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Introduction: Cross-linkable polymers are in widespread use in a variety of
industries because of their thermomechanical toughness, chemical resistance,
and adhesive strength. But traditional methods to characterize thesematerials are
insufficient for fully capturing the complex chemical and physical mechanisms of
the crosslinking reaction. In this study, in situ X-ray photon correlation
spectroscopy (XPCS) was used to investigate the crosslinking kinetics of a
two-component epoxy resin adhesive.

Materials and methods: With XPCS, we tracked the temporally resolved
dynamics of silica filler particles, which served as probes of the internal
dynamics of the thermoset network and allowed us to study the crosslinking
process. The epoxy was cured isothermally at 40 °C and 80 °C to study the effects
of curing temperature on the epoxy’s crosslinking reaction. XPCS results were
compared to dielectric analysis (DEA) results, to demonstrate the similarities
between a traditional technique and XPCS, and highlight the additional
information gained with XPCS.

Results and discussion: The epoxy resin was found to be highly sensitive to
temperature. The epoxy samples exhibited different relaxation processes
depending on isothermal cure temperature, indicating a complex relationship
between applied temperature and the development of stress/relaxation
conditions associated with formation of the thermoset network. Heating to
the isothermal temperature setpoint at the start of curing promoted gelation,
but the vitrification process was not completed during the isothermal curing
stage. Instead, cooling the sample to room temperature facilitated the final
vitrification process. This paper contextualizes this epoxy’s results within the
broader field of thermoset study via XPCS, and advocates for XPCS as a
fundamental technique for the study of complex polymers.
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Introduction

Cross-linkable polymers are found in nearly every industry,
including automotive, aerospace, construction, and microelectronics,
and are used in everything from coatings to electronics to adhesives,
from consumer applications through the industrial production scale
(Sahagun and Morgan, 2012; Jin et al., 2015; Yavitt et al., 2020a; Yavitt
et al., 2023). Their widespread use is due to their useful properties, such as
thermomechanical toughness, chemical resistance, and adhesive strength
(Nair, 2004; Sprenger, 2013; Morsch et al., 2016; Morsch et al., 2017). As
with any useful material, various industries are interested in developing a
thorough scientific understanding of why cross-linkable polymers work
the way they do, because knowing why they work allows us to make
better design and production decisions, tailor the material to specific
needs, and develop a more successful product. However, the traditional
understanding of cross-linkable polymers–often derived from empirical,
time-consuming trial-and-error experiments–is insufficient to capture
the complex chemical and physical mechanisms behind these
remarkable materials (Min et al., 1993; Sharifi et al., 2014).

Cross-linkable polymers derive their strength from the formation of
a three-dimensional crosslinked network that develops as the material
undergoes the crosslinking reaction (Nair, 2004). This reaction is often
initiated by an external stimulus, such as heat, UV light, moisture, or
another reactant, in a process commonly referred to as “curing” (Araki
et al., 2002a; Araki et al., 2002b; Ehrburger-Dolle et al., 2019; Trigg et al.,
2021). A typical challenge with these materials is the difficulty of
performing in situ/real-time measurements because the materials
often react rapidly and solidify as they cure, making traditional
characterization measurements, such as differential scanning
calorimetry (DSC) and rheology, difficult. For example, rheology is
not useful after the material has finished curing and is macroscopically
solid, while DSC is only useful after the material has finished curing
(Schlosser and Schönhals, 1989; Ellis and Ellis, 1993; Bahrami et al., 2015;
Estridge, 2018). Dielectric spectroscopy can measure dynamic processes,
such as curing, but it is a bulk measurement, like rheology, and lacks the
capability to measure at specified length scales. Electron microscopy
techniques are useful for characterizing the post-crosslinked structure,
but it is not currently possible to use these techniques to study cross-
linkable materials while the crosslinking reaction is occuring (Kishi et al.,
2007; Gu et al., 2011). For some polymers, the high energy electron beam
used for electron microscopy can actually induce crosslinking–a
phenomenon that is much more likely to occur when using an
electron beam than, for example, an X-ray beam (Gupta et al., 2020).

