, and the Gaussian
curvature by K � κ1κ2, for which the principal curvatures are
assumed to follow κ1 ≥ κ2 (Wang et al., 2020).

The non-dimensionality of the shape coefficient condenses
information that allows it to classify the local shape into simple
geometries within the normalized range S ∈ [−1,+1]. The Casorati
curvature, however, quantifies how curved a surface is (Aguilar
Gutierrez and Rey, 2018; Wang et al., 2020) (see Supplementary
Appendix A2)

S � 2
π
arctan

H

D
( ) and C � �������

2H2 − K
√

. (2.20)

The primary fundamental shapes are then generalized with
S � 0,± 1/2,± 1{ }, assigning the values to a saddle (0), a rut
(−1/2), a ridge (+1/2), a cup (−1), and a cap (+1), where the ±
sign defines if it is a concave-up (negative) or concave-down
(positive) patch (see Figure 1.III). It is important to notice that
these are primary shapes and a continuous spectrum is contained
within the normalized parameter interval. The Casorati curvature
varies within C � [0,+∞), defining a flat surface with no curvature
(C � 0) and a curved surface (C> 0), respectively. Figure 1 (III)
shows a schematic representation of the Casorati curvature (upper
set) and the shape coefficient spectrum (lower set).

2.3 Computational methods

In this work, we sought detailed information of the phase
ordering as the quenching degree increases from the highest
possible temperature for the existence of the SmA phase. We
found that it is possible to classify the ordering and geometry by
defining three quenching regimes: shallow quench, middle quench,
and deep quench (with three temperatures corresponding to each of
them, as listed in Table 2). As the degree of quenching increased, the
isotropic phase lost stability, while the SmA gained stability, and a
number of saddle nodes and supercritical bifurcations emerged at
the boundaries of these quench regimes. Given the nonlinearities
andOP couplings in the energy density and the differential geometry
quantities, high-performance computational techniques were
developed, applied, and tested when exact data were available,
and high fidelity was demonstrated. Stability, accuracy, and
dispersion criteria were implemented according to the standard
numerical methods. The validation of our results was established
using previous studies (Urban et al., 2005; Abukhdeir and Rey, 2008;

Coles and Strazielle, 2011). Asmentioned in the introduction, a well-
characterized member of the n-cyanobiphenyl family (12CB) has
been chosen as the study case for its I-SmA transition behavior (see
Supplementary Appendix A4).

The calculation sequence was as follows: (1) level sets and
steepest descent curves were obtained with (i) the complete
solution of Equation 2.7 at different temperatures for the phases
in Equation 2.8 using the stability criteria in Section 2.2.1, which
categorizes the critical points that are bound by the numberNcp and
the I-SmA LdG free-energy index iF in Equation 2.12 and (ii) the
orthogonal pair of steepest descent and level-set curves from Section
2.2.2. (2) Geodesics/LOC calculations in Section 2.2.3 involved
coupled nonlinear second-order stiff ODEs, which are
numerically unstable depending on the step size taken, especially
the system of equations defined by the discretization of the geodesics
(Equation 2.19) (see Supplementary Appendix A2). Boundary
conditions must be provided to solve the geodesic. We used the
shooting method, which requires the definition of a starting point,
chosen in our case study to be the stable isotropic/smectic A phases.
In addition to equation stiffness, it is also worth noting that the
model is arc-length parametrized, meaning that the arc length was
computed for every step. In the LOC case, the sets of Equations
2.15–2.16 while seeming analogous, are in reality distinct instances
of the principal directions that depend on the arc length. The sign of
the proceeding direction at a given point (ψn, SA,n)must be adjusted
according to the local surface geometry, meaning that the system
solved was switched from one to another depending on the
maximum and minimum principal curvatures (κ1, κ2) (Farouki,
1998; Wang et al., 2020). For this, we followed a very robust
algorithm developed for computing LOC (Maekawa, 1996;
Farouki, 1998), which generates a pair of orthogonal curves at
(ψn, SA,n) following the criterion: Equation 2.15 is solved if
|L − κE|≥ |N − κG|, and Equation 2.16 is used otherwise. Then, a
curvature network was constructed with the orthogonal LOC by
solving the ODE system at a point (ψn, SA,n) along the length defined
by the energy landscape for a sufficiently small step-size that
balances out resolution, solution stability, and computational
time. (3) For obtaining the Casorati and shape coefficient in
Section 2.2.4, we computed the first fundamental forms and the
principal curvatures of the free-energy landscape (see
Supplementary Appendix A2).

3 Results and discussion

In this paper, we present a complete description and
characterization of the energy landscape of the isotropic–smectic
A transition using a two-non-conserved order parameter version of
the Landau–de Gennes model for the following reasons: (i) the
kinetics of phase transformations for non-conserved order
parameters is dependent on stable, metastable, and unstable
critical points of free energy (Tuckerman and Bechhoefer, 1992;
De Luca and Rey, 2003; De Luca and Rey, 2004); this point is briefly
elaborated at the beginning of Section 2.2; (ii) in the case of phase
transformation by propagating fronts, where a stable phase replaces
an unstable phase, non-monotonic ordering structures appear at the
interface due to the presence of various critical points (Tuckerman
and Bechhoefer, 1992); (iii) in the case of drop formation of a stable

Frontiers in Soft Matter frontiersin.org08

Zamora Cisneros et al. 10.3389/frsfm.2024.1359128

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1359128


phase in a metastable matrix, one can expect thin film-like layers
with intermediate degrees of order between the droplet phase and
matrix (Abukhdeir and Rey, 2009a); (iv) interfacial processes as in a
LC drop couple shape-bulk and surface structure-size due to
orientational order (Rey, 2000; Rey and Denn, 2002; Rey, 2004a;
Rey, 2004b; Rey, 2006). In view of these phenomena, we do not
neglect metastable and unstable ordering states, such as nematic or
plastic (density wave) phases, as previously suggested (Saunders
et al., 2007). How exactly they will manifest themselves under
nucleation and growth and spinodal transformation of the
isotropic phase into the SmA phase will be examined in future
work and is outside the scope of this paper.

3.1 Quench zones and critical points and
their stability

Figure 3 presents the orientational and positional order phase
diagram as a function of temperature T obtained by solving
Equation 2.7 with 12CB material parameters (Supplementary
Appendix A4). Subscripts on the OPs denote stable (s), unstable
(u), and metastable (m); superscripts denote larger (+) and smaller
(−) values. The line style (full, dashed, and doted) identifies the
phase (see Eq. 2.8). The figure frames the three quenches (see
Table 2) delimited by key temperatures: the deep quench for
T<TSD (light blue), the middle quench for TSD <T<TNG (light
purple), and the shallow quench for T<TIL (light red). Here, TSD is
the spinodal decomposition temperature, TNG is the nucleation
and growth temperature, and TIL is the maximum temperature for
the existence of any smectic order phase, as explained below. Using
quenching measures, we can characterize the critical point features
and determine whether they are stable, unstable, or metastable,
depending on the quench zone. To fully characterize the nature of
all the sources and sinks at the nematic axis (SA > 0,ψ � 0), we
include ψ < 0 solutions. These non-physical solutions
(SA > 0,ψ < 0) arise from the mirror symmetry of the free
energy F(SA,ψ) � F(SA,−ψ) but assist in characterizing
transitions and bifurcations that occur at the SA � 0 axis. In
describing and classifying results, we focus on the I-SmA
transition, and the quench depth refers to a temperature
decrease from the highest temperature (TIL) at which the
metastable SmA arises. Thus, reference to nucleation and
growth mode, NG, indicates the temperature interval in which
the isotropic (SmA) phase is metastable (stable), and when
referring to spinodal decomposition, SD, the isotropic (SmA)
phase is unstable (stable). The challenges regarding the location
of the critical points at a given quench, their stability, and the other
possible states when considering the entirety of the points, which
were introduced at the beginning of the paper, are
addressed below.

The phases in the deep quench (light blue region in Figure 2) to
the spinodal decomposition region are the following:

• S+A,s,ψ
+
s stable SmA black, continuous lines.

• Isou unstable isotropic, red-dotted line.
• S−A,u,ψ−

u unstable nematic/smectic, black, dashed lines.
• N+

u,N
−
u unstable nematic, blue, dashed lines.

• ψ+
u,ψ

−
u unstable smectic, gray, dash-dotted lines.

• P+
m, P

−
m metastable plastic crystal, purple, dash-dotted lines.

Here, the SD region exhibits an unstable isotropic state and a
stable SmA. In addition, we find a metastable plastic region. This
region exists for T<TSD � 330.6K. Thus, we expect that quenching
an isotopic phase into the spinodal region will transform the phase
into a stable SmA phase, but the presence of unstable smectic and
metastable plastic crystal states introduces complexities to the
energy landscape.

The phases in the middle quench (light purple region in
Figure 2) to the nucleation and growth region are the following:

• S+A,s,ψ
+
s stable SmA, black, continuous lines.

• Isom metastable isotropic, red-dotted line.
• S−A,u,ψ−

u unstable nematic/smectic, black, dashed lines.
• N+

u,N
−
u unstable nematic, blue, dashed line.

• ψ+
u,ψ

−
u unstable smectic, gray, dash-dotted line.

