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Self-assembly of surfactants into complex structures is key to the performance of
many formulated products, which form a significant fraction of the world’s
manufactured goods. Here we adopt the dissipative particle dynamics
simulation approach to explore the self-assembly process of surfactants, with
the aim of understanding what information can be obtained that may correlate
with an increased zero-shear viscosity of surfactant based products. To this end
we experimentally measured the zero-shear viscosity of mixed micelle systems
comprised of cocoamidopropyl betaine (CAPB) and sodium lauryl sarcosinate
(SLSar), as a function of the CAPB/SLSar mass ratio and pH, and characterised the
early stages of self-assembly of the same systems computationally. From
simulation we identify three distinct behaviors in the micellar self-assembly
process (logarithmic, linear and cubic growth) which we find show some
degree of correlation with the experimental zero-shear viscosity. Owing to
the relatively short simulation times required, this may provide formulation
scientists with a practical route to identify regions of interest (i. e. those with a
desired zero-shear viscosity) prior to synthesising de novo (potentially natural)
surfactants.
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1 Introduction

Surfactant molecules, with their amphiphilic nature, possess a remarkable capability to
spontaneously organise into a diverse range of self-assembled structures. These structures,
such as micelles and liquid crystalline phases, not only influence the physical characteristics
of formulated products but also play a crucial role in enhancing their efficacy. By
manipulating the surfactant chemistry, adjusting the formulation composition, or
changing the external conditions, one can control the nature of the resulting self-
assembled structures and in doing so tailor, for example, the viscosity, stability, and
texture of formulations, thereby creating effective and economical products. However, when
selecting surfactants, formulators can be faced with a difficult optimisation challenge. The
surfactant must be safe to use, environmentally friendly, high performance and low cost.

A common class of ionic surfactants are the alkyl sulfates. These have many uses
including cleaning products, hair care and laundry (Farn, 2008; Dave and Joshi, 2017).
Unfortunately, some alkyl sulfates have the downside of being irritating to the
skin (Ananthapadmanabhan et al., 1996; Deo and Somasunderan, 2003;
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Ananthapadmanabhan et al., 2004; Robinson et al., 2010). They can
also be toxic to aquatic organisms (Abel, 1974; Liwarska-Bizukojc
et al., 2005). Because of these concerns consumers are increasingly
avoiding alkyl sulfate surfactants (Ananthapadmanabhan, 2019) and
alternatives are needed. Sodium lauryl ether sulfate molecules have
been adopted for personal care applications due to their high
cleaning efficacy and reduced negative impacts upon the skin
(due in part to the larger molecular structure and incorporation
of ethylene oxide groups, in addition to a lower charge density).
Sulfate based surfactants can, however, have negative environmental
impacts due to their potential persistence in water bodies and their
production processes (typically from petrochemicals), which may
generate byproducts of concern (e.g., 1,4-dioxane, which can be
present in trace amounts in products containing sulfate surfactants).
Sarcosinates are a class of surfactant that can, potentially, overcome
both of these issues. Comprising of a headgroup based on the amino
acid sarcosine, and a hydrophobic alkane tail, these surfactants are
milder than alkyl sulfates (Ananthapadmanabhan, 2019) and
present good safety profiles (Lanigan, 2001). They are naturally
derived (Ananthapadmanabhan, 2019), biodegradable (Bordes and
Holmberg, 2015; Du et al., 2021) and can be produced via biological
processes (Reznik et al., 2010). The presence of harmful by products
is also diminished in this class of surfactant. These advantages make
sarcosinate surfactants a potentially attractive option for the
formulator.

Replacing existing surfactants with alternatives can be difficult,
as direct replacement into an existing formulation is not guaranteed
to be successful. To work effectively, formulators must understand
the mechanism of action of the new surfactant and compatibility
with other components. For example, sodium lauryl sarcosinate
(SLSar) does not build significant viscosity when used as the sole
surfactant; it is necessary to add a co-surfactant for worm-like
micelle (WLMs hereafter) formation, required for viscosity build
(Vu et al. (2020); Vu et al. (2021a)). For surfactants like SLSar, where
the carboxylate group is highly susceptible to changes in pH this can
present another challenge. Changing the ratio of protonated to
deprotonated ionic surfactant present via pH (or the amount of
salt present) can have dramatic consequences on self-assembled
structures and the properties of the formulation (Vu et al. 2021a; Vu
et al. 2021b; Xu et al., 2019).

Computer simulation is often positioned as a useful tool to aid
identification of candidate surfactant systems, as it allows the
elucidation of self-assembled surfactant microstructures and
dynamics that may not be readily available to the
experimentalist. It also affords the potential for rapid screening of
candidate systems where the formulator can step outside their usual
portfolio of surfactants, readily available from raw-materials
suppliers, to explore novel (and natural) alternatives. Several
computational approaches exist such as atomistic (e. g. molecular
dynamics, MD) and coarse-grained approaches (e. g. coarse-grained
MD, and dissipative particle dynamics, DPD). These offer insight at
a molecular level to enable calculation of thermodynamic quantities,
and to probe the self-assembly process of surfactants (into micelles
and larger structures) that can inform the development of new
surfactant formulations. Recently Taddese et al. (2020) has reviewed
the state of the art in the simulation of surfactant systems.

Atomistic simulations (e. g. MD) have been used to study many
surfactant micelle properties the including the characteristics and

dynamics of micelles (Sanders et al., 2012; Anderson et al., 2017;
Anderson et al. 2018; Dhakal and Sureshkumar 2015; Silva et al.,
2019; Zhou and Ranjith, 2021; Song et al., 2020), structuring of
surfactants on interfaces (Illa-Tuset et al., 2018; Müller et al., 2021)
and use of surfactant self-assembly to deliver drugs (Bunker and
Róg, 2020; He et al., 2022; Parchekani et al., 2022). Simulating
surfactant self-assembly can be difficult with atomistic methods
because of the computational cost associated with performing
simulations over (relatively) long time-scales. Micelle structures
typically form over several micro to milliseconds. This is beyond
the limitations of routine atomistic approaches. Consequently, self-
assembly of only a few micelles worth of surfactants can be studied
with these techniques. Therefore, coarse-grained (CG) approaches
are often applied (commonly based around the Martini force-field)
(Marrink et al., 2007; Wang and Larson 2015; Burov et al., 2008; Wu
et al., 2009; Jalili and Akhavan 2009; Sanders and Panagiotopoulos
2010; Velinova et al., 2011; Kraft et al., 2012; LeBard et al., 2012;
Drew Bennett et al., 2013; Tang et al. 2014; Tang et al., 2017; Pérez-
Sánchez et al., 2023; Nguyen et al., 2022; Peroukidis et al., 2022;
Carvalho et al., 2022). Here, chemical structures are simplified by
grouping multiple atoms together into a single interaction site
(bead). Because CG systems require the simulation of fewer
particles they enable the simulation of larger time-scales and
systems than what are feasible with all-atom simulations.

Dissipative particle dynamics (DPD) is a particular CG
approach that has become popular for the simulation of
surfactant self-assembly as it allows significantly longer length
and time-scales to be accessed at reduced computational cost
(albeit with a potential loss in accuracy) (Hoogerbrugge and
Koelman, 1992; Groot and Warren, 1997; Español and Warren,
2017). Like other CG approaches, in DPD groups of atoms (or
molecules) are coarse-grained into beads. Where DPD differs is in
the employment of very soft (conservative) potentials which
facilitate the use of larger time-steps. DPD simulations have been
applied to the study of surfactant self-assembly, for example, for
WLMs Tang et al. (2017) calculated a number of micelle properties
for model body-wash systems, Yu et al. (2017) studied the pH-
responsive self-assembly of an amphiphilic dendritic polymers into
micelles of different morphologies depending on the simulated pH,
and Xu et al. (2019) investigated the pH-controlled formation of
WLMs in a solution of a gemini-surfactant. Wand et al. (2020)
calculated how the composition of a mixed surfactant system
influences its self-assembly into WLMs. Several other DPD
studies have reported on the simulated properties of micelles
(Vishnyakov et al., 2013; Lee et al., 2013; Mao et al., 2015;
Johnston et al., 2016; Lee et al., 2016; Anderson et al., 2017;
Anderson et al., 2018; Anderson et al., 2023; Sangwai and
Sureshkumar, 2011; Velinova et al., 2011; Nivón-Ramírez
et al., 2022).