X-ray scattering is uniquely suited to the in situ study of cross-
linkable polymers. It is non-destructive, it can elucidate information
about the structures and dynamics of a material in real time, and it is
equally useful for studying the non-crosslinked precursor materials as it
is for the final, fully crosslinked polymer. Small-angle X-ray scattering
(SAXS) and wide-angle X-ray scattering (WAXS) are well suited to
probe the structure of polymericmaterials and have beenwidely used by
the polymer community. However, static scattering signals are only
sensitive to changes in the average length scales within the system and
cannot provide information about the characteristic time scales of the
system. For example, the static scattering of a colloid diffusing in a liquid
and the same colloid “frozen” in the solid state of the liquid would be
fundamentally the same.

Emerging dynamic X-ray scattering techniques such as X-ray
photon correlation spectroscopy (XPCS) can provide the spatially

and temporally resolved dynamics of materials over relevant time
scales (sub-milliseconds to 1000s of seconds) and length scales
(nanometers to hundreds of nanometers), making them more
useful for complex, out-of-equilibrium systems (Johnson et al.,
2019; Lehmkühler et al., 2021). Furthermore, the recent
development of in-operando XPCS allows researchers to closely
mimic industrial processing conditions, shedding new light on the
crosslinking and vitrification process of cross-linkable polymers
(Andrews et al., 2018; Ehrburger-Dolle et al., 2019; Yavitt et al.,
2020a; Hoshino et al., 2021; Yavitt et al., 2023). Moreover, XPCS is a
microbeam scattering technique, with a typical beam diameter of
tens of μm, and can probe materials in configurations as close to
their real use-case as possible (e.g., a 100 μm thin film sandwiched
between two parts), and still provide spatial resolution within that
layer (Yavitt et al., 2020a; Yavitt et al., 2020b; Yavitt et al., 2023).

In this study, XPCS is used for the in situ characterization of the
crosslinking kinetics of an industrially relevant two-component
epoxy resin adhesive. In addition to providing mechanical and
thermal stability to the epoxy resin, nanofillers conveniently act
as internal dynamic probes to resolve the evolution of crosslinking
by sensing the matrix’s mobility (Fluerasu et al., 2007; Guo et al.,
2009; Koga et al., 2010; Mangal et al., 2016; Yavitt et al., 2020a;
Lehmkühler et al., 2021; Trigg et al., 2021; Yavitt et al., 2023). We
aim to demonstrate that diverse and useful information can be
obtained using in situ XPCS to study the dynamics of an epoxy resin
adhesive as it undergoes a crosslinking reaction.

Materials and methods

The material of interest in this study was a two-part epoxy
structural adhesive supplied by Henkel AG and Co., KGaA. The
primary components of the adhesive were epoxy resins and various
polyamines, with fumed silica as a thickener, lamellar talc as a
viscosity modifier, and carbon black for coloration and viscosity
modification. The concentration of silica particles was ~2% (by
volume) with a BET surface area of 105–140 m2/g, according to ISO
9277. The concentration of CB filler was less than 0.1% by volume.
The recommended cure schedule for the adhesive is 8 h at room
temperature, or approximately 15 min when heated to 80°C, for
initial strength. According to the manufacturer’s specifications, the
final strength is achieved after a total cure time of approximately
2 days at room temperature or approximately 30 min at 80°C.

XPCS elucidates the dynamics and changes in dynamics of an
out-of-equilibrium system by tracking the changes in the electron
density profile through a time series of coherent scattering patterns.
Equilibrium dynamics are quantified by an intensity-intensity
autocorrelation function, g2, which is derived from the time
series of speckle patterns:

g2 q,Δt( ) � 〈I q, t( )I q, t + Δt( )〉
〈I q, t( )〉2

(1)

where q is the scattering vector described by q � 4π sin(θ)/λ with 2θ
being the scattering angle in the small angle scattering geometry and λ
being the wavelength of the incident X-ray beam. I(q) is the scattering
intensity recorded on the detector at a given scattering vector, t is the
experimental time. The <. . .> brackets denote an ensemble averaging
performed over all detector pixels corresponding to the same
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scattering vector and over the experimental time (Fluerasu et al., 2007;
Yavitt et al., 2020a). Since Eq. 1 is time-averaged, it cannot capture
dynamics that are out-of-equilibrium. For example, for a crosslinking
epoxy, the dynamics immediately after mixing will not be the same as
the dynamics 100 min after mixing, so the relevant time scales are not
constant and therefore cannot be averaged without losing
information. Instead, a two-time correlation function is used,
which defines the intensity-intensity autocorrelation function for
arbitrary times t1 and t2 within a time series, where the ensemble
averaging is performed over the pixels belonging to the same
scattering vector, but not over time (Fluerasu et al., 2007; Yavitt
et al., 2020a; Yavitt et al., 2023):