In the ND region, the isotropic state is metastable and SmA is
stable, as in the SD region, in addition to the unstable smectic and
nematic phases. However, the density wave is no longer present as it
vanishes at the temperature TSD, and the isotropic phase becomes
metastable. This region exists TSD � 330.6K<T<TNG � 331.3K.
Thus, we expect that quenching an isotropic phase into the NG
region will transform the phase into a stable SmA phase by
droplet growth.

The phases in the shallow quench (light red region in Figure 2)
are the following:

• S+A,m,ψ
+
m metastable SmA, black, continuous lines

• Isos stable isotropic, red-dotted line.
• S−A,u,ψ−

u unstable nematic, black, dashed line.
• ψ+

u,ψ
−
u unstable smectic, gray, dash-dotted line.

At shallow quenches, the isotropic phase is now stable, while SmA is
only metastable. In addition, the unstable smectic state remains, but the
nematic loop closes and vanishes at the temperature TNG. This region is
then defined byTNG � 331.3K<T<TIL � 331.85K. Quenching from
the NG triggers a phase transition at temperature Tt, as obtained with
the solution of Equation 2.7 for a temperature at which F � F0; thus, a
temperature higher than the isotropic limit TIL will lead to a
disordered state.

The deep quench is characterized by the strong stability and
presence of the expected smectic A phase and by a supercritical
bifurcation (Oswald and Pieranski, 2005a) or plastic loop since it
belongs to the metastable plastic crystal phase, where mirror
symmetry is broken at the temperature TSD. The nematic order
effect is seen in the orientational order parameter diagram, with
the presence of the nematic loop in the deep- and middle-quench
zones. This marks the entrance of the shallow quench and the
stability change of the SmA phase. A summary of these key
temperatures and regions is given in Table 1.

The computed energy landscape has a critical root population
that decreases exactly as predicted by the polynomial index theorem
(Eq. 2.12; Figure 2) as the temperature increases. This is summarized
in Table 2, where the number of nondegenerate points is included
along with their type and the index value for each quench zone
(see (2.12)).
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FIGURE 3
Positional ψn and orientational SA,n order parameters of the isotropic (Iso) to SmA phase transition for 12CB as a function of temperature with all the
critical points: sub-index n � (s,m,u) refers to stable, metastable, and unstable, respectively. The three different zones correspond to three different
quenches: (A) deep quench (DQ), (B)middle quench (MQ), and (C) shallow quench (SQ). Derived from the LdG model (Eq. 2.7). The material parameters
used (Urban et al., 2005; Abukhdeir and Rey, 2008; Coles and Strazielle, 2011) are as follows: a0 � 2 · 105J/(Km3), b � 2.823 · 107J/m3,
c � 1.972 · 107J/m3, α0 � 1.903 · 106J/(Km3), β � 3.956 · 108J/m3, δ � 9.792 · 106J/m3, e � 1.938 · 10−11J/m, b1 � 1 · 10−11J/m, b2 � 3.334 · 10−30J/m,
d0 � 2π/(3.9 · 109 m), TNI

* � 322.85K, and TAI
* � 330.5K. The results are fully consistent with Figure 4 of Abukhdeir and Rey (2008). Key temperatures: TSD,

TNG, and TIL are listed in Table 2.

TABLE 1 Summary of stable, unstable, and metastable states in each quench zone and their key temperatures as presented in Figure 2.

Deep Quench (DQ):
Spinodal Decomposition for the
Isotropic phase.

Middle Quench (MQ):
Nucleation and Growth for
the Isotropic phase.

Shallow Quench (SQ):
Limit for the Isotropic
phase.

Zero
quench

Primary roots Stable smectic A
Unstable isotropic

Stable smectic A
Metastable isotropic

Metastable smectic A
Stable isotropic

Stable
isotropic

Secondary roots Metastable plastic crystal
Unstable nematic
Unstable smectic A

Unstable nematic NA NA

Transition
temperature

TSD � 330.6K TNG � Tt � 331.3K TIL � 331.85K

TABLE 2 Number and types of critical points on the phase diagram for different temperatures and their indexes; the three cases presented in Figure 2
correspond to the three quench zones; and one for the complete isotropic phase transition. The symbol style used for each of them is kept constant
throughout the paper. Numerical results are in exact agreement with the polynomial index theorem (Eq. 2.12).

T [K] Maxima Minima Number of saddles Index iF Zone

A–330 1 4 4 1 Deep quench (spinodal decomposition, SD)

B–331 1 3 3 1 Middle quench (nucleation and growth, NG)

C–331.85 0 3 2 1 Shallow quench

T > TIL 0 1 0 1

Symbol in Figure 3 Δ ○ □
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The bounds in Equations 2.10–2.11 provide stability boundaries
that do not necessarily mean a phase transition line but present the
possible real physical phases that can be displayed within that range
given the first-order nature of this transition (Mukherjee et al.,
2001). Thus, the phase transition line was found by looking for a
metastability–stability exchange of the I-SmA phases using level sets
and computing the temperature at which both phases present the
same energy level. This temperature, Tt, happened to be around the
limit at which the nematic unstable loop vanished, going from deep
quench (DQ) to middle quench (MQ), as seen in Figure 2, agreeing
with the experimental transition temperature of 331.3 K (Coles and
Strazielle, 2011).

Figure 4 represents the F̂(ψ, SA) dimensionless free-energy
landscape 2D projection for the LdG model using the parameters
in Figure 2, with its corresponding 3D energy landscape at a given
temperature. We have expanded the x-axis to negative values to
emphasize the mirror symmetry along the positional order. The
level-set curves have been included with all the critical points at
three different temperatures in Table 2, which are representative
of each quench zone. As quench depth decreases (temperature
increases), the critical point population density decreases
(Ncp ↓), which corresponds to the merging and vanishing of
the nondegenerate points, as seen in Figure 2. Increasing T from
the spinodal region, the plastic loop eventually converges at a
supercritical bifurcation (Han and Rey, 1993; Rey, 1995) at TSD,
which is a process that replaces two minima (+2) and one saddle
(−1) with a single minimum (+1). Entering the NG quench
region with three saddles and four nodes (i.e., maximum or
minimum), a further increase in T eventually leads to saddle-
node bifurcation (Rey, 1995), with the elimination of a nematic

saddle and a node. The shallow quench now has three minima
and two saddles, which, after another saddle-node bifurcation of
smectic phases, eventually leads to a planar surface with no order.
It is noteworthy that the sequence of saddle number elimination
as T increases and order decreases is multi-stepwise:
4 → 3 → 2 → 0. Likewise, the sequence of local minima
elimination as T increases and order multi-stepwise decreases
is 4 → 3 → 3 → 1. On the other hand, the elimination of the
maxima follows a single step: 1 → 1 → 0 → 0. This shows that for
shallow quench, local maxima play no role, and for deep quench,
saddles and minima are equal in number.

3.2 Level-set curves and steepest
descent lines

Figure 5 presents the level-set curves and the steepest descent
lines (see Section 2.2.2), including the critical points projected on
the dimensionless energy surface F̂(ψ, SA) for the three quench
regimes listed in Table 1. The blue (red) region corresponds to
lower (higher) energy. It is seen that the steepest descent and
level-set curves are members of an orthogonal family, where the
level-set curves indicate a constant free-energy value and the
steepest descent presents a path leading to primary roots that
come from the minimization of the LdG model. The pair of roots
(isotropic and smectic A phases) are divided by a set of
maximums, minima, and saddles that discretely disappear as
the quench depth decreases. In the deep-quench region, (A) the
main feature is the family of elliptical rings around the stable
SmA state (black dot), whose largest axes are oriented toward the

FIGURE 4
Energy landscape constructed with the positional (ψ) and orientational (SA) order parameters of the I-SmA phase transition for 12CB (see Figure 3,
and Supplementary Appendix A4) and the dimensionless free energy (F̂) at the three temperatures (A–C) included in Table 2. The LDG model was
nondimensionalized for visualization purposes with the orientational temperature-dependent parameter a. The critical points are included for each
scenario. The temperatures, which belong to each quench zone, and themarkers are listed in Table 2, indicating the stability type assigned based on
the criteria given by Eqs 2.10–2.11. The black and red markers indicate the primary roots: SmA and isotropic state, respectively. F̂ ranges in the color bar
are kept the same throughout the paper. The 3D plots of the same energy landscapes are included right below each one for the same temperatures for a
more complete view.
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unstable phases. The level sets identify the nematic saddle and
nematic maximum as well as the metastable plastic root. The
principal steepest descent line connects the unstable smectic
(white square) with the stable isotropic state (black dot) and
defines a collecting manifold with nearly horizontal, constant SA
values. In the middle quench, nucleation, and growth, (B) the
region of elliptical trajectories surrounding the SmA phase moves
toward the isotropic state, causing the horizontal band of steepest
descent lines to narrow. Furthermore, the steepest descent
inverted L shows how energy states near the energetically high
region end at the isotropic state (red dot). In (C), the
metastability of SmA is shown by a lack of elliptical
trajectories and the stability of the isotropic state.

In partial summary, the level-sets/steepest descent lines show the
main features of the energy landscape; the number, location, and
type of critical points; and the basin of attraction of SmA under
spinodal and nucleation and growth conditions.