An important property in the development of surfactant-based
formulated products is rheology, which influences a range of
behaviors, from the ability of a product to flow from a bottle, the
cleaning ability, to sensory interactions. The rheology of a
formulation is strongly influenced by the nature of the self-
assembled micellar structures present in it, in particular the
presence of WLMs (Nachbar, 2011; Peroukidis et al., 2021).
WLMs can lead to high viscosity (Anachkov et al., 2018; Danov
et al., 2018), while more spherical and less tangled structures
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generally result in lower viscosity (Fogang et al., 2018; Fink, 2020).
Because performance of a product is affected by its rheology, and the
rheology is strongly influenced by the self-assembled surfactant
microstructures, it is attractive for simulations to be able to
quantify these dependencies. Direct calculation of rheological
characteristics from simulation is difficult (Backer et al., 2005;
Boromand et al., 2015; Kirova and Norman, 2015; Droghetti
et al., 2018) although some progress has been made recently
(Panoukidou et al., 2021) especially in the calculation of the
scission energy of WLMs (Wang et al., 2018; Wand et al., 2020).
Therefore, it is convenient to use metrics based on the surfactant
structure which act as proxies for rheological properties. Simple
metrics such as micelle sizes, aggregation number, shape and radius
of gyration exist and are simple to calculate (Bray et al., 2019). The
relationship between aggregation number (Nagg hereafter) and
rheology in surfactant solutions is intricate and subject to various
factors (Zhou et al., 2011; Fieber et al., 2021). Broadly, spherical
micelles have minimal impact on viscosity, whereas elongated
micelle aggregates are associated with a notable viscosity
increases. However, a surfactant that produces large WLMs may
display low viscosity if the micelle breakage rate is sufficiently high.
In addition, past a certain threshold, viscosity might decrease due to
the emergence of branching, or the formation of lamellar (or disc-
like) structures (Rogers et al., 2014; Aveyard, 2019). Nevertheless,
the primary mechanism of viscosity build in micellar systems
involves growth and entanglement of long WLMs (Aveyard,
2019). Given these trends, it is interesting to explore if simulating
self-assembly can be used to screen candidate surfactants and
formulations for potential viscosity enhancement. If possible then
one could use such simulations to direct subsequent laboratory
efforts, enabling focus on a select few samples, optimising efficiency,
reducing time, and minimising costs.

In this communication we focus on the zero-shear viscosity of a
surfactant solution as a key rheological performance indicator, and a
key formulation target which is relatively easily measured. We study
the self-assembly behavior of SLSar, and co-surfactant
cocoamidopropyl betaine (CAPB) to determine if DPD
simulations can indeed provide insight into the zero-shear
viscosity, basing our work on previously published DPD models
used to describe other surfactant systems (Anderson et al., 2018;
Wand et al., 2020; Panoukidou et al., 2021). Simulation results are
compared to experimentally measured values for zero shear viscosity
at similar compositions to understand if there is a correlation
between these methods that may form the basis for confidence in
a screening protocol for novel surfactants. To be of practical utility,
such simulations should be geared as a rapid and cost efficient in
silico screening tool. Therefore we choose to focus on short time-
scale simulations, exploring the early stages of self-assembly, the
motivation for which is discussed further into the paper. Note that
we do not conduct imaging studies of the experimental systems,
rather choosing to rely on well defined links between certain
rheological behaviors and micelle structures, e. g., those
determined by cryo TEM (Danino, 2012; Anachkov et al., 2018).

The article is arranged as follows. We first describe the protocols
used for laboratory experimentation and the corresponding results
obtained. Following this, we present the computational study
including methodologies adopted and our results. Finally, we
bring the experimental and simulated results together to assess

the correlation between the two. We provide our conclusions
before closing the article.

2 Experimental methods and results

Here we describe the experimental approach for collecting zero-
shear viscosity data for the CAPB/SLSar surfactant solutions and
present the results obtained.

2.1 Materials

Amino acid-based surfactant SLSar (30 wt%) containing 0.2 wt
% NaCl (Crodasinic™ LS30) was used along with CAPB (30 wt%)
and 4.2 wt% NaCl (Crodateric™ CAB 30). The agents used to adjust
pH were NaOH and citric acid, from Sigma Aldrich, both above 99%
purity. Distilled water was used in all experiments.

2.2 Sample preparation and composition

Solutions with eight different mass ratios of CAPB/SLSar were
prepared as detailed in Table 1. Samples were mixed using a digital
magnetic stirrer until total homogenisation. The solutions varied
from pH 3.5 to 6.5. After preparation, the solutions were allowed to
equilibrate for at least 24 h before any experiments were performed
to ensure equilibration.

2.3 Rheological analysis

To explore the rheological properties of solutions,
measurements were taken using an Anton Paar MCR
302 rotational rheometer. Measurements were performed with
a cup and bob stainless steel device of 18 mm diameter and
17 mm diameter, 25 mm length, respectively, with a fixed gap. A
solvent trap was used to prevent solvent evaporation during
measurements. Samples were allowed to relax and acclimatise
for 5 min after loading, before measurement. All measurements
were carried out at 25°C in duplicate and the average was reported
in the results.

TABLE 1 Active concentrations (wt%) of CAPB/SLSar mixtures sampled.

SLSar CAPB CAPB/SLSar

15.00 0.00 0.00

12.00 3.00 0.25

6.00 9.00 0.67

7.50 7.50 1.00

6.75 8.25 1.22

9.00 6.00 1.50

3.00 12.00 4.00

0.00 15.00 ∞
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The flow properties of the samples were measured by
recording shear stress (σ) and viscosity (η) values when
shearing the samples at ascending and descending shear rates
ranging from 0.01 to 1,000 s−1 then 1,000 to 0.01 s−1 (logarithmic
scale). Data was gathered at 10 points per decade. The parameter
collected during this experiment was the zero-shear viscosity,
denoted η0 and oftentimes obtained in the quasi-Newtonian
(plateau) region.

2.4 Experimental results

Table 2 shows the results of the flow shear rate sweep tests. In
regions that were both low pH and low mass ratio of CAPB/SLSar
turbid systems were observed. These liquids were white and cloudy
and, under cross polarised microscopy, showed an absence of
crystalline material. Shortly after blending these liquids had
extremely high zero-shear viscosities of tens of thousands of
mPa s. After a few hours these liquids transitioned to low
viscosity. It is likely that this behavior is related to the
protonation and precipitation of the acid form of SLSar at a
pH close to or below its pKa of 4.5 (Wallach et al., 1992). Similar
effects were encountered by Vu et al. (2020) and we agree with their
assessment that these systems are best discarded due to their
unsuitability for formulation. The remaining systems listed in

Table 2 were clear and colorless liquids with differing viscosity
as reported.

We observe a steadily increasing viscosity peak as the mass
ratio of CAPB/SLSar is increased up to 1.5. Further increasing to
the ratio to 4.0 results in a dramatic drop in recorded viscosity.
We observe the largest peaks in viscosity at close to the
experimentally recorded value pKa for SLSar of 4.5 where the
molar ratio of anionic to acid form of SLSar is approximately 1:1.
Similar behavior was observed by Vu et al. (2020) who
hypothesized that the hydrogen bonding between the acid
and anionic forms of SLSar and the zwitterionic component
(CAPB here) at the effective pKa is a contributing interactions
leading to viscosity enhancement.