C q, t1, t2( ) � 〈I q, t1( )I q, t2( )〉
〈I q, t1( )〉〈I q, t2( )〉 (2)

The average elapsed time between two discrete time points in the
time series is tage = (t1 + t2)/2, which also represents the elapsed
experimental time and is used in this paper to denote the time
elapsed after the start of data collection. With tage and a lag time τ =
|t2–t1|, one can define an “aged” one-time correlation by averaging
the two-time correlation function in Eq. 2 around a given tage, with
the amount of averaging (Δtage) chosen such that the average is
taken over parts of the two-time correlation function that describe
“quasi-equilibrium” dynamics:

g2 q, tage, τ( ) � 〈I q, tage − τ
2( )I q, tage + τ

2( )〉q,tage±Δtage
〈I q, tage − τ

2( )〉q,tage±Δtagep〈I q, tage + τ
2( )〉q,tage±Δtage

(3)
This aged g2 function (Eq. 3) is fit to a Kohlrausch-Williams-

Watts (KWW) form shown in Eq. 4 to obtain quantitative
information about the dynamics (Kohlrausch, 1854; Siegert, 1943;
Williams and Watts, 1970):

g2 q, tage, τ( ) � A + β p e−2 p Γpτ( )γ ∣∣∣∣q,tage (4)

where β is the optical contrast (also known as the Siegert factor), A is
the baseline, Γ is the relaxation rate, and γ is the shape parameter (also
known as the stretching exponent) (Siegert, 1943; Andrews et al.,
2018; Yavitt et al., 2020a; Hoshino et al., 2021; Yavitt et al., 2023). The
setup-dependent optical contrast was determined as β ≈ 0.12 from
measurements of a static reference sample (CoralPor®, Schott)
(Supplementary Figure S1). Full analytical protocols are described
in previous reports (Abeykoon et al., 2016; Yavitt et al., 2020a; Yavitt
et al., 2023).

The sample was used as received without further modification.
The sample was prepackaged in a two-component cartridge, to which
a mixing nozzle could be attached so that the sample could be mixed
and extruded simultaneously. As specified by the manufacturer, the
cartridge was preheated in an oven at 60°C for 1 h prior to use. The
sample was extruded ex situ, outside of the beamline experimental
hutch, through the mixing nozzle into a round sample holder (3 mm
diameter and 1.5 mm sample thickness) walled with 25 μm thick
polyamide windows (LINQTAPE™, Caplinq). The manual sample
handling procedure did not allow us to control the times that elapsed
between removal from the oven and extrusion into the sample holder,
or between extrusion into the sample holder and initiation of the
measurement. Since the cure kinetics without external heating (i.e., at

room temperature) were very slow, and the time periods between
when we mixed each epoxy and the start of each sample’s respective
temperature ramp were comparable, we set the time at which the
heating ramp began for each sample as the effective “start time”.
Therefore, tage refers to the time elapsed from that point.

Once a sample was mounted in the beamline, its temperature was
controlled remotely using a PID-controlled resistive heater. For this
adhesive, two specific temperature profiles were of interest: constant
temperature at 40°C, and constant temperature at 80°C. For the “constant
40°C” profile, the sample experienced a short heating ramp at the start of
the experiment at a rate of 5°C/min, followed by an extended hold time
for about 500min, and finally a short cooling period in which the heater
was turned off and the sample was allowed to cool to room temperature
(see, Supplementary Figure S2A for the detailed temperature ramp). For
the “constant 80°C” profile, the sample also experienced a heating ramp
at the start of the experiment, but because it had to reach a higher
temperature than the 40°C sample and the ramp rate was set at 5°C/min,
the 80°C heating ramp took longer. This was followed by a short hold
time at 80°C of about 35 min, and finally a cooling period, again induced
simply by turning off the heater and allowing the sample to cool to room
temperature (see, Supplementary Figure S2B).