3.3 Lines of curvature and geodesics

Figure 6 shows the 2D projection and 3D plot of the LOC
network on the energy landscape F̂(ψ, SA) generated with the
algorithm described in Section 2. It consists of orthogonal curve
pairs that follow the minimum and maximum curvatures (cyan and
magenta, respectively) at a given point on the surface. It also includes
the primary roots shown in Table 1.

The maximum curvature (magenta) lines on the top left and
bottom right closely follow the energy contours, corresponding to
high SA–low ψ and vice versa, while along the downward diagonal,
they funnel out consistently in accordance with the energy
landscape. The minimum curvature (cyan) lines form a set of
nearly parallel L-lines, which are nearly vertical along the
nematic axis and nearly horizontal close to the smectic axis. This
is consistent with the fact that most critical points are around the
diagonal region, as shown in Figure 5. Furthermore, since the energy
surface envelope is roughly a concave-up expanding cylinder with
flat edges, it follows that we must find circular curvature lines (as in
the circular lines of a cylinder) and diverging straight lines (like in an
expanding cone).

Figure 7 shows the projected geodesic lines of the energy
landscape, computed by solving Equation 2.19 for the
temperatures belonging to the three quench zones listed in
Table 1 with the method provided in Supplementary Appendix
A2. The geodesic family origin is the isotropic state that changes
stability from unstable (A) to metastable (B) to stable (C), as seen in
Figure 4. The lines minimize the path length and are therefore
significant directions for phase changes. These lines show an
expanding funnel whose centerline (purple) connects the two
primary I-SmA phases. This line, which resembles the MEP
introduced in Section 2.2.2, follows the minimum-curvature
tendency designated in Figure 6 by the magenta lines. In
addition, this phase-connecting geodesic becomes straighter as
the depth quench is increased, achieving essentially a straight line

FIGURE 5
(ψ, SA)-energy landscapewith level-set, steepest descent curves, and critical points for 0≤ψ ≤0.3 and 0≤ SA ≤ 1, and the dimensionless free energy F̂
levels, at the same parameters from FIGURE 3. The three temperatures used (A–C) and the marker styles are listed in Table 2. The continuous black lines
go along the steepest descent and perpendicularly to the level-set curves that mark different free-energy levels. The black- and red-filled markers
correspond to the SmA and isotropic states, respectively. A zoomed-in plot around the SmA is included for (b).
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FIGURE 6
Lines of curvature projected on the (ψ, SA)-energy landscape at the same three temperatures (A–C) and with the marker styles listed in Table 2. The
parameters used are listed in Figure 3. The circular marker presents the SmA state at those temperatures. The cyan and magenta orthogonal network of
LOC corresponds to the minimum κ1 and maximum κ2 curvatures, respectively.

FIGURE 7
Geodesics superimposed on the (ψ, SA)-energy landscape at the same three temperatures (A–C) and with the marker styles listed in Table 2. The
parameters used are listed in Figure 3. The circular marker presents the SmA state at those temperatures. All lines, dashed and continuous, are geodesics;
however, the continuous line connects both the isotropic and SmA primary roots.
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in (A), and it starts to bend in the direction of a greater change in
energy as the shallow quench (C) is reached. Another important
observation is that the change in shape, direction, and bending are
reflected in the LOC as the quench regime changes, as opposed to
what the geodesics show in this figure.

3.4 Shape coefficient and Casorati curvature

Figure 8 shows the Casorati (C) curvature (top) and shape (S)
coefficient (bottom) heatmaps as a function of the OPs (ψ, SA)
coordinates. The Casorati curvature and shape coefficient were
computed using Equation 2.20 and the definitions in
Supplementary Appendix A2 at the temperatures listed in
Table 1 for the three representative quench zones. The primary
root that corresponds to the most stable phase at each temperature
was included in the bottom-right corner of each plot containing the
Casorati curvature and shape coefficient values at those coordinates.

The Casorati curvature presents major activity along the zone
where the critical points move as the temperature varies. It can be
noted that the Casorati curvature decreases as the quench depth
decreases, which follows a trend toward the isotropic transition,
where both order parameters are zero and the energy surface is
planar and, hence, C � 0. The crucial feature of the computed C �
C(ψ, SA) is the presence of a bent vertical tubular region of higher C
values in a matrix of low C. Within this high C tube, the curvedness
increases as we move toward and beyond the SmA phase in the SD

and NG zones. In the shallow quench, the increase is attenuated as
the energy surface evolves toward planarity. Interestingly, an
approximate scaling for the high C tube is a power law
SA ≈ (ψ − 0.1)n; n ≈ 0.01; more accurate fittings require
parameters, but the important point is that smectic ordering
produces a large increase in orientational ordering along the high
C tube. Furthermore, if we compare Figure 8A (top right) with the
energy landscape of Figure 5 (bottom left) in the spinodal mode, we
see that the axis of the high C tube follows the steepest descent line
that starts at the metastable plastic crystal and traverses the stable
SmA phase to end at the higher energy states (ψ ≈ 0.3, SA ≈ 1).
Hence, the C tube is another distinguishing feature of the
energy landscape.

We now search for the distinguished feature(s) of the shape S
coefficient. Figure 8 (bottom) shows that the shape coefficient
associated with the local minima at each temperature does not
reach S � −1 or a perfect ideal cup shape, as previously observed
from the findings ofWang et al. (2020). The reason behind this is the
energy surface anisotropy that originates from the LdG polynomial
structure (Eq. 2.7), as observed already in non-circular level-set
curves (see elliptical curves surrounding minima in Figure 4). In
addition, we noticed that for stability, the shape coefficient follows a
trend, assigning the local minima to a surface lying between a cup
(−1) and a rut (−0.5) shape; for completeness, we note that the
intermediate value (S � −0.75) is usually denoted as a trough. This
shape condition of local minima (−1< S< − 0.5) corresponds to a
shape with small and large principal curvatures. This behavior is also

FIGURE 8
Casorati curvature C (upper set) and shape S coefficient (lower set) heatmaps as a function of ψ and SA at the same three temperatures (A–C) and
with the marker styles listed in Table 2. The parameters used are listed in Figure 3. The coordinates on the bottom-right corner correspond to the SmA
phase (black dot) with their Casorati and shape coefficient values at each temperature.
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supported by the LOC network seen in Figure 6. In more
quantitative detail, Figure 8 shows that the correspondence
between the OPs of the local minimum and the energy surface
shape is as follows:

• Spinodal decomposition mode:
S(ψ � 0.2, SA � 0.74) � −0.55, and the shape is between a
rut and a trough.

• Nucleation and growthmode: S(ψ � 0.16, SA � 0.66) � −0.54,
and the shape is between a rut and a trough.

• Shallow quench mode: S(ψ � 0, SA � 0) � −0.84, and the
shape is between a trough and a cup.

Figure 8 (bottom) shows another distinguishing feature of the
shape index, with the blue concave-up (ridge) domain describing
a bent channel that narrows and widens as the order increases.
The outer red domains indicate unstable or concave-down (cap)
states, and the green boundaries are saddle-like shapes. Hence,
the shape landscape for smectic phases follows the previously
established rules (Wang et al., 2020) of shape coexistence, where
moving from left to right in each panel from Figure 8 (bottom),
we find the following:

S � 0.75→S � 0.5︸







︷︷







︸
concave down

→ S � 0︸

︷︷

︸
saddle

→

S � −0.5→S � −0.75→S − 0.5︸










︷︷










︸
concave−up

→ S � 0︸

︷︷

︸
saddle

→ S � 0.5→S � 0.75︸







︷︷







︸
concave down

,

where saddles are needed to separate minima frommaxima, which is
in agreement with the polynomial theorem for critical point index
iF � +1 given in Table 2 and Equation 2.12.

Figure 9 takes the geodesics presented in Figure 7 and projects
them on the Casorati and shape coefficient heatmaps from Figure 8
for each temperature according to the three quenching zones listed
in Table 1.

The main features gleaned from the Casorati-I-SmA geodesic
correlations from Figure 9 (top) are the following:

• The intersection of the geodesic with the high curvedness
Casorati tube occurs at high SA values but is eventually lost
because the slope of the geodesic increases with T, while the
Casorati tube bends to the right. For the intersection of the
geodesic and tube, we need a geodesic slope m given by the
following equation:

SA,C ≈ ψ − 0.1( )0.01;
SA,G ≈ m T( )ψ → SA,C � SA,G → ψ − 0.1( )0.01

� m T( )ψ → m T( ) � ψ − 0.1( )0.01
ψ

,

where the subscripts (C,G) denote the Casorati and geodesics. This
is only possible in the deep and intermediate quenches.

• The I-SmA geodesics for NG and SD modes largely avoid the
higher Casorati curvatures, indicating paths of lower
curvatures.

The main features gleaned from shape coefficient-I-SmA
geodesic correlations from Figure 9 (bottom) are as follows:

• The geodesic path remains well-contained in the shape index
channel comprehending ruts and trough concave-up shapes,
except at low OP and low-temperature values, where saddle-
like (green areas close to the origin) and concave-down (red
areas close to the origin) shapes arise.

• The development of SmA droplets that may form from an
intermediate quench into the NG mode starts with a S ≈ −
0.54 in the smectic phase and ends with S ≈ − 0.84 in the
isotropic state; therefore, the geodesic path to drop formation
involves relatively modest shape configurational changes.