3 Computational methods and results

In this section we describe the computational approach
adopted outlining the DPD models used to simulate the
surfactants, our approach for constructing simulations at
multiple pH values and describing the analysis performed. At
the end of the section, we present the results of the
computational study saving a comparison to the experimental
results to Section 4. Further details on the DPD methodology,
model parameters (including model validation) and simulation
setup are given in the Supplementary Material.

3.1 DPD representations of the
surfactant molecules

In our DPD model (which follows the approach of Anderson
et al. (2017)) both surfactant molecules are defined by a set of
linearly bonded beads comprised of multiple chemical groups. These
beads contain 1–5 “heavy atoms” (i. e. carbon, oxygen, nitrogen,
sodium). For this study we use eight surfactant bead types; three
corresponding to alkyl groups [CH3CH2] [CH2CH2] and [CH2]; a
secondary amide [CH2 − C (=O)NH − CH2]; a tertiary amide
[CH2 − C (=O)N(CH3) − CH2]; a quaternary ammonium cation
[CH2N+(CH3)2CH2]; and the deprotonated carboxylate [COO−] or
protonated carboxylic acid [COOH] alternatives. These beads
should of course be bonded as appropriate to the chemical
stoichiometry of the molecules. Three supramolecular solvent
beads are also used: [2H2O] [Na+ ·2H2O], and [OH−·H2O],
representing water, sodium, and hydroxyl ions respectively.
These latter beads are all the same in the model apart from
the charge, in other words free ions in this approach are
represented by charged water beads. In developing this model
we follow the approach outlined in prior works (Anderson et al.,
2017; Anderson et al., 2018; Anderson et al., 2023; Panoukidou
et al., 2019; Del Regno et al., 2021; Bray et al., 2020; Bray et al.,
2022; Wand et al., 2020), where the bead volumes are based on
partial molar volumes (Durchschlag and Zipper, 1994) and the
interactions between DPD beads upon log P and density
measurements. As this method is now well established we do
not give more extensive details here, rather we point to the
Supplementary Material. Following this model, SLSar in the
deprotonated state takes the structure.

TABLE 2 Viscosities (mPa s) of CAPB/SLSar mass ratio mixtures at multiple
pH levels. Data points labelled “t” were identified as turbid.

pH CAPB/SLSar

0.00 0.25 0.67 1.00 1.22 1.50 4.00 ∞
3.5 t t t t - 80 - 2

4.0 t t t t 75 220 7 2

4.1 t t t t 127 596 7 2

4.2 t t t t 170 4,636 5 -

4.3 t t t 135 243 5,091 5 -

4.4 t t t 206 666 6,237 5 -

4.5 t t t 707 6,076 4,375 4 -

4.6 t t 87 1,399 5,155 1,026 4 -

4.7 t t 170 4,832 3,019 169 3 -

4.8 17 t 418 330 147 129 3 -

4.9 25 83 2,659 295 127 17 3 2

5.0 203 480 173 78 41 11 3 -

5.1 58 1,127 233 61 26 5 3 -

5.2 53 71 32 17 7 6 3 -

5.3 22 20 7 8 7 4 3 2

5.4 5 4 7 7 5 3 3 -

5.5 3 3 3 3 4 3 3 -

6.0 2 3 3 3 3 3 3 2

6.5 3 3 2 3 3 3 2 -
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[CH3CH2]–[CH2CH2]4–[CH2 − C (=O)N(CH3) − CH2]–[COO
−],

with [Na+ · 2 H2O] as counterion. The deprotonated form of the
zwitterionic CAPB follows similarly,

CH3CH2[ ]– CH2CH2[ ]4– CH2–C( � O)NH–CH2[ ]– CH2[ ]
– CH2N

+(CH3)2CH2[ ]– COO–[ ],

except that no counterion is needed because in this state the
molecule is charge neutral. In the case that either surfactant is
protonated the terminal carboxylate bead is replaced by a carboxylic
acid bead, and in the case of CAPB a compensating number of [OH−·
H2O] counterions are added to maintain overall charge neutrality.
The surfactant structures are illustrated in Figure 1.

We calculate the CMC of the surfactants (following Anderson
et al., 2018) to validate our model. For SLSar we obtain a calculated
CMC of ≈ 10–14 mM, versus an experimental value of ≈ 12–14 mM
(Patra et al., 2018). Likewise, for CAPBwe find a CMC of ≈ 2–4 mM,
versus an experimental value ≈ 3mM (Dai et al., 2014; El-Dossoki
et al., 2020).

3.2 Acid-base surfactant populations at
different values of pH

For a given pH both CAPB and SLSar surfactants can co-exist in
their given acid and conjugate base form, i. e., in carboxylic acid
(protonated)/carboxylate (deprotonated) form, respectively. If the
pH is decreased, the fraction of protonated surfactants increases as
determined by the dissociation constant pKa of the carboxylic acid
group. Changing the ratio of protonated to deprotonated surfactant
can have dramatic changes on the self-assembled structures and
therefore the properties of formulations (Vu et al., 2021a; Vu et al.,
2021b; Xu et al., 2019). We represent pH in our simulations by
adjusting the ratio of protonated to deprotonated surfactants
following the classic Henderson-Hasselbalch model in Eq. 1
(Henderson, 1908). From the reported pKa of the surfactants, i. e.
pKa = 4.5 for SLSar (Wallach et al., 1992) and pKa = 1.83 for CAPB
(Wood, 1987), the ratio of protonated and deprotonated surfactants
at each pH is calculated from

log10 [AH]/[A−]( ) � pKa − pH. (1)

Here [AH] and [A−] are the concentrations of the protonated and
deprotonated surfactant, respectively. We assume that both
surfactants are monoprotic acids (i. e. carboxyl group) and ignore
the highly basic ammonium ion of CAPB which has a pKa ≳ 9, since
we do not work in such high pH conditions.

In reality the degree of protonation depends upon the
surroundings of the surfactant, i. e. the effect of self-aggregation on
the acid-base equilibrium of one of these surfactants is a known effect
resulting in a pKm (apparent pKa for micellar surfactant) shifted from
the aqueous counterpart by factors such as hydrogen bond availability,
dielectric constant changes, surfactant distribution in themicelles, and
overall surfactant concentration (Maeda and Kakehashi, 2000;
Goldsipe and Blankschtein, 2006). Vu et al. (2020) determined the
effect of the co-surfactant cocoamidopropyl hydroxysultaine (CAHS)
on SLSar by potentiometric titration, observing a shift from pKa ≈ 5 to
4.5 when going from pure SLSar to a CAHS/SLSar mass ratio of 60:40.
Whilst we recognise that a shift can occur we adopt pKm = pKa in this
work as the offset may not be known for de novo surfactants in future
studies, and we wish to trial the simplest approach possible.

Figure 2 shows the shift in populations of acid and conjugate
base as the pH changes. We can see over the pH range studied (i. e.
between 3.5 and 6.5 in our study) that CAPB is in near-complete
acid form and changes in populations of the SLSar forms is the main
driving force behind any pH effect observed (when using fixed
CAPB/SLSar surfactant mass ratio).

When building our models, we do not consider water
dissociation. The concentrations of OH− and H3O

+ ions from
such are negligible compared to the counterion concentrations
unless the solution becomes very acidic with a pH below 3. The
presence of counterions in solvent (corresponding to [Na+ ·2H2O] or
[OH−·H2O]) is used to maintain charge neutrality.