The XPCS experiments were performed at the CoherentHard X-ray
beamline (11-ID) of the National Synchrotron Light Source II at
Brookhaven National Laboratory. The partially coherent X-rays had
an energy of 9.65 keV (λ = 0.128 nm), selected by Si (111) double-crystal
monochromators. The unattenuated beam flux was 3 × 1011 photons/
second, in a 40 μmdiameter spot at the sample position. Speckle patterns
were collected in SAXS transmission geometry using an Eiger X 4M
pixelated photon counting detector (Dectris), with a sample-to-detector
distance of 16.03 m. The optimal transmission, frame rate, and exposure
times were controlled by attenuating the beam using double-sided
polished silicon wafers and a millisecond fast shutter. Radiation
damage was mitigated by ensuring that no changes in dynamics were
induced in the sample from exposure to the X-ray beam over the length
of the scan (i.e., the observed dynamics were independent of total X-ray
dose and dose rate). In addition, the sample wasmoved perpendicular to
the beam for each XPCS time series so that X-ray dose did not
accumulate. A range of frame rates and exposures were used to
capture dynamics over a wide range of time scales, from as low as
0.025 s by 500 frames for a total 12.5-s time series, to as high as 16.25 s by
500 frames for a total 2.25-h time series. Frame rates, temperature, and
motion control were integrated and controlled by the Experimental
Physics and Industrial Control System (EPICS) running on a dedicated
workstation, which was in communication with the beamline to allow
synchronized process control and X-ray scattering data acquisition via
the BlueSky data collection framework (GitHub, 2022; EPICS, 2024).
Calculations of correlation functions were performed using the CHX
beamline Python code (Abeykoon et al., 2016).

Dielectric analysis was performed using a NETZSCH DEA
288 Ionic dielectric analyzer. A typical DEA experiment returns
the ion viscosity (IV) of a material as a function of time. For an
isothermal DEA experiment, the ion viscosity can be related to the
degree of cure (α) with the relationship, α = k*log (IV) + C (Pascault
andWilliams, 1990), where both k and C are numerical constants. As
specified by the manufacturer, the unmixed components of the epoxy
were heated at 60°C for 1 h prior to extrusion, to melt a crystalline
component and ensure proper mixing and reaction. The epoxies were
then extruded through a mixing nozzle to begin the curing reaction
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and placed in the dielectric analyzer. Each DEA experiment was
performed isothermally to simplify calculations of the degree of cure.
One sample was held at 40°C, and another was held at 80°C.

Results and discussion

The time-resolved small-angle X-ray scattering (SAXS) curves, I(q),
which reflect the structure of the system during the curing reaction, can
be obtained by radial averaging of the coherent scattering pattern from
the XPCS time series (Figure 1). Figure 1 shows representative SAXS
profiles at the early and final stages of curing. The SAXS curve changed
subtly, suggesting that the evolution of the filler structure within the
experimental time window was minimal. The scattering signal is
dominated in the high q regime by a form factor of filler particles,
appearing as oscillations at q > 0.006 Å-1. A power-law q dependence
(i.e., I(q) ∝ q-p) is observed in the low q regime. The particle size of
lamellar talc (>10 μm) is larger than the length scales resolved in the q
range, so its form factor is not resolved. Silica (SiO2) and carbon black
(CB) fillers are also mixed in the sample. The SiO2 particles used here
were surface treated to prevent aggregation, which meant they were
more uniformly dispersed in the epoxy. Therefore, we attribute the
oscillations to a form factor of the relatively monodisperse SiO2 filler
rather than the primary CB filler which are typically fused together
(Koga et al., 2008). However, the fitting of the I(q) curves was not
straightforward; this epoxy was a complicated scattering system due to
multiple competing scattering contributions within the observed q
range. Hence, we compare the experimental data and a calculated
form factor, rather than fitting.

A calculated form factor of spherical SiO2 particles with a diameter
(D) of 74 nm and a polydispersity of 15% is shown in Figure 1 (black
dashed line). This calculated form factor reasonably expresses the

shapes and peak positions of the three peaks located at
approximately q = 0.009 Å-1, 0.016 Å-1, and 0.023 Å-1 in the
experimental data. An “apparent” power law with an exponent
p = −3.2 is observed in the low q regime. The exponent is
“apparent” because the contributions from the form factor at q =
0.009 Å-1 influence the scattering curve at low q, so it is not solely a pure
power-law fit in the low q regime. We expect this power-law
contribution to come from a surface fractal structure of the talc.
Since a detailed discussion of the nanoparticle structure is beyond
our current interest, these questions deserve future work. In any case, we
chose to limit the evaluation of the XPCS data to q > 0.006 Å-1, which is
above the q-region that is affected by scattering from the talc and/or
aggregates of SiO2 and CB, to minimize any possible influence from
these structures on the dynamics. Therefore, we ensured that the
dynamics discussed herein are mainly from the primary SiO2 fillers.