Figure 10 integrates the curve families on the energy landscape
corresponding to the SD quench regime (T � 330K), the stable
SmA phase (black dot), and an unstable isotropic phase. It presents
the steepest descent lines, LOC, and geodesics on the (ψ, SA)-energy
landscape. The linear diagonal geodesic connecting the isotropic
(unstable)-to-smectic A (stable) phases partitions the rut and trough
region and serves as an attracting manifold for maximal LOC and
curves of the steepest descent; the congruence of these three lines
indicates why, at this temperature, SmA is the attractor. On the
bottom right high-energy area, the congruence is now between
minimal LOC, curves of steepest descent, and curved geodesics,
indicating a repelling landscape.

4 Conclusion

In this paper, we developed, implemented, and tested a novel
computational geometrical method that complements classical
liquid crystal phase transition modeling for the complex case of
two-order-parameter symmetry breaking. This approach uses
complementary geometric schemes to link the thermodynamic
energy landscape of the isotropic-to-smectic A liquid crystal
direct phase transition with novel soft-matter geometric metrics
such as the Casorati curvature and shape coefficient. We summarize
the results and their significance as follows:

1. A previously presented and comprehensive study of the
Landau–de Gennes free-energy model (De Gennes and Prost,
1993; Pleiner et al., 2000; Larin, 2004; Oswald and Pieranski,
2005b; Donald et al., 2006; Biscari et al., 2007; Abukhdeir and Rey,
2009b; Nandi et al., 2012; Izzo andDeOliveira, 2019) for the direct
isotropic-to-smectic A transition with well-known material
properties (Urban et al., 2005; Abukhdeir and Rey, 2008; Coles
and Strazielle, 2011) formed the basis of the theory and
computational modeling characterization of phase ordering
with two non-conserved order parameters.

2. The Landau free-energy landscape was obtained using explicit
Monge surface parametrization as a function of orientational
and positional orders, allowing the deployment of, in a simple
manner, differential geometry calculations (Eq. 2.7)

3. The index polynomial theorem (Eq. 2.12) for the number of
critical roots as a function of quench depth revealed the
importance of saddle roots in the spinodal and nucleation
and growth region; without the knowledge of parametric free-
energy coefficient data, the theorem shows that the maximum
number of critical roots is 3x3 since the free energy is a quartic
polynomial in the two order parameters.
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4. Using high-performance computing and high-fidelity
numerical methods for nonlinear algebraic and differential
equations, the following curve families were calculated
(Sections 3.2 and 3.3): level-set-steepest descent and
geodesic-principal curvatures. These special curves revealed
the location of critical points already predicted by the index
theorem, directions of small and large curvatures, and minimal
length connections between isotropic and smectic roots. In
particular, linear geodesics joining isotropic and smectic states
in nucleation and growth and spinodal quenches revealed
phase transformation paths. The level-set curves around
stable roots were elliptical, indicating anisotropy originating
from the Landau free-energy polynomial.

5. The emergence of metastable plastic crystals at deep quenches
and unstable nematic states at deep and intermediate quenches
was characterized, and their annihilation through supercritical
and saddle-node bifurcation was captured, re-emphasizing
results from the index polynomial theorem. The relevance
of the nematic or plastic order at the interfaces of smectic A
drops in an isotropic matrix was pointed out.

6. Previously presentedmeasures of shape and curvedness (Casorati)
in soft-matter materials were used (Section 3.4) to characterize the
energy landscape with purely geometric measures instead of order
parameter coordinates. The calculations were integrated with the
curve families, showing consistency and revealing that the
Casorati landscape is a bent, higher-curved tube embedded in

a low-curvedness matrix; the tube is well-fitted with a power law
function. The smectic A root resides inside this tube and moves
downward as the temperature increases. The shape coefficient
landscape is characterized by a wide channel of concave-up shapes
separated from an area of concave-down shapes by saddle-like
interfaces, which is in agreement with shape
coexistence phenomena.

7. Plotting all the curve families (point 4 above) in the energy
landscape, we find that at large quench, the isotropic-to-
smectic A geodesic is an attractor for maximal lines of
curvature and curves of the steepest descent, explaining the
stability of the smectic A state.

The combination of parameter-free predictions from polynomial
theorems with the computational geometry of the free-energy
landscape contributes to the evolving understanding and
characterization of the isotropic-to-smectic A transition, which is
of high interest to biological colloidal liquid crystals, such as in the
precursors to the mussel byssus (Renner-Rao et al., 2019; Harrington
and Fratzl, 2021; Jehle et al., 2021) through droplet nucleation/growth
and colloidal impingement. We demonstrated that the presence of
two non-conserved order parameters creates challenges in
equilibrium spatially homogeneous simulations, but how time-
dependent processes such as droplet growth resolve the couplings
of shape–size–structure–interface remains to be elucidated in future
work by building on the present results and methods.

FIGURE 9
Geodesics projected on the Casorati curvature C (upper set) and shape S coefficient (lower set) heatmaps from Figure 8 as a function of ψ and SA at
the same three temperatures (A-C) andwith themarker styles listed in Table 2. The parameters used are listed in Figure 3. The circularmarker presents the
SmA phase at those temperatures. The geodesics are the same from Figure 7, with different color scheme for visualization purposes. The continuous
purple lines are geodesics that connect both the isotropic and SmA phases.
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FIGURE 10
(ψ, SA)-energy landscape for temperature (A) as listed in Table 2, integrating the steepest descent lines (green), LOC (cyan-min and magenta-max),
and geodesics (orange) curves. The black dot represents the stable primary root, SmA phase.

Frontiers in Soft Matter frontiersin.org17

Zamora Cisneros et al. 10.3389/frsfm.2024.1359128

mailto:alejandro.rey@mcgill.ca
https://www.frontiersin.org/articles/10.3389/frsfm.2024.1359128/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsfm.2024.1359128/full#supplementary-material
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1359128


References

Abbena, E., Salamon, S., and Gray, A. (2017). Modern differential geometry of curves
and surfaces with Mathematica. China: CRC Press.

Abukhdeir, N. M. (2009). Growth, dynamics, and texture modeling of the lamellar
smectic-A liquid crystalline transition.Doctor of Philosophy. Canada: McGill University.

Abukhdeir, N. M., and Rey, A. D. (2008). Simulation of spherulite growth using a
comprehensive approach to modeling the first-order isotropic/smectic-A mesophase
transition. arXiv Prepr. arXiv:0807.4525. doi:10.48550/arXiv.0807.4525

Abukhdeir, N. M., and Rey, A. D. (2009a). Metastable nematic preordering in smectic
liquid crystalline phase transitions. Macromolecules 42, 3841–3844. doi:10.1021/
ma900796b

Abukhdeir, N. M., and Rey, A. D. (2009b). Nonisothermal model for the direct
isotropic/smectic-A liquid-crystalline transition. Langmuir 25, 11923–11929. doi:10.
1021/la9015965

Abukhdeir, N. M., and Rey, A. D. (2009c). Shape-dynamic growth, structure, and
elasticity of homogeneously oriented spherulites in an isotropic/smectic-A mesophase
transition. Liq. Cryst. 36, 1125–1137. doi:10.1080/02678290902878754

Aguilar Gutierrez, O. F., and Rey, A. D. (2018). Extracting shape from
curvature evolution in moving surfaces. Soft Matter 14, 1465–1473. doi:10.
1039/c7sm02409f

Bellini, T., Clark, N. A., and Link, D. R. (2002). Isotropic to smectic a phase transitions
in a porous matrix: a case of multiporous phase coexistence. J. Phys. Condens. Matter 15,
S175–S182. doi:10.1088/0953-8984/15/1/322

Berent, K., Cartwright, J. H. E., Checa, A. G., Pimentel, C., Ramos-Silva, P., and Sainz-
Díaz, C. I. (2022). Helical microstructures in molluscan biomineralization are a
biological example of close packed helices that may form from a colloidal liquid
crystal precursor in a twist--bend nematic phase. Phys. Rev. Mater. 6, 105601. doi:10.
1103/physrevmaterials.6.105601

Biscari, P., Calderer, M. C., and Terentjev, E. M. (2007). Landau-de Gennes theory of
isotropic-nematic-smectic liquid crystal transitions. Phys. Rev. E Stat. Nonlin Soft
Matter Phys. 75, 051707. doi:10.1103/physreve.75.051707

Blinov, L. M. (2011). Structure and properties of liquid crystals. Dordrecht: Springer.

Bowick, M. J., Kinderlehrer, D., Menon, G., and Radin, C. (2017). Mathematics and
materials, American mathematical soc.

Bradley, P. A. (2019). On the physicochemical control of collagen fibrilligenesis and
biomineralization. Doctor of Philosophy. USA: Northeastern University.

Bukharina, D., Kim,M., Han, M. J., and Tsukruk, V. V. (2022). Cellulose nanocrystals’
assembly under ionic strength variation: from high orientation ordering to a random
orientation. Langmuir 38, 6363–6375. doi:10.1021/acs.langmuir.2c00293

Bunsell, A. R., Joannès, S., and Thionnet, A. (2021). Fundamentals of fibre reinforced
composite materials. Germany: CRC Press.