3.3 Simulation and analysis details

We sample the same eight CAPB to SLSar mass ratios as covered
experimentally but chose to explore a reduced number of pH levels

FIGURE 1
Coarse grained models of SLSar and CAPB in the deprotonated and protonated states.
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covering the same range–this was done to provide good sampling
whilst reducing computation cost. Simulations were performed at
seven pH values equivalent to 3.9, 4.3, 4.7, 5.1, 5.5, 6.0 and 6.5. As
described above, the pH was used to fix the ratio of protonated to
deprotonated surfactant, as a “quenched” variable. For each mass
ratio and pH, we ran simulations in box sizes of 403 (22.6 nm3) to
ensure enough material of each form of surfactant was present in the
box and that large (relatively) aggregates have the space to form. We
discuss the consequence of altering the box size in Section 4. For
each system, we ran an initial simulation to determine a resultant
Nagg value. Here, we adopt a cut-off of Nmic = 6, i. e., aggregates with
more than 6 surfactant molecules present are considered as micelles.
Anything below this point is considered a submicellar aggregate. We
base this on previously reported works (Anderson et al., 2018).
Where the final time-step Nagg from the simulation was greater than
seventy-five, a total of ten repeats simulation of the CAPB/SLSar
mass ratio/pH combination were conducted, each with a different
random seed. This was done to obtain average, reliable, details of the
self-assembly process Where Nagg < 75 was observed, we did not
perform further repeats as random sampling of systems fulfilling this
criterion showed little variation (less than ±5). This is discussed in
more detail in Section 4.

For the simulation time adopted, we choose to go against
convention where the aim is usually to determine equilibrium
structures, and here explore self-assembly and micelle behavior
over shorter time-scales. As such we sample self-assembly over
one million time-steps We do this for two reasons.

• The first is computational efficiency. We have demonstrated in
our previous work (Anderson et al., 2023) that equilibration of
micelle structures can take a very large simulation time (at least
10–40 million time-steps in the case presented in the cited
literature). Whilst it is technically feasible to simulate such long
time-scales given enough resources, to be of practical use it is of
our view that the computational screening protocols ought to be
more cost efficient and less time consuming than the alternative
of running the laboratory trials.

• Secondly, it is our view that true equilibration of large WLMs
is not practically feasible in the relatively small simulation
boxes used in this type of computational study. WLMs have
typical aggregation numbers in the range of many thousands
to millions (Danov et al., 2021; Danov et al., 2018). In our
choice of system size, the total number of surfactants present
at 15 wt% is ≈ 3000, with the precise number depending upon
the mass ratio of CAPB to SLSar. Whilst it would be possible to
form a structure containing three-thousand surfactants, such a
situation where there is only a single WLM in the simulation
box is not representative of equilibrated experimental systems.
These would have a distribution of micelle sizes in the sample.
To be able to adequately model a system that was able to
produce large WLM structures as part of a representative
distribution of micelle sizes is beyond routine computational
study at this point. Another consideration is that the
equilibrium size of WLMs will also be affected by the
micelle breakage rate for a given system. Previous authors
suggest the breakage rate of WLMs for similar systems to be
the region of tens to hundreds of milliseconds (Zou et al., 2015;
Vu et al., 2020), which is many orders of magnitude beyond
current accessible simulation time.

Assessing the utility of short time-scale simulations (exploring
early stage self-assembly) is core to our research question in
performing this work. For selected systems we explore longer,
four million time-step, simulations in order to explore the
consequences of extended run times.

DPD simulations were performed using the DL_MESO simulation
package (Seaton et al., 2013) and we adopt a DPD time-step of
0.01 DPD time-units. Hereafter we shall, for the most part, express
elapsed times in DPD time-units. One DPD time-unit corresponds
to ≈ 50 ps of real elapsed time, according to previously reported
mappings based on matching diffusion coefficients (Fraaije et al.,
2018; Anderson et al., 2023). Hence the adopted DPD time-step of
0.01 DPD time-units corresponds to ≈ 0.5 ps. This is a couple of
orders larger than the typical femtosecond time-step in MD, which
goes some way to explain the preference for using CG methods such
as DPD for simulating surfactant self-assembly.

A constant pressure ensemble (NPT), following the Langevin
piston implementation by Jakobsen (2005) was used, and we set the
system pressure to p = 23.7 (DPD units) to match the pressure of
pure water in the model defined by Groot and Warren, (1997). The
electrostatics of the charged DPD beads were defined by the model
of González-Melchor et al. (2006) which assumes a uniform
dielectric constant (chosen to be equivalent to pure water by
setting the electrostatic coupling parameter Γ = 15.4) in the
simulation box. The electrostatics were solved using a smoothed-
particle mesh Ewald (SPME) algorithm (Essmann et al., 1995). All
simulations were started from randomly dispersed initial
configurations.

Simulation trajectory files were analyzed using the UMMAP

package (Bray et al., 2019), which was modified for this work to
enable determination of branching in micelle structures following
the method presented in Conchuir et al. (2020) (see below). The
trajectory data comprise simulation snapshots taken every
2000 DPD time-steps (i. e. 20 DPD time-units ≈1 ns). The Nagg

(number average) values are extracted as previously described in

FIGURE 2
Fraction of deprotonated state for SLSar and CAPB as a function
of pH, computed from the Henderson-Hasselbalch model in Eq. 1.
The range investigated in this work (computationally) is between the
two dotted vertical lines.
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Anderson et al. (2018) after partitioning the surfactants into sub-
micellar and micellar aggregates. Nagg was plotted as a function of
time to understand self-assembly behavior. Shape metrics
determined to understand the average morphology of micelles
were calculated as reported in the original UMMAP paper using
cut-off values ϵ = 0.333, ϵrod = 0.5, ϵdisc = 1.0, Nrod = Ndisc = 100.
These values were determined by trial and error to ensure that
observed structures (i. e. from visualizing simulation outputs)
corresponded to the shapes described through automatic
identification using the UMMAP package. In this work we combine
spherical, oblate and prolate spheroids resulting from the shape
analysis into one “spheroid” class as the distinction between these
structures does not not provide detail relating to viscosity (all
structures in the spheroid class would result in low viscosity).
Micelles with gyration tensors that reported as rod or ellipsoid by
UMMAP are classed as “rod-like”. This was decided upon after
visualising the resulting ellipsoids resulting from the gyration
tensor which were found in reality to be exclusively “bent” rods.
All other classifications remain the same as the original citation
except lamellar which refers to a structure with two principle extents
(defined using the gyration tensor) longer than the bounding box
size. In this work, these structures are generally branched micelles
(determined via visual inspection) and we refer to these as 2D
extended. Those with three extents larger than the box dimensions
are referred to as 3D extended. It should be noted that for aggregates
that self-interact across the boundaries only the unreplicated
structure (suitably unwrapped) is used for shape analysis (and
aggregation size) which limits their total extents. Hence care
must be taken in interpreting the 1D to 3D extended structures
where replicas can be staggered and stacked within the box. For
these a clearer interpretation is given using the below “skeleton”
method which also indicates connections between the replicated
structures.

The degree of branching in micelles was determined by
identifying the “skeleton” (central path) of each micelle, using a
modified version of the Conchuir et al. (2020) method, and locating
the points at which a junction occurred in the resulting micelle

skeleton graph. From this method we can identify both micelle
branches and end caps. Examples of the resulting skeleton for
branched micelles are presented in Figure 3 where the skeleton is
shown running a central path through the micelle. Each “red” ball is
a segmented fragment of the micelle with the “blue” ball providing
additional links obtained by studying the connections between
segments. The line then provides the skeleton connections. The
branch points are located at red points where three or more lines
connect and the end caps where only one line connects. A finite
branched WLM (2 branch points, 4 end-caps, no closed paths) is
seen in mass ratio 0.67 at pH3.9 from a 403 simulation box
(Figure 3A). Branched micelles that wrap around the box and
self-link to form an infinite length (e. g. 2D and 3D extended
structures) have more branch points than micelle end-caps as did
cases where closed paths formed and each junction is treated as a
separate branch point. Examples are Figure 3B where we see a
heavily interconnected structure (7 branch points, 3 end-caps,
several closed paths) from a single simulation snapshot from the
mass ratio 0.0 at pH3.9 in a 403 simulation cell. In Figure 3C we show
a heavily interconnected (13 branch points, 7 end-caps, many closed
paths) structure resulting from a simulation snapshot from the
system with mass ratio 0.0 at pH3.9 in a larger, 503, simulation cell.