We studied the out-of-equilibrium dynamics of the epoxy during
the curing process. Figure 2 shows two XPCS two-time correlation
functions that are representative of the curing process. Each two-time
correlation function in Figure 2 reflects dynamics in the curing material
over a particular range of times. It is essential to note that the two-time
correlation functions represent dynamics of the primary scatterers,
i.e., the SiO2 filler particles (see Figure 1), which in turn are affected by
the evolving dynamics of the curing epoxy. The right panel of Figure 2
depicts a later stage in the curing process, where the combination of
X-ray exposure time and number of frames allowed us to capture the
crosslinking dynamics in such a way that they appeared to be in “quasi-
equilibrium”, represented as a straight, diagonal shape of the two-time
correlation function. Therefore, for the duration of the scan, the filler
particle dynamics slowed only slightly, implying that the rate of the
epoxy’s crosslinking dynamics also slowed only slightly, and analysis of
the two-time correlation function with Eqs 3, 4 was relatively
straightforward. In contrast, and much less frequently, the dynamics
of the epoxy appeared to be “out-of-equilibrium”. The left panel of
Figure 2 depicts these “out-of-equilibrium” dynamics at an earlier stage
in the curing process. In this time series, the range of lag times over
which there is strong correlation (yellow color in Figure 2) was rapidly
decreasing with increasing experimental time; the rapid loss of
correlation with experimental time indicates that the epoxy’s
crosslinking dynamics were speeding up. During this time series, the
sample temperature was increasing due to the initial ramp up in the
temperature profile, which explains the dynamics speeding up. To
analyze time series like this one, a small Δtage is chosen over which to
calculate the one-time correlation function. This Δtage should ideally
cover a range in the time series that is approximately quasi-equilibrium
(e.g., 40–60 s in the left panel of Figure 2).

In Figure 3, we plot a series of evolving one-time correlation
functions selected at various times, with a representative q value of
q = 0.0093 Å-1. Here, g2 is normalized as (g2–A)/β so that the decay
progresses from an initial value of one to a final baseline value of 0.
For both temperature runs, we captured the dynamics with lag
times (τ) extending up to 5,000 s, at aging times well after the
epoxy had fully solidified macroscopically. Interestingly, for both
temperature conditions, decorrelation in g2 was still observed at
very long aging times (tage = 767.1 min for 40°C, tage = 772.8 min
for 80°C). Previous work (Cipelletti et al., 2000; Cipelletti et al.,
2003; Kwaśniewski et al., 2014) proposed that a q-independent
value of the stretching exponent (γ) greater than one is indicative
of deformation due to the relaxation of internal stresses built up

FIGURE 1
SAXS curves of the epoxy cured at 40°C, shown at tage = 1.0 min
and tage = 907.1 min. The black dashed line is the form factor of the
SiO2 filler. Curves are vertically shifted for readability. The gap in each
curve at q ≈ 0.033 A-1 is due to the removal of a diffraction peak
resulting from the beam stop, which was not relevant to the material
studied here.
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during the curing reaction (see Figure 4 and Supplementary Figure
S3). This relaxation can cause a complete decay of g2, even for fully
developed solids. It is this relaxation process that is responsible for
the decay of the one-time correlation function over the lag time τ >
103 s seen in Figure 3. We did not observe complete decorrelation
at these late times because a scan to resolve the decorrelation would
itself take longer than 103 s. It is not justified to quantitatively
discuss incomplete g2 decay using a fit of the KWW equation, so
these late aging times are not included in further discussions
pertaining to the KWW fitting parameters. These results are
consistent with the manufacturer’s claim that the epoxy takes

up to 48 h to fully cure. Hence, XPCS is a powerful technique
that can reliably track these slow dynamics in macroscopically
solidified materials such as this epoxy resin.

We studied the curing process of the epoxy through changes in
the physical properties of the epoxy by fitting the KWW equation
(Eq. 4) to the one-time correlation function (g2). The stretch/
compression exponent (γ) determines the shape of the g2 curve
and provides insight into the type of dynamics exhibited by the SiO2

filler particles as the epoxy cures. Through the interactions between
the filler particles and the thermoset network, the γ exponent
characterizes the overall dynamics of the epoxy, with γ <

FIGURE 2
Two-time correlation functions of the adhesive cured at 40°C; (left) “out-of-equilibrium” dynamics; (right) “quasi-equilibrium” dynamics.