Cai, A., Abdali, Z., Saldanha, D. J., Aminzare, M., and Dorval Courchesne, N.-M.
(2023). Endowing textiles with self-repairing ability through the fabrication of
composites with a bacterial biofilm. Sci. Rep. 13, 11389. doi:10.1038/s41598-023-
38501-2

Chahine, G., Kityk, A. V., Démarest, N., Jean, F., Knorr, K., Huber, P., et al. (2010).
Collective molecular reorientation of a calamitic liquid crystal (12CB) confined in
alumina nanochannels. Phys. Rev. E 82, 011706. doi:10.1103/physreve.82.011706

Coles, H. J., and Strazielle, C. (2011). The order-disorder phase transition in liquid
crystals as a function of molecular structure. I. The alkyl cyanobiphenyls. Mol. Cryst.
Liq. Cryst. 55, 237–250. doi:10.1080/00268947908069805

Collings, P. J. (1997). Phase structures and transitions in thermotropic liquid crystals
handbook of liquid crystal research.

Collings, P. J., and Goodby, J. W. (2019). Introduction to liquid crystals: chemistry and
physics. Germany: Crc Press.

Collings, P. J., and Hird, M. (2017). Introduction to liquid crystals chemistry and
physics. Germany: CRC Press.

Copic, M., and Mertelj, A. (2020). Q-tensor model of twist-bend and splay nematic
phases. Phys. Rev. E 101, 022704. doi:10.1103/physreve.101.022704

Das, A. K., and Mukherjee, P. K. (2009). Phenomenological theory of the direct
isotropic to hexatic-B phase transition. J. Chem. Phys. 130, 054901. doi:10.1063/1.
3067425

de Gennes, P. G. (2007). Some remarks on the polymorphism of smectics.Mol. Cryst.
Liq. Cryst. 21, 49–76. doi:10.1080/15421407308083313

de Gennes, P.-G., and Prost, J. (1993). The physics of liquid crystals. Oxford: Oxford
University Press.

de Luca, G., and Rey, A. D. (2004). Chiral front propagation in liquid-crystalline
materials: formation of the planar monodomain twisted plywood architecture of
biological fibrous composites. Phys. Rev. E 69, 011706. doi:10.1103/physreve.69.011706

de Luca, G., and Rey, A. D. (2006). Dynamic interactions between nematic point
defects in the spinning extrusion duct of spiders. J. Chem. Phys. 124, 144904. doi:10.
1063/1.2186640

de Luca, G., and Rey, A. (2003). Monodomain and polydomain helicoids in chiral
liquid-crystalline phases and their biological analogues. Eur. Phys. J. E 12, 291–302.
doi:10.1140/epje/i2002-10164-3

Demirci, N., and Holland, M. A. (2022). Cortical thickness systematically varies with
curvature and depth in healthy human brains. Hum. Brain Mapp. 43, 2064–2084.
doi:10.1002/hbm.25776

Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.W., and Vill, V. (2008a).Handbook
of liquid crystals.

Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.W., and Vill, V. (2008b).Handbook
of liquid crystals, volume 3: high molecular weight liquid crystals. USA: John Wiley and
Sons.

Demus, D., Goodby, J. W., Gray, G. W., Spiess, H. W., and Vill, V. (2011). Handbook
of liquid crystals, volume 2A: low molecular weight liquid crystals I: calamitic liquid
crystals. USA: John Wiley and Sons.

Deng, F., Dang, Y., Tang, L., Hu, T., Ding, C., Hu, X., et al. (2021). Tendon-inspired
fibers from liquid crystalline collagen as the pre-oriented bioink. Int. J. Biol. Macromol.
185, 739–749. doi:10.1016/j.ijbiomac.2021.06.173

Dierking, I., and al-Zangana, S. (2017). Lyotropic liquid crystal phases from
anisotropic nanomaterials. Nanomater. (Basel) 7, 305. doi:10.3390/nano7100305

Dilisi, G. A. (2019). in An introduction to liquid crystals. Editor J. J. DELUCA (New
York: Morgan and Claypool Publishers).

Do Carmo, M. P. (2016). Differential geometry of curves and surfaces: revised and
updated. second edition. New York: Courier Dover Publications.

Dogic, Z., and Fraden, S. (2001). Development of model colloidal liquid crystals and
the kinetics of the isotropic-smectic transition. Philosophical Trans. R. Soc.
a-Mathematical Phys. Eng. Sci. 359, 997–1015. DOI, M. 1981. doi:10.1098/rsta.2000.
0814

Doi, M. 2022 Molecular dynamics and rheological properties of concentrated
solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci.
Polym. Phys. Ed. 19, 229–243. doi:10.1002/pol.1981.180190205

Donald, A. M., Windle, A. H., and Hanna, S. (2006). Liquid crystalline polymers.
Cambridge: Cambridge University Press.

Durfee, A., Kronenfeld, N., Munson, H., Roy, J., and Westby, I. (1993). Counting
critical points of real polynomials in two variables. Am. Math. Mon. 100, 255–271.
doi:10.2307/2324459

Farouki, R. T. (1998). On integrating lines of curvature. Comput. Aided Geom. Des. 15,
187–192. doi:10.1016/s0167-8396(97)00022-8

Fischer, S., and Karplus, M. (1992). Conjugate peak refinement: an algorithm for
finding reaction paths and accurate transition states in systems with many degrees of
freedom. Chem. Phys. Lett. 194, 252–261. doi:10.1016/0009-2614(92)85543-j

Garti, N., Somasundaran, P., and Mezzenga, R. (2012). Self-assembled supramolecular
architectures: lyotropic liquid crystals. USA: John Wiley and Sons.

Golmohammadi, M., and Rey, A. D. (2009). Thermodynamic modelling of
carbonaceous mesophase mixtures. Liq. Cryst. 36, 75–92. doi:10.1080/
02678290802666218

Golmohammadi, M., and Rey, A. D. (2010). Structural modeling of carbonaceous
mesophase amphotropic mixtures under uniaxial extensional flow. J. Chem. Phys. 133,
034903. doi:10.1063/1.3455505

Gorkunov, M., Osipov, M., Lagerwall, J., and Giesselmann, F. (2007). Order-disorder
molecular model of the smectic-A–smectic-C phase transition in materials with
conventional and anomalously weak layer contraction. Phys. Rev. E 76, 051706.
doi:10.1103/physreve.76.051706

Gudimalla, A., Thomas, S., and Zidanšek, A. (2021). Phase behaviour of n-CB liquid
crystals confined to controlled pore glasses. J. Mol. Struct. 1235, 130217. doi:10.1016/j.
molstruc.2021.130217

Gurevich, S., Soule, E., Rey, A., Reven, L., and Provatas, N. (2014). Self-assembly via
branching morphologies in nematic liquid-crystal nanocomposites. Phys. Rev. E 90,
020501. doi:10.1103/physreve.90.020501

Gurin, P., Odriozola, G., and Varga, S. (2021). Enhanced two-dimensional nematic
order in slit-like pores. New J. Phys. 23, 063053. doi:10.1088/1367-2630/ac05e1

Han, J. Q., Luo, Y., Wang, W., Zhang, P. W., and Zhang, Z. F. (2015). From
microscopic theory to macroscopic theory: a systematic study on modeling for
liquid crystals. Archive Ration. Mech. Analysis 215, 741–809. doi:10.1007/s00205-
014-0792-3

Han, W., and Rey, A. (1993). Supercritical bifurcations in simple shear flow of a non-
aligning nematic: reactive parameter and director anchoring effects. J. Newt. fluid Mech.
48, 181–210. doi:10.1016/0377-0257(93)80070-r

Harrington, M. J., and Fratzl, P. (2021). Natural load-bearing protein materials. Prog.
Mater. Sci. 120, 100767. doi:10.1016/j.pmatsci.2020.100767

Hawkins, R. J., and April, E. W. (1983). “Liquid crystals in living tissues,” in Advances
in liquid crystals. Editor G. H. BROWN (Germany: Elsevier).