In the text we report the average number of branch points per
micelle 〈Nbranch〉 as indicative of the overall system. However, in
practice some resulting micelles were highly branched whilst several
remaining shorter and rod-like micelles which lower the reported
average value.

3.4 Computational results

In Figure 4 we show the aggregation behavior as a function of
time for the CAPB/SLSar mass ratio 0.67 mixture at four different
pH values (Figures showingNagg evolution for all sampled ratios and
pH levels are supplied in the Supplementary Material). Figures
4A–D shows the behavior at pH 3.9, 4.3, 4.7 and 5.1,
respectively. The plots show the average aggregation number

FIGURE 3
Representative branched structures of surfactants aggregates of CAPB/SLSar with (A) branchedWLM (2 branch points, 4 end-caps, no closed paths)
seen in mass ratio 0.67 at pH3.9 (403 simulation box), (B) heavily interconnected (7 branch points, 3 end-caps, several closed paths) seen in mass ratio
0.0 at pH3.9 (403 simulation box), and (C) heavily interconnected (13 branch points, 7 end-caps, many closed paths) seen in mass ratio 0.0 at pH3.9 (503

simulation box), demonstrating skeleton identification for determining branching (ball and line). Skeleton lines falling outside the micelle
representation represent real links between parts of the micelle that wrap through the periodic boundaries.
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(〈Nagg〉 hereafter) (black line), resulting from the ten repeat
simulations, in addition to the best fit (red dashed line) obtained
by fitting to 〈Nagg〉. In each case, the fit was determined with a
simple nonlinear least squares procedure (via Xmgrace). Calculated
fits show very high correlation with the determined value of 〈Nagg〉.
By using replicate simulations we have been able to determine three
distinct growth profiles for self-assembling micelle aggregates. These
are logarithmic, linear and cubic (referred to as “cubic” hereafter)
micellar growth. These behaviors are discussed more throughout the
article. Results from the ten individual simulations are shown as
colored dotted lines.

For the above system 〈Nagg〉 determined at the final time frame
decreases with increasing pH from in excess of 400 at pH 3.9 to less
than 80 at pH5.1. This trend is observed for each CAPB/SLSar mass
ratio although the effect is more pronounced for the SLSar rich
mixtures as this surfactant has a significantly stronger response to
pH (as shown in Figure 2). Each of the presented four systems
undergoes an early stage logarithmic growth region which persists to
aNagg of ≈ 70–80. Following this, for systems that increase further in
Nagg we observe a linear growth region, the gradient of which is
correlated with pH. The lower the pH, the larger the gradient, and
therefore the larger the resultant micelles at the end of the
simulation. For the system sampled at pH 3.9, we observe a
cubic growth region that commences at ≈ 7000 DPD time units
that is not present for the other three pH values sampled for the
CAPB/SLSar 0.67 mass ratio. We note that the appearance of the
cubic growth regime seems to correspond with the formation of
branches in (and between) micelle structures (see shape and

branching metrics in Figure 5). Comparison of Figure 5B with
Figure 4B shows that very small amounts of branching (leading
to small amounts of extended structures as defined by shape metrics)
does not prevent 〈Nagg〉 as being fitted to a linear growth
relationship.

Inspection of the colored (dotted) lines in Figure 4,
corresponding to individual simulations, shows the extent of
variation in individual simulations. In the early, logarithmic
growth regions, most simulations report aggregation behavior
that is similar across repeats (Figure 4D). As systems present
with strong linear or cubic growth, larger differences can occur.
For example, the system corresponding to pH 3.9 (Figure 4A) has a
discrepancy of ≈ 500 in the reported final frame Nagg value between
the maximum and minimum determined values. For the same
CAPB/SLSar ratio at pH 5.1 (Figure 4D) a discrepancy of ≈ 10
is observed.

In Figure 5 we present shape and branching metrics
corresponding to the micelles formed in the CAPB/SLSar mass
ratio 0.67 simulations (the same systems as Figure 4 for consistency).
Additional figures showing shape metric evolution over time for all
sampled ratios at pH levels from 3.9–4.7 are supplied in the
Supplementary Material. Note that the presented images show
the average shape and branching behaviors across the ten
replicate simulations. For a CAPB/SLSar mass ratio 0.67 at
pH3.9 we see an early majority of spheroid micelles decrease
rapidly with time as both rod-like and then, slightly later,
extended structures such as WLMs and 2D branched
morphologies appear. This appearance of extended structures

FIGURE 4
Aggregation behavior of CAPB/SLSar as a function of time for mass ratio 0.67 across four different pH levels. These are (A)mass ratio 0.67 at pH3.9,
(B)mass ratio 0.67 at pH4.3, (C)mass ratio 0.67 at pH4.7, and (D)mass ratio 0.67 at pH5.1. The black line shows the averaged behavior (over 10 different
repeats) and the red, dashed, line the best fit line according to the functional forms discussed in the main text. The remaining colored, dotted, lines show
the aggregation behavior observed in individual simulations. For each pH level, we include the best fit and associated R2 value on the plot.
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corresponds to the formation of branching in the simulations. The
initial increase in rod-like micelles is reversed as the fraction hits
≈ 0.6, at which point extended structures begin to develop. This
occurs as rods extend into WLMs, with rods extending across
periodic boundaries in predominantly one direction. More
significant branching is then observed as WLMs form branches
that shift the extended structures across periodic boundaries in
multiple dimensions. This pattern of behavior is repeated for mass
ratio 0.67 at pH4.3 (Figure 5B) where there is a slower decrease in
spheroid micelles, a corresponding slower increase in the rod-like
and WLM micelles, and hardly any 2D extended structures
appearing (a very small degree of 2D extended shape is present
in the final reported time frames corresponding to a small degree of
observed micelle branching). Again, the onset of extended structures
(WLMs in this case) appears as the fraction of rod-like micelles
crosses ≈ 0.6. This is again repeated in Figure 5C with the rates being
slower once again with almost no WLMs (or branching) being
observed. In the case of the mass ratio 0.67 at pH5.1 system the
dominant shape remains the spheroid with a minority of rod-like
micelles forming. No WLMs or extended structures appear in this
case. Note that the rod-like fraction of all the systems presented
display an early peak and then steep decay in the very early time-
scales. Through visualisation of the morphology produced we
attribute to the behavior of very small micelle aggregates just
above the cut-off of Nmic = 6.

Whilst we choose to explore the early time self-assembly and
aggregation behavior of surfactants in this study, it is natural to
ask the question what happens if the simulations are extended

beyond this time window. To answer this we have sampled
several systems over a longer time period of 40,000 DPD
time-units. Examples of the longer time aggregation behavior
are presented in Figure 6. In these images 〈Nagg〉 is displayed for
the full 40,000 DPD time-units along with best fit lines calculated
over the initial 10,000 DPD time-units (red dashed lines). The
systems studied in Figures 6B, C (corresponding to mass ratio
0.25 at pH4.3 and mass ratio 0.67 at pH5.1, respectively) remain
broadly consistent with the behavior observed over the first
10,000 DPD time-units (i. e. dominated by logarithmic growth
for mass ratio 0.67 at pH5.1 and linear growth for mass ratio
0.25 at pH4.3). As the simulation for the mass ratio 0.25 at
pH3.9 system (Figure 6A) is extended beyond 10,000 DPD time-
units (where 〈Nbranch〉 = 0.5), initially the observed cubic
relationship in 〈Nagg〉 continues up until approximately
20,000 DPD time-units. At this point we observe a sharp
deviation from cubic behavior as 〈Nagg〉 begins to plateau. This
plateau corresponds to 〈Nagg〉 ≈ 3,000 which is almost the entire
surfactant content of the simulation box. The plateau is therefore a
result of the finite material contained within the simulation box
becoming depleted. At the final time-unit for this system 〈Nbranch〉
≈ 8 and the resulting morphology is heavily interconnected and
continuous. As we extend the mass ratio 1.22 at pH3.9 system
beyond the initial 10,000 DPD time-units we observe a change
from the initial linear behavior (with 〈Nbranch〉 = 0.1) to a much
sharper cubic growth regime with 〈Nbranch〉 ≈ 2.5 at final time-unit.
Figure 6D shows this change which can be compared to the projection
of the original linear growth (red dashes).