FIGURE 3
Fits of the KWW equation to the normalized one-time correlation functions (g2) at q = 0.0093 Å-1; (left) 40°C sample, (right) 80°C sample. The
triangular points are the correlation function data, and the dashed lines are the fits of the KWW equation. The legend shows the time at which each
correlation function was calculated.
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1 indicating sub-diffusive dynamics and γ > 1 indicating hyper-
diffusive dynamics (Guo et al., 2009; Jang et al., 2014).

Supplementary Figure S4 shows the time dependence of γ for the
80°C sample. At tage < 10 min, γ was less than 1, which represents
sub-diffusive dynamics and is attributed to the emergence of
multiple relaxation processes in the disordered system (Johnston,
2006). However, after tage = 10 min, the value of γ quickly became
difficult to describe with a conclusive pattern due to high variability
with tage. At the beginning of the temperature ramp, γ became
greater than one and began to approach γ = 1.5 or higher,
representing hyper-diffusive dynamics and indicating that the
relaxation becomes compressed (i.e., faster than an exponential
decay). We previously reported that a change of γ from 1 (the
least stressed state, i.e., no epoxy network formation) to 1.5 < γ <
2.0 is associated with the onset of epoxy network formation
(i.e., gelation) (Yavitt et al., 2020a; Yavitt et al., 2020b; Yavitt
et al., 2023). Therefore, it appears that the formation of the
thermoset network started around tage = 10 min for the 80°C
sample. After this point, γ fluctuated significantly until tage ≈
200 min, suggesting some stress relief in the network associated
with thermally induced curing (Yavitt et al., 2020a; Yavitt et al.,
2020b; Yavitt et al., 2023). Cipelletti et al. (Cipelletti et al., 2003)
proposed that a compression exponent less than two is indicative of
a wide distribution of ballistic relaxation times. In this epoxy the
value of γ fluctuates considerably, but remains less than 2, which, in
combination with the curing dynamics described below (Figure 6),
may represent stress relief seen as a range of relaxation times. The
observed value of γ was found to be almost independent of q for
multiple values of tage (Supplementary Figure S3). For the 40°C
sample, γ was also less than one before the onset of heating
(Supplementary Figure S4), but the transition from γ = 1 to
1.5 < γ < 2.0 was not so clear. Like the 80°C sample, there was a
lot of variability in γ over tage, making it difficult to discern a pattern.
However, γ generally remained below 2, also pointing towards the
same stress relief associated with curing that was seen for the 80 °C
sample. Though there were notable exceptions around tage = 20 min,
which makes drawing a conclusion difficult. Generally, such hyper-

diffusive dynamics, characterized by γ > 1, are a common feature in
the aging regime of soft condensed matter systems (Cipelletti et al.,
2000; Bellour et al., 2003; Cipelletti et al., 2003; Kaloun et al., 2005;
Robert et al., 2006). Further XPCS experiments on this material at
different temperatures would help elucidate this difference and
deserve future work.

For soft matter systems, the relationship between the relaxation
rate (Γ) and q is of interest because it indicates whether the observed
dynamics are diffusive or ballistic (Fluerasu et al., 2007). As shown in
Figure 5, the epoxy shows linear scaling between Γ and q for both the
40°C and the 80°C samples throughout the experiment. Linear
scaling between Γ and q has been observed for colloidal gels,
concentrated emulsions, and nanoparticles suspended in polymer
matrices (Cipelletti et al., 2000; Cipelletti et al., 2003;
Bandyopadhyay et al., 2004; Fluerasu et al., 2007). The linear
scaling coupled with a compressed exponential of γ =
1.5 represents collective, ballistic dynamics resulting from the
release of micro-stresses generated in the internal structure of the
sample (Cipelletti et al., 2003). The lines in Figure 5 show the best fits
to the experimental data where Γ = vdq. In this equation, vd is a
proportionality constant representing the linear, ballistic motion of
scatterers as a local displacement velocity with units of Å/s
(Cipelletti et al., 2000; Cipelletti et al., 2003). The samples at
both curing temperatures show progressively slower dynamics as
the time increases (i.e., as the crosslinking reaction takes place).