Frontiers in Soft Matter frontiersin.org18

Zamora Cisneros et al. 10.3389/frsfm.2024.1359128

https://doi.org/10.48550/arXiv.0807.4525
https://doi.org/10.1021/ma900796b
https://doi.org/10.1021/ma900796b
https://doi.org/10.1021/la9015965
https://doi.org/10.1021/la9015965
https://doi.org/10.1080/02678290902878754
https://doi.org/10.1039/c7sm02409f
https://doi.org/10.1039/c7sm02409f
https://doi.org/10.1088/0953-8984/15/1/322
https://doi.org/10.1103/physrevmaterials.6.105601
https://doi.org/10.1103/physrevmaterials.6.105601
https://doi.org/10.1103/physreve.75.051707
https://doi.org/10.1021/acs.langmuir.2c00293
https://doi.org/10.1038/s41598-023-38501-2
https://doi.org/10.1038/s41598-023-38501-2
https://doi.org/10.1103/physreve.82.011706
https://doi.org/10.1080/00268947908069805
https://doi.org/10.1103/physreve.101.022704
https://doi.org/10.1063/1.3067425
https://doi.org/10.1063/1.3067425
https://doi.org/10.1080/15421407308083313
https://doi.org/10.1103/physreve.69.011706
https://doi.org/10.1063/1.2186640
https://doi.org/10.1063/1.2186640
https://doi.org/10.1140/epje/i2002-10164-3
https://doi.org/10.1002/hbm.25776
https://doi.org/10.1016/j.ijbiomac.2021.06.173
https://doi.org/10.3390/nano7100305
https://doi.org/10.1098/rsta.2000.0814
https://doi.org/10.1098/rsta.2000.0814
https://doi.org/10.1002/pol.1981.180190205
https://doi.org/10.2307/2324459
https://doi.org/10.1016/s0167-8396(97)00022-8
https://doi.org/10.1016/0009-2614(92)85543-j
https://doi.org/10.1080/02678290802666218
https://doi.org/10.1080/02678290802666218
https://doi.org/10.1063/1.3455505
https://doi.org/10.1103/physreve.76.051706
https://doi.org/10.1016/j.molstruc.2021.130217
https://doi.org/10.1016/j.molstruc.2021.130217
https://doi.org/10.1103/physreve.90.020501
https://doi.org/10.1088/1367-2630/ac05e1
https://doi.org/10.1007/s00205-014-0792-3
https://doi.org/10.1007/s00205-014-0792-3
https://doi.org/10.1016/0377-0257(93)80070-r
https://doi.org/10.1016/j.pmatsci.2020.100767
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1359128


Hormann, K., and Zimmer, J. (2007). On Landau theory and symmetric energy
landscapes for phase transitions. J. Mech. Phys. Solids 55, 1385–1409. doi:10.1016/j.
jmps.2007.01.004

Idziak, S. H. J., Koltover, I., Davidson, P., Ruths, M., Li, Y., Israelachvili, J. N.,
et al. (1996). Structure under confinement in a smectic-A and lyotropic surfactant
hexagonal phase. Phys. B Condens. Matter 221, 289–295. doi:10.1016/0921-
4526(95)00939-6

Izzo, D., and de Oliveira, M. J. (2019). Landau theory for isotropic, nematic, smectic-
A, and smectic-C phases. Liq. Cryst. 47, 99–105. doi:10.1080/02678292.2019.1631968

Jackson, K., Peivandi, A., Fogal, M., Tian, L., and Hosseinidoust, Z. (2021).
Filamentous phages as building blocks for bioactive hydrogels. ACS Appl. Bio
Mater. 4, 2262–2273. doi:10.1021/acsabm.0c01557

Jákli, A., and Saupe, A. (2006). One-and two-dimensional fluids: properties of smectic,
lamellar and columnar liquid crystals. New York: CRC Press.

Jehle, F., Priemel, T., Strauss, M., Fratzl, P., Bertinetti, L., and Harrington, M. J.
(2021). Collagen pentablock copolymers form smectic liquid crystals as precursors
for mussel byssus fabrication. ACS Nano 15, 6829–6838. doi:10.1021/acsnano.
0c10457

Khadem, S. A., and Rey, A. D. (2021). Nucleation and growth of cholesteric collagen
tactoids: a time-series statistical analysis based on integration of direct numerical
simulation (DNS) and long short-term memory recurrent neural network (LSTM-
RNN). J. Colloid Interface Sci. 582, 859–873. doi:10.1016/j.jcis.2020.08.052

Khan, B. C., and Mukherjee, P. K. (2021). Isotropic to smectic-A phase transition in
taper-shaped liquid crystal. J. Mol. Liq. 329, 115539. doi:10.1016/j.molliq.2021.115539

Knight, D., and Vollrath, F. (1999). Hexagonal columnar liquid crystal in the cells
secreting spider silk. Tissue Cell. 31, 617–620. doi:10.1054/tice.1999.0076

Knill, O. (2012). A graph theoretical Poincaré-Hopf theorem. arXiv Prepr. arXiv:
1201.1162. doi:10.48550/arXiv.1201.1162

Koenderink, J. J., and van Doorn, A. J. (1992). Surface shape and curvature scales.
Image Vis. Comput. 10, 557–564. doi:10.1016/0262-8856(92)90076-f

Kyrylyuk, A. V., Anne van de Haar, M., Rossi, L., Wouterse, A., and Philipse, A. P.
(2011). Isochoric ideality in jammed random packings of non-spherical granular matter.
Soft Matter 7, 1671–1674. doi:10.1039/c0sm00754d

Lagerwall, J. P. (2016). An introduction to the physics of liquid crystals. Fluids,
Colloids Soft Mater. Introd. Soft Matter Phys., 307–340. doi:10.1002/9781119220510.
ch16

Larin, E. S. (2004). Phase diagram of transitions from an isotropic phase to nematic
and smectic (uniaxial, biaxial) phases in liquid crystals with achiral molecules. Phys.
Solid State 46, 1560–1568. doi:10.1134/1.1788795

Lenoble, J., Campidelli, S., Maringa, N., Donnio, B., Guillon, D., Yevlampieva, N.,
et al. (2007). Liquid− crystalline Janus-type fullerodendrimers displaying tunable
smectic− columnar mesomorphism. J. Am. Chem. Soc. 129, 9941–9952. doi:10.1021/
ja071012o

Li, C.-Z., Matsuo, Y., and Nakamura, E. (2009). Luminescent bow-tie-shaped
decaaryl[60]fullerene mesogens. J. Am. Chem. Soc. 131, 17058–17059. doi:10.1021/
ja907908m

Liu, B., Besseling, T. H., Hermes, M., Demirörs, A. F., Imhof, A., and van Blaaderen, A.
(2014). Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5,
3092. doi:10.1038/ncomms4092

Liu, X., Chen, H., and Ortner, C. (2022). Stability of the minimum energy path. arXiv
Prepr. arXiv:2204.00984. doi:10.1007/s00211-023-01391-7

Maekawa, T. (1996). Computation of shortest paths on free-form parametric surfaces.

Manolakis, I., and Azhar, U. (2020). Recent advances in mussel-inspired synthetic
polymers as marine antifouling coatings. Coatings 10, 653. doi:10.3390/
coatings10070653

Massi, F., and Straub, J. E. (2001). Energy landscape theory for Alzheimer’s amyloid β-
peptide fibril elongation. Proteins Struct. Funct. Bioinforma. 42, 217–229. doi:10.1002/
1097-0134(20010201)42:2<217::aid-prot90>3.0.co;2-n
Matthews, J. A., Wnek, G. E., Simpson, D. G., and Bowlin, G. L. (2002).

Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238. doi:10.1021/
bm015533u

Milette, J., Toader, V., Soulé, E. R., Lennox, R. B., Rey, A. D., and Reven, L. (2013). A
molecular and thermodynamic view of the assembly of gold nanoparticles in nematic
liquid crystal. Langmuir 29, 1258–1263. doi:10.1021/la304189n

Miller, W. L. (1925). The method of willard gibbs in chemical thermodynamics.
Chem. Rev. 1, 293–344. doi:10.1021/cr60004a001

Mohieddin Abukhdeir, N., and Rey, A. D. (2008a). Defect kinetics and dynamics of
pattern coarsening in a two-dimensional smectic-A system. New J. Phys. 10, 063025.
doi:10.1088/1367-2630/10/6/063025

Mohieddin Abukhdeir, N., and Rey, A. D. 2008b. Modeling the isotropic/smectic-C
tilted lamellar liquid crystalline transition.

Mukherjee, P. K. (2014). Isotropic to smectic-A phase transition: a review. J. Mol. Liq.
190, 99–111. doi:10.1016/j.molliq.2013.11.001

Mukherjee, P. K. (2021). Advances of isotropic to smectic phase transitions. J. Mol.
Liq. 340, 117227. doi:10.1016/j.molliq.2021.117227

Mukherjee, P. K., Pleiner, H., and Brand, H. R. (2001). Simple Landau model of the
smectic-A-isotropic phase transition. Eur. Phys. J. E 4, 293–297. doi:10.1007/
s101890170111

Nandi, B., Saha, M., andMukherjee, P. K. (2012). Landau theory of the direct smectic-
A to isotropic phase transition. Int. J. Mod. Phys. B 11, 2425–2432. doi:10.1142/
s0217979297001234

Nesrullajev, A. (2022). Optical refracting properties, birefringence and order
parameter in mixtures of liquid crystals: direct smectic A – Isotropic and reverse
isotropic – smectic A phase transitions. J. Mol. Liq. 345, 117716. doi:10.1016/j.molliq.
2021.117716

Oh, C. S. (1977). Induced smectic mesomorphism by incompatible nematogens.Mol.
Cryst. Liq. Cryst. 42, 1–14. doi:10.1080/15421407708084491

Oswald, P., and Pieranski, P. (2005a). Nematic and cholesteric liquid crystals: concepts
and physical properties illustrated by experiments. China: CRC Press.

Oswald, P., and Pieranski, P. (2005b). Smectic and columnar liquid crystals.