FIGURE 5
Shape and branch metrics behavior CAPB/SLSar as a function of time for mass ratio 0.67 across four different pH levels. These are (A) mass ratio
0.67 at pH3.9, (B)mass ratio 0.67 at pH4.3, (C)mass ratio 0.67 at pH4.7, and (D)mass ratio 0.67 at pH5.1. Plots show the fraction (of molecules in micelles
of different shapes) of each observed shape type as a function of time. Morphologies: spheroid (black), rod-like (red), worm-like (blue), 2D extended
(indigo), 3D extended (orange). Shapemetric definitions are provided in themain text. Average degree of branching over time is plotted in black dots.
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In addition to exploring the effect that longer simulation times
can have on the behavior of the observed aggregates, it is natural to
consider what would happen if the size of the simulation cell is
modified beyond the default 403 explored in this work. In Figures
7A–D we demonstrate the impact box size can have on 〈Nagg〉 for
mass ratio 0.0 at pH3.9, mass ratio 0.67 at pH3.9, mass ratio 1.22 at
pH4.3, and mass ratio 1.33 at pH3.9. For the first two, we explore the
box size effect over 10,000 DPD time-units. For the latter we explore
the behavior 40,000 DPD time-units.

For the mass ratio 0.0 at pH3.9 system (Figure 7A), simulation in
both a 403 and 503 boxes result in cubic growth regimes at the end of
the simulation. Here, the transition from a linear to cubic regime
appears to occur at approximately the same region (marked by an
arrow on the image). Whilst there is some difference between the
reported 〈Nagg〉 over time, the results are broadly within error of
each other. In Figures 8A, B we look at the shape and branching
metrics for these two box sizes for the mass ratio 0.0 at pH3.9 system.
For both, the general morphologies reported are similar but there is a
key difference in the reported behavior. The behavior of spheroid
micelles is broadly the same in both box sizes. Rods can be observed
transitioning into WLMs after a slightly longer period of time in the
larger box. This is intuitive as the definition ofWLM is set by the box
size. As the box gets larger, rods can grow longer before their
classification is updated. What is perhaps less intuitive is the
behavior of the 2D and 3D extended structures. Larger, 3D
extended, structures seem to be preferred over the 2D
alternatives as the simulation box gets larger. We speculate that
the origins of this behavior stem from spatial requirements to form

the 3D extended systems. The increased proportion of 3D extended
structures reported from the shape metrics in Figure 8B is
accompanied by a significant increase in the degree of branching
in the system and the larger box presents almost double the average
number of branch points per micelles when compared to the smaller
box. Examples of morphologies resulting from the two box sizes for
the mass ratio 0.0 at pH3.9 system are presented in Figures 3B, C.
From the consideration of the mass ratio 0.0 at pH3.9 and mass ratio
0.67 at pH3.9 systems, we conclude that smaller boxes promote the
2D extended structures, whereas the larger boxes promote the 3D
extended structures.

In the mass ratio 0.67 at pH3.9 system, we observe a micelle
growth region following cubic growth behavior for the 403 system
(Figure 7B). Upon enlarging the box to 503 the cubic behavior
disappears, leaving a system that appears to grow linearly.
Comparing Figures 8C, 5A, which explore the shape metrics for
the mass ratio 0.67 at pH3.9 systems in 503 and 403 boxes,
respectively, shows that the smaller of the two boxes presents
with more WLMs and fewer rods, as can be expected based on
previous discussion. For the larger box, the onset of 2D extended
structures, as determined by the shape metrics, is later than that for
the smaller box. Both systems present similar degrees of branching
although there appears to be more branching earlier for the larger
box. For both box sizes, the total fraction of 2D extended structures
is comparable at the final time-unit. Deviation from the linear
behavior of the 403 box occurs at the point at which the 2D
extended structures appear in the analysis of the shape metrics
(≈ 6 000 DPD time-units). We postulate that the deviation is much

FIGURE 6
Aggregation behavior of CAPB/SLSar micelles as a function of time with different mass ratios exploring the effect of increasing the simulation time
from 10,000 to 40,000 DPD time-units. Systems presented are (A)mass ratio 0.25 at pH3.9, (B)mass ratio 0.25 at pH4.3, (C)mass ratio 0.67 at pH5.1, and
(D)mass ratio 1.22 at pH3.9. The black line shows the averaged behavior (over 10 different repeats). The red, dashed, line is the best fit line according to the
functional forms discussed in the main text, determined over the initial 10,000 DPD time-units. For Figure 4Dwhere we add a blue dashed line as an
approximate to the behavior observed over the longer run time.
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FIGURE 7
Aggregation behavior of CAPB/SLSar micelles as a function of time with different mass ratios exploring the effect of increasing the simulation box
size. Systems presented are (A)mass ratio 0.0 at pH3.9, (B)mass ratio 0.67 at pH3.9, (C)mass ratio 1.22 at pH4.3, and (D)mass ratio 1.22 at pH3.9. Colors
are indicated in the legend for each plot. Nonlinear least squares fits are presented as dashed lines as a guide to the eye.

FIGURE 8
Shapemetric and branching behavior as a function of timewith CAPB/SLSarmass ratio 0.0 at pH3.9, (a-b) andmass ratio 0.67 at pH3.9(c). Plots show
the fraction (of molecules in micelles of different shapes) of each observed shape type as a function of time for (A) 403 and (B, C) 503 simulation boxes.
Note that the corresponding 403 plot of the mass ratio 0.67 at pH3.9 system is shown in Figure 5A. Morphologies: spheroid (black), rod-like (red), worm-
like (blue), 2D extended (indigo), 3D extended (orange). Shape metric definitions are provided in the main text. Average degree of branching over
time is plotted in black dots.
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smaller in Figure 8C enabling the behavior to be classed as linear for
the entire duration. It is possible that larger boxes require more/
larger degrees of branching to register significant deviation from
linear behavior on the time-scales sampled here. This requires
further testing.

Similar size effects to those already observed can be seen in the
behavior from the mass ratio 1.22 at pH4.3 system (Figure 7C) in
which we explore 203, 303 and 403 simulation cells. Reducing the box
size from 403 (black line) to 303 (violet line) results in similar
behavior with both box sizes following the same best fit line
(linear). Further reduction to a box size of 203 results in different
behavior, however. Here we see a micelle growth behavior that turns
to a cubic just prior to 10,000 DPD time-units (blue line). After a
short cubic region (demonstrated by the orange dashed line) we
notice that the 〈Nagg〉 begins to plateau as was observed in
Figure 6A. The resulting aggregate size for this box size
corresponds to the total number of surfactants present in the
simulation box. For the mass ratio 1.22 at pH3.9 system
(Figure 7D) we appear to observe the same behavior on reducing
the box size as surfactant is depleted in the smaller box.

The exploration of simulation times and box sizes presented
here provides some degree of the behaviors that may be observed as
changes are made to the simulation protocols. One could argue that
longer simulations are required, or that larger boxes are necessary.
The difficulty is where does this end? It is always possible
(theoretically) to run longer/larger, and new behaviors may be
observed. Practically, however, in designing a simulation
campaign, one must balance simulation cost (resulting from box
size and simulation length) with the desired accuracy and reliability
in the derived result.

Finally, in Table 3 we present the 〈Nagg〉 value, the average
number of micelles and the average number of micelle branch
points, in addition to the overall maximum and minimum
micelle sizes recorded over the ten repeats (where performed),
for each of the sampled systems. We also present the functional
form (logarithmic, linear or cubic) of a nonlinear least squares fit
performed on the average micelle growth rate. We note that the
different, dominant, growth behaviors are a continuum and
therefore we assign the category based on somewhat arbitrary
cut-off values. We are able to observe, in Figure 5, that cubic
growth is a result of branching and the corresponding formation
of extended structures. However, as we see from comparing
Figure 5B with Figure 4B small amounts of branching can be
tolerated in what is defined as linear growth.