The displacement velocity (vd) is a key quantity in the study of
epoxy’s curing kinetics. It describes the linear displacement
dynamics resulting from the interaction between the filler and
the polymer matrix and is independent of length scale (as seen in
Figure 5)4 (Yavitt et al., 2023). The displacement velocity is plotted
as a function of time in Figure 6. The formation of the crosslink
network (i.e., gelation) can be observed for both samples starting
before tage = 10 min, as the vd of both samples started to decay with a
power-law exponent (m) of around −1 (i.e., vd ∝ tmage). We
previously reported an m = −2 power-law decay in similar
industrial epoxy samples (Yavitt et al., 2020a; Yavitt et al., 2020b;
Yavitt et al., 2023), implying this epoxy cures relatively slowly at the
isothermal condition. This power-law decay is marked with the
m = −1 black dashed lines in Figure 6. The displacement velocity of
the 40°C sample was lower than the vd of the 80°C sample from tage ≈
10 min up to tage ≈ 50 min. This is attributed to the fact that the 80°C
sample was heated to a higher temperature and was subject to a
temperature ramp for longer; the 40°C sample reached its isothermal
condition at tage = 5 min, whereas the 80°C sample reached its
isothermal condition at tage ≈ 13 min. The higher temperature and
prolonged temperature ramp of the 80°C sample induced more
molecular motion in the network structure of the epoxy, which is
reflected in a larger displacement velocity from faster dynamics of
the 80°C sample’s filler particles. Then, during the isothermal phase
of each temperature profile, the displacement velocity of the filler
particles in both samples gradually decreased at a roughly similar
rate of decay. According to the manufacturer’s specifications, the
final strength is achieved after a total cure time of approximately
30 min during the isothermal reaction at 80°C, which corresponds to
the reaction conversion of approximately 90% (α = 0.9) based on
conventional dielectric analysis (DEA) results (Supplementary
Figure S5). However, as shown in Figure 6, the displacement
velocity after curing at 80°C for 30 min was as fast as the initial

FIGURE 4
Stretching exponent (γ) versus time after mixing for the 80°C
sample. The dashed line shows the temperature.
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state (tage = 1 min, before the start of gelation). As the temperature
was lowered from 80°C to room temperature, vd decreased by nearly
three orders of magnitude, showing a power-law decay of m ≈ -3
(marked by the m = -3 black dashed line in Figure 6). Similar rapid
decay of vd was observed when industrial dual-cure acrylate/epoxy
thermosets were cured with ultraviolet light (Yavitt et al., 2020b;
Yavitt et al., 2023) and when one-component heat curable epoxy
resins were thermally cured (Yavitt et al., 2020a). Therefore, this
cooling process is expected to accelerate the vitrification process of
the epoxy resin used in this study.

A similar trend was observed with the isothermal curing at 40°C.
According to the manufacturer’s specifications, at 40°C (ambient
temperature in tropical climates) the epoxy should be cured for

approximately 9 h prior to practical use. Supplementary Figure S5
shows the DEA results for the epoxy resins cured at 40°C and 80°C.
From the figure, we can see that curing for 450 min at 40°C allowed
us to achieve a reaction conversion of about 85% (α = 0.85).
However, as shown in Figure 6, the vd of the epoxy at 450 min
was 0.5 Å/s. This was still at least two orders-of-magnitude greater
than that of the 80 °C sample at tage = 900 min, suggesting that the
vitrification process of the 40°C sample was not complete during this
450-min isothermal curing process. Again, and as we saw for the
isothermal curing at 80°C, the vitrification occurred only after
cooling to room temperature. This cooling-induced vitrification
process of the epoxy resin, which cannot be identified by DEA
alone, clearly demonstrates the additional information that can be
obtained with XPCS alongside conventional technique for studying
the complicated gelation/vitrification process of epoxy resins.

Enns and Gillham proposed a time-temperature-transformation
(TTT) diagram that predicts gelation and vitrification as a function
of cure time and temperature (Enns and Gillham, 1983). According
to their TTT diagram, epoxy resins are expected to undergo gelation
and then vitrification as the cure time increases at a given cure
temperature. It should be noted that if the cure temperature is too
high, the epoxy resin will degrade without vitrification, and if the
cure temperature is too low, the epoxy resin will vitrify without
gelation. Therefore, it is extremely important to optimize a cure
temperature to achieve the desired final strength of an epoxy,
keeping in mind that curing at “room temperature” (roughly in
the 20°C–40°C range, depending on the local ambient climate
conditions) is desirable. The TTT phase diagram for this epoxy is
not available, but the XPCS results show that the vd gradually
decreased over time during the two isothermal curing conditions,
indicating a prolonged vitrification process at the microscopic scale.
For both epoxy samples, cooling from the isothermal set point
drastically decreased the vd, reducing the overall curing time at each
temperature. Similar industrial materials reported previously (Yavitt
et al., 2020a; Yavitt et al., 2020b; Yavitt et al., 2023) did not show
such rapid decreases in displacement velocity when the temperature