Paget, J., Alberti, U., Mazza, M. G., Archer, A. J., and Shendruk, T. N. (2022). Smectic
layering: Landau theory for a complex-tensor order parameter. J. Phys. A Math. Theor.
55, 354001. doi:10.1088/1751-8121/ac80df

Palffy-Muhoray, P. (1999). Dynamics of filaments during the isotropic-smectic A
phase transition. J. Nonlinear Sci. 9, 417–437. doi:10.1007/s003329900075

Petrov, A. G. (2013). Flexoelectricity in lyotropics and in living liquid crystals.
Flexoelectricity Liq. Cryst. theory, Exp. Appl. World Sci. doi:10.1142/9781848168008_0007

Pevnyi, M. Y., Selinger, J. V., and Sluckin, T. J. (2014). Modeling smectic layers in
confined geometries: order parameter and defects. Phys. Rev. E Stat. Nonlin Soft Matter
Phys. 90, 032507. doi:10.1103/physreve.90.032507

Picken, S. J. (1990). Orientational order in aramid solutions determined by
diamagnetic susceptibility and birefringence measurements. Macromolecules 23,
464–470. doi:10.1021/ma00204a019

Pikin, S. A. (1991). Structural transformations in liquid crystals.

Pleiner, H., Mukherjee, P. K., and Brand, H. R. (2000). Direct transitions from
isotropic to smectic phases. Proc. Freiburger Arbeitstagung Flussigkristalle, P59.

Popa-Nita, V. (1999). Statics and kinetics at the nematic-isotropic interface in porous
media. Eur. Phys. J. B-Condensed Matter Complex Syst. 12, 83–90. doi:10.1007/
s100510050981

Popa-Nita, V., and Sluckin, T. J. (2007).Waves at the nematic-isotropic interface:
nematic-non-nematic and polymer-nematic mixtures. Netherlands: Springer,
253–267.

Pouget, E., Grelet, E., and Lettinga, M. P. (2011). Dynamics in the smectic phase of
stiff viral rods. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 84, 041704. doi:10.1103/
physreve.84.041704

Quevedo, H., Quevedo, M. N., and Sánchez, A. (2022). Geometrothermodynamics of
van der Waals systems. J. Geometry Phys. 176, 104495. doi:10.1016/j.geomphys.2022.
104495

Quevedo, H., Sánchez, A., Taj, S., and Vázquez, A. (2011). Phase transitions in
geometrothermodynamics.General Relativ. Gravit. 43, 1153–1165. doi:10.1007/s10714-
010-0996-2

Quevedo, H., Sánchez, A., and Vázquez, A. (2008). Invariant geometry of the ideal gas.
arXiv Prepr. arXiv:0811.0222.

Renner-Rao, M., Clark, M., and Harrington, M. J. (2019). Fiber Formation from liquid
crystalline collagen vesicles isolated from mussels. Langmuir 35, 15992–16001. doi:10.
1021/acs.langmuir.9b01932

Rey, A. D. (1995). Bifurcational analysis of the isotropic-discotic nematic phase
transition in the presence of extensional flow. Liq. Cryst. 19, 325–331. doi:10.1080/
02678299508031988

Rey, A. D. (2000). Viscoelastic theory for nematic interfaces. Phys. Rev. E 61,
1540–1549. doi:10.1103/physreve.61.1540

Rey, A. D. (2004a). Interfacial thermodynamics of polymeric mesophases.Macromol.
theory simulations 13, 686–696. doi:10.1002/mats.200400030

Rey, A. D. (2004b). Thermodynamics of soft anisotropic interfaces. J. Chem. Phys.
120, 2010–2019. doi:10.1063/1.1635357

Rey, A. D. (2006). Mechanical model for anisotropic curved interfaces with
applications to surfactant-laden Liquid− liquid crystal interfaces. Langmuir 22,
219–228. doi:10.1021/la051974d

Rey, A. D. (2010). Liquid crystal models of biological materials and processes. Soft
Matter 6, 3402–3429. doi:10.1039/b921576j

Rey, A. D., and Denn, M. M. (2002). Dynamical phenomena in liquid-crystalline
materials. Annu. Rev. Fluid Mech. 34, 233–266. doi:10.1146/annurev.fluid.34.082401.
191847

Rey, A. D., and Herrera-Valencia, E. E. (2012). Liquid crystal models of biological
materials and silk spinning. Biopolymers 97, 374–396. doi:10.1002/bip.21723

Frontiers in Soft Matter frontiersin.org19

Zamora Cisneros et al. 10.3389/frsfm.2024.1359128

https://doi.org/10.1016/j.jmps.2007.01.004
https://doi.org/10.1016/j.jmps.2007.01.004
https://doi.org/10.1016/0921-4526(95)00939-6
https://doi.org/10.1016/0921-4526(95)00939-6
https://doi.org/10.1080/02678292.2019.1631968
https://doi.org/10.1021/acsabm.0c01557
https://doi.org/10.1021/acsnano.0c10457
https://doi.org/10.1021/acsnano.0c10457
https://doi.org/10.1016/j.jcis.2020.08.052
https://doi.org/10.1016/j.molliq.2021.115539
https://doi.org/10.1054/tice.1999.0076
https://doi.org/10.48550/arXiv.1201.1162
https://doi.org/10.1016/0262-8856(92)90076-f
https://doi.org/10.1039/c0sm00754d
https://doi.org/10.1002/9781119220510.ch16
https://doi.org/10.1002/9781119220510.ch16
https://doi.org/10.1134/1.1788795
https://doi.org/10.1021/ja071012o
https://doi.org/10.1021/ja071012o
https://doi.org/10.1021/ja907908m
https://doi.org/10.1021/ja907908m
https://doi.org/10.1038/ncomms4092
https://doi.org/10.1007/s00211-023-01391-7
https://doi.org/10.3390/coatings10070653
https://doi.org/10.3390/coatings10070653
https://doi.org/10.1002/1097-0134(20010201)42:2<217::aid-prot90>3.0.co;2-n
https://doi.org/10.1002/1097-0134(20010201)42:2<217::aid-prot90>3.0.co;2-n
https://doi.org/10.1021/bm015533u
https://doi.org/10.1021/bm015533u
https://doi.org/10.1021/la304189n
https://doi.org/10.1021/cr60004a001
https://doi.org/10.1088/1367-2630/10/6/063025
https://doi.org/10.1016/j.molliq.2013.11.001
https://doi.org/10.1016/j.molliq.2021.117227
https://doi.org/10.1007/s101890170111
https://doi.org/10.1007/s101890170111
https://doi.org/10.1142/s0217979297001234
https://doi.org/10.1142/s0217979297001234
https://doi.org/10.1016/j.molliq.2021.117716
https://doi.org/10.1016/j.molliq.2021.117716
https://doi.org/10.1080/15421407708084491
https://doi.org/10.1088/1751-8121/ac80df
https://doi.org/10.1007/s003329900075
https://doi.org/10.1142/9781848168008_0007
https://doi.org/10.1103/physreve.90.032507
https://doi.org/10.1021/ma00204a019
https://doi.org/10.1007/s100510050981
https://doi.org/10.1007/s100510050981
https://doi.org/10.1103/physreve.84.041704
https://doi.org/10.1103/physreve.84.041704
https://doi.org/10.1016/j.geomphys.2022.104495
https://doi.org/10.1016/j.geomphys.2022.104495
https://doi.org/10.1007/s10714-010-0996-2
https://doi.org/10.1007/s10714-010-0996-2
https://doi.org/10.1021/acs.langmuir.9b01932
https://doi.org/10.1021/acs.langmuir.9b01932
https://doi.org/10.1080/02678299508031988
https://doi.org/10.1080/02678299508031988
https://doi.org/10.1103/physreve.61.1540
https://doi.org/10.1002/mats.200400030
https://doi.org/10.1063/1.1635357
https://doi.org/10.1021/la051974d
https://doi.org/10.1039/b921576j
https://doi.org/10.1146/annurev.fluid.34.082401.191847
https://doi.org/10.1146/annurev.fluid.34.082401.191847
https://doi.org/10.1002/bip.21723
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1359128


Rey, A. D., Herrera-Valencia, E. E., and Murugesan, Y. K. (2013). Structure and
dynamics of biological liquid crystals. Liq. Cryst. 41, 430–451. doi:10.1080/02678292.
2013.845698

Salamonczyk, M., Zhang, J., Portale, G., Zhu, C., Kentzinger, E., Gleeson, J. T., et al.
(2016). Smectic phase in suspensions of gapped DNA duplexes.Nat. Commun. 7, 13358.
doi:10.1038/ncomms13358

Sato, C., Takeda, T., Dekura, S., Suzuki, Y., Kawamata, J., and Akutagawa, T. (2023).
Chiral plastic crystal of solid-state dual rotators. Cryst. Growth and Des. 23, 5889–5898.
doi:10.1021/acs.cgd.3c00495

Saunders, K., Hernandez, D., Pearson, S., and Toner, J. (2007). Disordering to order:
de Vries behavior from a Landau theory for smectic phases. Phys. Rev. Lett. 98, 197801.
doi:10.1103/physrevlett.98.197801

Schimming, C. D., Viñals, J., and Walker, S. W. (2021). Numerical method for the
equilibrium configurations of a Maier-Saupe bulk potential in a Q-tensor model of an
anisotropic nematic liquid crystal. J. Comput. Phys. 441, 110441. doi:10.1016/j.jcp.2021.
110441

Selinger, J. V. (2016). Introduction to the theory of soft matter: from ideal gases to
liquid crystals. Germany: Springer.

Sonnet, A. M., and Virga, E. G. (2012). Dissipative ordered fluids: theories for liquid
crystals. Germany: Springer Science and Business Media.