From inspection of Table 3, we observe that low CAPB/SLSar
mass ratio and pH (top left of Table 3) results in the largest micelle
growth. This appears intuitive as here there is less charge repulsion
in the resultant micelles as most surfactants appear in a protonated
state, potentially leading to decreased curvature and therefore larger
structures. In this region, for pH 3.9, strong cubic growth is
observed, brought about by micelle branching and the formation
of extended structures. As the pH increases more the table becomes
dominated by linear growth (corresponding to rod-like species and
much less branch formation), until at even higher pH values the
table presents extensive logarithmic growth of smaller spheroid type
micelles. Broadly, resulting 〈Nagg〉 decreases with increased CAPB
content (left to right in the table) and decreases as pH increases (top
to bottom in the table). However, at the bottom of the table 〈Nagg〉 is

lower for SLSar rich systems. The decrease in size with increasing
pH is more pronounced for the high SLSar content systems, which is
a consequence of the larger changes to the protonation state of SLSar
in response to pH versus that of CAPB. At the extreme, pure CAPB
shows little change in behavior with increasing pH as the
protonation state of this surfactant remains largely unchanged.

Table 3 highlights the difference in the maximum andminimum
sizes obtained in the simulations and shows the danger of not
performing several repeats in a study like this where we are
looking to correlate self-assembly of micelle aggregates to the
potential for viscosity build, especially for systems with resultant
〈Nagg〉 above 100. In the extreme case, if one was to perform only a
single simulation, it would be very hard to make sense of the results
and trends in behavior would not emerge cleanly. For systems that
tend to form the largest aggregates, we see significant discrepancies
between the maximum and minimum reported values at the final
time-step of simulation.

We label certain systems 〈Nagg〉 in bold in the table. These are
systems that we feel could be of interest experimentally based on two
determinant cut-offs. The first is the resultant 〈Nagg〉 itself which we
set as requiring to be ≳ 1.5× the typical spherical micelle size
(enabling us to be well into the rod forming region at
minimum), which also corresponds to the approximate 〈Nagg〉
where half of a system morphology is in spheroid configuration
and half in rod-like configuration (See, for example Figure 5C). In
this study, this value is ≈ 〈Nagg〉 � 110. The second criteria is that
the systemmust be in a linear growth region as cubic growth regions
could indicate large structures not conducive to appropriate
viscosity build (See discussion in Section 4).

4 Discussion

If rate of micelle growth and resultant aggregation properties are
used as a proxy for viscosity, on the assumption that large WLMs
(which lead to high viscosity) will have a high (or larger) aggregate
size, then the simulated results correlate well with the experimental
data. Systems that have faster growth and larger resultant aggregates
are in broad agreement with regions of high experimental viscosity.
The exception to this agreement is for the low pH systems that were
turbid (or unstable) in the laboratory.

Ignoring the turbid region for the moment (we return to this
shortly), an inspection of Tables 2, 3 reveals that for each CAPB/
SLSar mass ratio the regions of higher 〈Nagg〉 broadly corresponds
to the regions of high zero-shear viscosity with an error of around
0.3 pH units. The small discrepancy in the pH could be due to the
approximations made when modelling the pH during the
simulations, where the Henderson-Hasselbalch equation was used
to determine the ratio of protonated to deprotonated surfactants
corresponding to a particular pH. As discussed in Section 3.2 this
does not reflect the complex effects of micelle environment on the
pKa of an ionic surfactant. However, the error in the optimal pH is
small and it would not be difficult for a formulator, having used the
simulations to choose the pH at which to work, to adjust the pH to
the true optimum. This would still represent a significant speedup
over formulating without predictions.

The most significant conflict between experimental and
simulated results in the non-turbid region is for the CAPB/SLSar
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TABLE 3 Properties of the simulated systems including: final Nagg (nearest integer); max and min micelle sizes observed across repeats; final growth
relationship type being logarithmic (log), linear (lin), or cubic (cub) (for linear coefficient less than 0.001, to 1 significant figure, in plots ofNagg as a function
of DPD time-units, we assign log); micelle branching extent (average branches per micelle,Nbranch) for final time frame; number of micelles (Nm) in the final
time frame. Standard errors are presented in brackets (for the final digit). Bold values are systems that we feel could be of interest experimentally based on
two determinant cut-offs discussed in Section 3.4.

CAPB/ SLSar

pH Property 0.00 0.25 0.67 1.00 1.22 1.50 4.00 ∞
3.9 〈Nagg〉 803 (166) 597 (98) 456 (93) 292(30) 261(40) 251(33) 151(14) 90 (4)

Naggmax/min 1,093/327 815/362 811/259 360/231 360/170 359/179 189/128 100/82

Nagg fit cub cub cub lin lin lin lin lin

〈Nbranch〉 1.0 (7) 0.5 (4) 0.3 (2) 0.1 (9) 0.08 (8) 0.1 (9) 0.02 (4) 0 (0)

〈Nm〉 5 (1) 6 (1) 11 (1) 8 (1) 13 (2) 13 (2) 22 (2) 36 (1)

4.3 〈Nagg〉 167(13) 186(18) 196(9) 178(15) 182(20) 177(12) 147(8) 91 (3)

max/min 197/129 256/144 220/164 218/142 251/149 204/142 170/124 101/84

Nagg fit lin lin lin lin lin lin lin lin

〈Nbranch〉 0.03 (4) 0.03 (3) 0.01 (2) 0.03 (3) 0.02 (2) 0.03 (3) 0 (0) 0 (0)

〈Nm〉 20 (2) 5 (2) 19 (2) 18 (1) 18 (2) 19 (1) 22 (1) 36 (2)

4.7 〈Nagg〉 79 (2) 96 (3) 104 (5) 116(7) 118(8) 125(7) 140(7) 92 (4)

max/min 85/74 119/90 106/89 133/103 123/107 150/110 162/125 100/83

Nagg fit lin lin lin lin lin lin lin lin

〈Nbranch〉 0 (0) 0 (0) 0.00 (1) 0.00 (1) 0.01 (2) 0 (0) 0.01 (2) 0 (0)

〈Nm〉 43 (1) 35 (1) 29 (2) 32 (2) 28 (6) 27 (2) 23 (1) 36 (2)

5.1 〈Nagg〉 55 59 72 (3) 90 (2) 87 (2) 92 (3) 121(6) 92 (3)

max/min - - 81/65 95/88 90/81 98/81 136/105 99/81

Nagg fit log log lin lin lin lin lin lin

〈Nbranch〉 - - 0 (0) 0 (0) 0 (0) 0 (0) 0.00 (1) 0 (0)

〈Nm〉 64 58 47 (2) 36 (2) 39 (1) 36 (1) 27 (1) 35 (1)

5.5 〈Nagg〉 45 58 66 67 73 79 (3) 107 (5) -

max/min - - - - - 88/73 117/86 -

Nagg fit log log log log log log lin -

〈Nbranch〉 - - - - - 0 (0) 0 (0) -

〈Nm〉 79 58 52 37 46 42 (2) 31 (2) -

6.0 〈Nagg〉 39 47 58 62 70 73 102 (4) -

max/min - - - - - - 117/94 -

Nagg fit log log log log log log lin -

〈Nbranch〉 - - - - - - 0 (0) -

〈Nm〉 91 74 58 50 48 46 32 (1) -

6.5 〈Nagg〉 - 49 56 66 71 75 99 -

max/min - - - - - - - -

Nagg fit - log log log log log lin -

〈Nbranch〉 - - - - - - - -

〈Nm〉 - 72 61 55 47 45 33 -
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mass ratio 4.0. Here, the simulation suggests that the system should
have an elevated zero-shear viscosity based on the aggregates at
other mass ratios. The laboratory data measured for this work
reports low viscosity at all pH levels sampled. This may be
because the samples of CAPB used in the experimental work in
this study were impure (the models are 100% pure), as is almost
always the case with commercial surfactants. Work performed by Lu
et al. (2015) shows that the CAPB/SLSar mass ratio 4.0 (albeit for a
different total surfactant loading of 12%) should, in fact, lead to a
increased viscosity. Therefore it is possible that the simulation here
is correct and the experimental data has been affected by the choice
of materials and measurement approach (this in itself is useful
information). Dwelling a little longer on the results from Lu et al.
(2015), we notice that these differ slightly from those reported here.
This may be due to subtle differences in the composition of the
surfactants used, or in the rheological test methods employed. It is
also possible that the differences are due to the fact that Lu et al.
(2015) used a total surfactant concentration of 12% whereas we
sample at 15%. Despite the differences the trends are the same:
moderate richness of CAPB leads to higher viscosity at the correct
pH whereas adding too little or toomuch does not, and the optimum
mass ratios of CAPB to SLSar are similar.