FIGURE 5
Relaxation rate (Γ) as a function of the scattering vector (q) for a range of times, at 40°C and 80 °C. The inset in the right image is a “zoomed in” view of
the later tage relaxation rates.

FIGURE 6
Displacement velocity as a function of time (colored points), with
temperature included for reference (colored dashed lines). The data
are the same color as the corresponding temperature profile. Dashed
black lines show the power-law trend with the corresponding
power-law exponent (m).

Frontiers in Soft Matter frontiersin.org07

Tsapatsaris et al. 10.3389/frsfm.2024.1345791

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2024.1345791


was reduced, suggesting that they were relatively temperature
insensitive. This commercial epoxy’s temperature sensitivity is
what ultimately allowed it to meet the curing time and “room
temperature” design criteria specified by the manufacturer: ~9 h
at 40°C, or 30 min at 80°C. If the epoxy were cured isothermally, e.g.,
at 40°C, with no cooling, the time required to reach a sufficiently
cured state would likely be much larger than what was observed with
XPCS, as seen in the DEA experiments (Supplementary Figure S5).
The mechanism behind the temperature sensitivity of this epoxy is
beyond the scope of this paper, but it would be a promising direction
for future work.

Conclusion

XPCS allows for experiments on time and length scales that are
inaccessible with conventional techniques. For example, rheology
can be used to obtain experimental results with comparable time
resolution, but in the case of curable adhesives, the rheometer would
seize up and stop working, while XPCS could continue to extract
meaningful data long beyond this point. This experiment was an
example of such, where the cure kinetics were analyzed up to 12 h
after the epoxy resin components were mixed; a point when the
epoxy is macroscopically fully solid. Another challenge in studying
cross-linkable polymers under industrial application conditions is
the need for spatial resolution, as crosslinking reactions often
proceed in a spatially heterogeneous manner due to boundary
conditions (e.g., proximity to interfaces)–another benefit granted
by XPCS. XPCS experiments can also be configured to mimic a
variety of industrial conditions, including ex-situ, in situ, or in-
operando mixing.

We leveraged these benefits of XPCS to study a range of useful
and physically relevant metrics of a commercial epoxy resin, such as
the time it took for the epoxy to cure and how this was affected by
the applied temperature, the type of dynamics exhibited by the
nanoparticle filler markers, and the relaxation modes present in the
epoxy as it cured. The crosslinking kinetics of the epoxy were
resolved for more than 12 h after mixing, using the scattering of
the SiO2 filler and the interactions between the thermoset network
and the filler to track the crosslinking kinetics of the epoxy. The type
of the filler dynamics was confirmed to be ballistic, as expected based
on previous literature results for crosslinking polymers (Yavitt et al.,
2020a; Yavitt et al., 2020b; Trigg et al., 2021; Yavitt et al., 2023). Our
data indicate that the filler dynamics are comparable within one
order-of-magnitude before and after the isothermal temperature
condition was reached, indicating a similarity in dynamics between
the pre-gelation and post-gelation epoxy resins. The displacement
velocity during the isothermal curing portion of both temperature
profiles did not decrease as much as was expected. The subsequent
cooling to room temperature induced a secondary rapid decay
process, and the filler dynamics were found to undergo a
transition from a power-law exponent (m) of −1 to m = −3 with
aging time. A dynamics-property correlation is a promising avenue
for future work. This sample fits well into the broader context of
cross-linkable polymers. Its trends in displacement velocity, its
relaxation modes (γ), and its ballistic dynamics show a high
degree of similarity to previous work on similar crosslinking

polymers (Andrews et al., 2018; Yavitt et al., 2020a; Yavitt et al.,
2020b; Hoshino et al., 2021; Trigg et al., 2021; Yavitt et al., 2023). For
these reasons, XPCS should be considered a “go-to” technique for
the study of industrially relevant and complex polymer systems
under out-of-equilibrium conditions.
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