Soulé, E. R., Lavigne, C., Reven, L., and Rey, A. D. (2012a). Multiple interfaces in
diffusional phase transitions in binary mesogen-nonmesogen mixtures undergoing
metastable phase separations. Phys. Rev. E 86, 011605. doi:10.1103/physreve.86.011605

Soulé, E. R., Milette, J., Reven, L., and Rey, A. D. (2012b). Phase equilibrium and
structure formation in gold nanoparticles—nematic liquid crystal composites:
experiments and theory. Soft Matter 8, 2860–2866. doi:10.1039/c2sm07091j

Soulé, E. R., Reven, L., and Rey, A. D. (2012c). Thermodynamic modelling of phase
equilibrium in nanoparticles–nematic liquid crystals composites.Mol. Cryst. Liq. Cryst.
553, 118–126. doi:10.1080/15421406.2011.609447

Soule, E. R., and Rey, A. D. (2011). A good and computationally efficient polynomial
approximation to the Maier–Saupe nematic free energy. Liq. Cryst. 38, 201–205. doi:10.
1080/02678292.2010.539303

Soule, E. R., and Rey, A. D. (2012). Modelling complex liquid crystal mixtures: from
polymer dispersed mesophase to nematic nanocolloids.Mol. Simul. 38, 735–750. doi:10.
1080/08927022.2012.669478

Stewart, I. W. (2019). The static and dynamic continuum theory of liquid crystals: a
mathematical introduction. Germany: Crc Press.

Tortora, M., and Jost, D. (2021). Morphogenesis and self-organization of persistent
filaments confined within flexible biopolymeric shells. arXiv Prepr. doi:10.48550/arXiv.
2107.02598

Tuckerman, L. S., and Bechhoefer, J. (1992). Dynamical mechanism for the formation
of metastable phases: the case of two nonconserved order parameters. Phys. Rev. A 46,
3178–3192. doi:10.1103/physreva.46.3178

Turek, D. E., Simon, G. P., and Tiu, C. (2020). “Relationships among rheology,
morphology, and solid-state properties in thermotropic liquid-crystalline
polymers,” in Handbook of applied polymer processing technology (Germany:
CRC Press).

Urban, S., Przedmojski, J., and Czub, J. (2005). X-ray studies of the layer thickness in
smectic phases. Liq. Cryst. 32, 619–624. doi:10.1080/02678290500116920

Viney, C. (2004). Self-assembly as a route to fibrous materials: concepts, opportunities
and challenges. Curr. Opin. Solid State and Mater. Sci. 8, 95–101. doi:10.1016/j.cossms.
2004.04.001

Vitral, E., Leo, P. H., and Vinals, J. (2019). Role of Gaussian curvature on local
equilibrium and dynamics of smectic-isotropic interfaces. Phys. Rev. E 100, 032805.
doi:10.1103/physreve.100.032805

Vitral, E., Leo, P. H., and Vinals, J. (2020). Model of the dynamics of an interface
between a smectic phase and an isotropic phase of different density. Phys. Rev. Fluids 5,
073302. doi:10.1103/physrevfluids.5.073302

Waite, J. H., and Harrington, M. J. (2022). Following the thread: Mytilus mussel
byssus as an inspired multi-functional biomaterial. Can. J. Chem. 100, 197–211. doi:10.
1139/cjc-2021-0191

Wales, D. J. (2018). Exploring energy landscapes. Annu. Rev. Phys. Chem. 69,
401–425. doi:10.1146/annurev-physchem-050317-021219

Wang, H. Y., Wang, Y. Z., Tsakalakos, T., Semenovskaya, S., and Khachaturyan, A. G.
(1996). Indirect nucleation in phase transformations with symmetry reduction.
Philosophical Mag. a-Physics Condens. Matter Struct. Defects Mech. Prop. 74,
1407–1420. doi:10.1080/01418619608240732

Wang, Z., Servio, P., and Rey, A. D. (2020). Rate of entropy production in
evolving interfaces and membranes under astigmatic kinematics: shape
evolution in geometric-dissipation landscapes. Entropy 22, 909. doi:10.3390/
e22090909

Wang, Z., Servio, P., and Rey, A. D. (2022a). Complex nanowrinkling in chiral liquid
crystal surfaces: from shaping mechanisms to geometric statistics. Nanomaterials 12,
1555. doi:10.3390/nano12091555

Wang, Z., Servio, P., and Rey, A. D. (2023a). Geometry-structure models for liquid
crystal interfaces, drops and membranes: wrinkling, shape selection and dissipative
shape evolution. Soft Matter 19, 9344–9364. doi:10.1039/d3sm01164j

Wang, Z., Servio, P., and Rey, A. D. (2023b). Pattern formation, structure and
functionalities of wrinkled liquid crystal surfaces: a soft matter biomimicry platform.
Front. Soft Matter 3, 1123324. doi:10.3389/frsfm.2023.1123324

Wang, Z., Servio, P., and Rey, A. (2022b). Wrinkling pattern formation with periodic
nematic orientation: from egg cartons to corrugated surfaces. Phys. Rev. E 105, 034702.
doi:10.1103/physreve.105.034702

Ward, I. (1993). New developments in the production of high modulus and high
strength flexible polymers. Orientational Phenomena in Polymers. Germany: Springer,
103–110.

Wojcik, M., Lewandowski, W., Matraszek, J., Mieczkowski, J., Borysiuk, J., Pociecha,
D., et al. (2009). Liquid-crystalline phases made of gold nanoparticles. Angew. Chem.
Int. Ed. 48, 5167–5169. doi:10.1002/anie.200901206

Zaluzhnyy, I. A., Kurta, R., Sprung, M., Vartanyants, I. A., and Ostrovskii, B. I. (2022).
Angular structure factor of the hexatic-B liquid crystals: bridging theory and
experiment. Soft Matter 18, 783–792. doi:10.1039/d1sm01446c

Zannoni, C. (2022). Liquid crystals and their computer simulations. Germany:
Cambridge University Press.

Zhang, Z., Yang, X., Zhao, Y., Ye, F., and Shang, L. (2023). Liquid crystal materials for
biomedical applications. Adv. Mater. 35, 2300220. doi:10.1002/adma.202300220

Ziabicki, A. (1993). Orientation mechanisms in the development of high-performance
fibers Orientational Phenomena in Polymers. Germany: Springer, 1–7.

Frontiers in Soft Matter frontiersin.org20

Zamora Cisneros et al. 10.3389/frsfm.2024.1359128

https://doi.org/10.1080/02678292.2013.845698
https://doi.org/10.1080/02678292.2013.845698
https://doi.org/10.1038/ncomms13358
https://doi.org/10.1021/acs.cgd.3c00495
https://doi.org/10.1103/physrevlett.98.197801
https://doi.org/10.1016/j.jcp.2021.110441
https://doi.org/10.1016/j.jcp.2021.110441
https://doi.org/10.1103/physreve.86.011605
https://doi.org/10.1039/c2sm07091j
https://doi.org/10.1080/15421406.2011.609447
https://doi.org/10.1080/02678292.2010.539303
https://doi.org/10.1080/02678292.2010.539303
https://doi.org/10.1080/08927022.2012.669478
https://doi.org/10.1080/08927022.2012.669478
https://doi.org/10.48550/arXiv.2107.02598
https://doi.org/10.48550/arXiv.2107.02598
https://doi.org/10.1103/physreva.46.3178
https://doi.org/10.1080/02678290500116920
https://doi.org/10.1016/j.cossms.2004.04.001
https://doi.org/10.1016/j.cossms.2004.04.001
https://doi.org/10.1103/physreve.100.032805
https://doi.org/10.1103/physrevfluids.5.073302
https://doi.org/10.1139/cjc-2021-0191
https://doi.org/10.1139/cjc-2021-0191
https://doi.org/10.1146/annurev-physchem-050317-021219
https://doi.org/10.1080/01418619608240732
https://doi.org/10.3390/e22090909
https://doi.org/10.3390/e22090909
https://doi.org/10.3390/nano12091555
https://doi.org/10.1039/d3sm01164j
https://doi.org/10.3389/frsfm.2023.1123324
https://doi.org/10.1103/physreve.105.034702
https://doi.org/10.1002/anie.200901206
https://doi.org/10.1039/d1sm01446c
https://doi.org/10.1002/adma.202300220
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1359128

	Geometric modeling of phase ordering for the isotropic–smectic A phase transition
	1 Introduction
	2 Methodology
	2.1 Order parameters and Landau model
	2.1.1 Nematic and smectic A phases: orientational and positional order parameters
	2.1.2 Landau model for the isotropic–smectic A transition

	2.2 Geometric thermodynamics for phase ordering in the isotropic–smectic A transition
	2.2.1 Polynomial index theorem and critical points of the Fψ,SA-energy landscape
	2.2.2 Level-set and steepest descent
	2.2.3 Lines of curvature and geodesics
	2.2.4 Casorati curvature and shape coefficient

	2.3 Computational methods

	3 Results and discussion
	3.1 Quench zones and critical points and their stability
	3.2 Level-set curves and steepest descent lines
	3.3 Lines of curvature and geodesics
	3.4 Shape coefficient and Casorati curvature

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