Returning to the region identified as turbid by the laboratory
measurements, herein lies the main source of discrepancy between
simulation and experiment. At low pH and CAPB/SLSar values, the
turbid laboratory samples initially had a very high viscosity, which
reduced to low viscosity after a few hours. This is in agreement with
results observed by Vu et al. (2020). Note that we observe a
pH threshold for turbid mixtures that varies with the mass ratio
of CAPB to SLSar (Table 2) which further supports the idea that the
micellar environment affects pKa discussed in previous sections. In
the regions defined as turbid by laboratory testing, our simulations
report multiple different behaviors. At the lowest pH sampled by
simulation (i. e. pH 3.9) for the CAPB/SLSar mass ratios of 0.0,
0.25 and 0.67 we observe large aggregates, displaying a relatively
large degree of branching, with a dominant cubic defined micelle
growth region towards the final configuration. Taken in isolation,
the large aggregates may signify a propensity for higher viscosity but
the degree of branching confirmed by direct calculation and the
cubic growth region indicate other processes at play. Heavily
branched and large structures are not likely to be associated with
a massively enhanced zero-shear viscosity and in fact these
structures are more likely indicative of a tendency towards
macroscopic phase separation, corresponding to the turbid and
eventually phase separated samples seen experimentally. As such,
one may consider systems that branch heavily during short time-
scale simulation as indicative of compositions to discard in a
screening procedure using our methods. On the other hand, low
levels of branching may provide a mechanism of stress relaxation in
micelles that leads to a reduction in the structural relaxation time
and consequently lowering the zero-shear viscosity (Rogers
et al., 2014).

We believe we have evidence that the simulation approach as
described above can act as a useful method to guide the formulator
to regions in formulation space where appropriate zero-shear
viscosity may be found. The errors in optimum pH are small and
would easily be corrected in the laboratory, and compared to
searching a very large formulation space with no predictive

guidance, the formulator would still have arrived at an optimal
blend in a much reduced time and cost. However, we caveat that
more testing is required to ensure the method works for other
surfactant systems. Here we have explored two highly synergistic
surfactants and could expect the approach to work for other
synergistic pairs. What the outcome would be for a single
surfactant and salt is still unknown.

Here we summarise the steps to be undertaken for further
explorations using the methods outlined above. This is not meant
as a definitive list of tasks but more of a guide to be adapted as
required. Note, whilst we focus on DPD in this article for
computational efficiency, we see no reason this approach would
not work for other dynamics based simulation methods (in
principle) where appropriate surfactant models are used.

1. For the given surfactant system, determine the experimental
space for exploration. This could follow the same type of study
here, where we explore the effect of the ratio of co-surfactant
and pH, or it could be a different study, e. g., where a single
surfactant is screened for salt (or other additive) sensitivity.

2. Determine most appropriate DPD model, parameters and box
size based on composition being explored. Simulation boxes
need to be large enough to ensure representative quantities of
all surfactants and additives can be accommodated in
simulation and to enable sufficiently large structures to form.

3. Develop inputs and run single simulations for all appropriate
combinations identified in step 1.

4. Evaluate aggregate sizes, shape and branch properties at the
final time-step (simulation length set to one million steps in
this study but this is not a hard and fast “rule” and the
appropriate time-scale may depend upon your system
of choice).

5. For systems dominated by non-spheroid aggregates, prepare
and run multiple replicate simulations (we chose 10 replicates
but more will potentially give improved statistics).

6. Perform analysis to determine micelle/aggregate properties as a
function of simulation time to understand behavoir.

7. Define regions of interest for experimental exploration by
looking for strongly growing systems that do not present
highly branched structures following cubic growth in short
time-scale simulations (i. e. those with significant amounts of
2D and 3D extended structures).

8. Test for zero-shear viscosity potential in the laboratory.

5 Conclusion

In this article we set out to explore if the early stage self-assembly
behavior seen in coarse grained simulations of surfactant solutions
could be used to guide laboratory efforts when developing new
candidate formulations, which require specific levels of zero-shear
viscosity. In essence, we believe we have successfully done that, and
the discussed approach can be used to aid formulators to screen
ratios of surfactants and pH levels that are likely to result in positive
outcomes. It is important to note that the guidance is correlative: we
do not set out to provide a complete prediction for viscosity, rather
we aim to identify potential regions of interest in formulation and
chemistry space.
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To do this we focus on determining simple metrics (aggregation
number, micelle shape, micelle branching, etc.) relating to the
aggregation behavior of surfactant systems. Our rationale for this
is that whilst rheological behavior of surfactant systems is complex,
depending upon numerous factors include micellar structure and
scission and recombination rates, it is known that in order to build
good levels of zero-shear viscosity, large aggregates (preferably
worm-like) are required as a prerequisite. Whilst we do not
perform imaging studies in this article, cryo TEM has been use
extensively to understand micelle structure and the impact on
rheology (Danino, 2012; Anachkov et al., 2018).

Given that our objective is to use molecular simulation as a
screening method and our emphasis on the importance of running
replicate simulations, we need to be able to execute a substantial
number of simulations at a reasonable cost. As such we choose to
explore the potential of relatively short time-scale simulations to
provide insight. While extensive and intricate simulations have the
potential to enhance output precision, they typically entail a
substantial per-simulation cost, impeding their economic and
temporal viability. Simulations that are more expensive and take
longer than experimental studies cannot in good faith be proposed
as a viable screening option. Consequently, striking a balance
between accuracy, speed and cost becomes imperative.

As mentioned, a key factor in our work is our approach to
determining average behavior of micelles resulting from
replicate simulations, rather than performing single long runs.
In doing this we have been able to identify distinct ensemble
behaviors associated with the self-assembly of micelles that
otherwise would be masked by the natural fluctuations in
individual simulations. Specifically, we are able to identify
regions of logarithmic, linear and cubic growth. To the best
of our knowledge, this has not been previously reported. The
logarithmic region corresponds to the growth of spheroid
micelles, the linear region to the formation of rod-like
micelles and the cubic regions to extended, branched structures.

Our simulations show a good degree of correlation with
experimental data. If the formulator were to assume that the
aggregation behavior is positively correlated to zero-shear
viscosity then these simulations would be sufficient to quickly
and cheaply guide such a person to useful areas of formulation
space which might not be found by a traditional “trial and error”
search. While a simple assumption for aggregation number wrongly
suggests that several blends at low pH have may high viscosity, the
extent of branching in these systems and the observation of cubic
growthmay hint at these regions as being unfit for formulation. If we
discount the regions of nonlinear aggregate growth (e. g. logarithmic
and cubic), we could potentially eliminate ≈ 50% of the
measurements from the proposed experimental range. We argue
that we have shown that this method is a cheap, practical and useful
tool for the real world formulator although we acknowledge more
testing is required.
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