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In this article, we study the phase behavior of two polydisperse hydrocolloids:
dextran and polyethylene oxide. We combine the data on the experimental
osmometric virial coefficients of the pure components with the experimental
critical point of their aqueousmixture and the size distribution of each component
from a previously published study in order to predict the phase boundary, spinodal,
and fractionation upon demixing of the polydisperse mixture. We compare the
results of our calculation to the experimental phase diagram. Our method reveals
a better correspondence with the experimental binary phase behavior than
modeling each component as monodisperse. The polydispersity of the
hydrocolloids causes the phase separation boundary to shift to lower
concentrations and the miscibility region to decrease and change its shape
from a rotated U-shape to a W-shape.
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1 Introduction

A solution may gel when assemblies of molecules in that solution span the solution. The
properties of the assemblies and their mutual interactions determine the concentration range
above which the gel forms and the properties of the gel. For example, in the case of fibrillar
assemblies from protein-derived peptides, gelation occurs already at low concentrations of
the building blocks of the fibril (van der Linden, 2012). Notably, such fibrils exhibit
interesting collective properties at higher concentrations, such as their arrangement in
an anisotropic manner like that of (nematic) liquid crystals (Bagnani et al., 2019).

The molecular assembly may reflect an equilibrium state, but, for most practically
relevant systems, in particular for gelling systems, it more often reflects a non-equilibrium
state. The structure of such a state depends on the specific spatial–temporal path through
equilibrium and unstable regions in the phase diagram that are followed during the
preparation of the system and on the rate of change of the thermodynamic conditions.
As such, the equilibrium phase diagram plays an important role in predicting the
characteristics of the structures within and the concomitant properties of the gel
systems. This importance of phase diagrams holds for systems of any number of
components. We will discuss a few examples of the above in simple systems in this
Introduction section to set the scene, before addressing phase behavior in
multicomponent mixtures in more detail in the next section.

As a first example, we choose a system composed of one component in water. We choose
gelatin, which forms random coils at high temperatures and is a liquid, while below a critical
temperature, its molecules form triple helices and its system shows gelation at sufficiently
large concentrations. The work of Chatellier et al. (1985) demonstrates that a critical
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concentration of helices exists, below which no gel forms. Joly-
Duhamel et al. (2002a, 2002b), in addition, have clearly shown that
the liquid–gel transition is, in fact, a percolation transition, with the
concentration of triple helices being the control parameter. We have
shown that the critical concentration of helices, below which the
system gels, can be deduced from the structural characteristics of the
triple helices, i.e., their persistence length and thickness (van der
Linden and Parker, 2005). The helices can, in fact, be viewed as
fibrils. Furthermore, the value of gel elasticity at low concentrations
of helices can be solely deduced from entropy arguments (van der
Linden, 2012), and this also holds for the elasticity value at higher
concentrations (apart from the fact that one requires one adjustable
fitting parameter which is predicted to be of order 1, as confirmed by
fitting) (van der Linden, 2012). The elasticity over time is
determined by the final temperature of the system and the rate at
which this occurs (Normand et al., 2000; Normand and Parker,
2003). We clearly have a non-equilibrium gel state. Despite this non-
equilibrium state, one can always predict elasticity solely on the basis
of the helix concentration, which is a separately accessible
observation of Joly-Duhamel et al. (2002a, 2002b).

For another case of fibrillar assembly under non-equilibrium
conditions, Nguyen and Vaikuntanathan (2016) simulated the
fibrilization of two components A and B for a given initial excess
chemical potential of each type of monomer. This situation can be
experimentally realized, for example, in a supersaturated solution of
both types of monomers. The excess chemical potentials were
assumed to be equal for both types. The interactions between the
likewise species are also assumed to be equal. The fibrils were found
to consist of blocks composed of A, connected to blocks composed of
B. The less favorable the unlike particle interaction becomes, the
longer the blocks become. If one now increases the initial excess
chemical potential of the two types of monomers, the length of the
blocks becomes smaller. As such, the structural diversity within a
fibril increases upon increasing the initial excess chemical potential
of the monomers, i.e., upon increasing the distance to the transition
point. This in turn will affect the interactions and flexibility of the
fibril and thus the properties of the gel it forms.

Another example of a “one-component” system, for which the
equilibrium phase behavior is important in understanding the non-
equilibrium gel state, consists of oil droplets in water, for which the
interaction can be tuned by the temperature (Poulin et al., 1999).
Above a sufficiently large enough attraction between the droplets,
the authors find a transition, known as spinodal decomposition.
This occurs in the region of the phase diagram that is referred to as
the instability region. One finds a bi-continuous structure, with one
of its parts being mostly droplets that are packed with a fractal
dimension, df. This df can get as low as 1.7 at sufficiently high
attraction, forming a gel state, while for lower attractions, one finds a
df of approximately 3, indicating a fluid state, resulting in the end in
a two-phase (de-mixed) system.

In order to better understand gelled systems made from
multicomponent mixtures, the above urges us to investigate
the phase diagrams of multicomponent mixtures. Hereto, we
currently report on the recent theoretical and experimental
results obtained to explain the experimental phase diagram for
a multicomponent system in water containing differently sized
coil-like polymers of dextran (D) and polyethylene oxide (PEO).
Mixtures of such polydisperse bio-polymeric ingredients are

ubiquitous and therefore bear relevance to many practical
situations. An important example is the understanding of
functionality in food formulations of a variety of
multicomponent mixtures that consist of minimally refined
plant-based ingredients. This understanding facilitates the
adaptation to use different ingredient sources, thereby
supporting the development of a more sustainable food supply.

Aqueous mixtures of polymers such as polyethylene oxide
and dextran form liquid–liquid two-phase systems at certain
concentrations. These systems are often used as a model
system for the phase behavior of macromolecules in solution
because they show a clear macroscopic phase separation (Kang
and Sandler, 1988; Edelman et al., 2003; Dewi et al., 2020). They
also have practical applications, as they are often used to aid in
the partitioning of biological materials such as proteins and cell
materials (Johansson et al., 1998; Johansson and Walter, 1999).

For the prediction of their phase behavior, the polymers are
often considered monodisperse. Experimental work by Edelman
et al. (2003), however, has shown that upon demixing, considerable
fractionation in the molecular weight occurs for both PEO and
dextran. Not only is there an effect of the polydispersity of each
component on fractionation but also the concentration in the parent
phase plays a role. At lower total polymer concentrations in the
parent phase, the depleted colloids have a broader distribution,
i.e., there is less pronounced fractionation. The changes in the
distribution are mainly prevalent in the depleted phase. The
average molar mass in the enriched phase does not change
considerably. The changes in the amount of fractionation,
depending on the concentration along a dilution line, were also
reported by Zhao et al. (2016). Furthermore, Gaube et al. (1993)
showed that polydispersity plays a role in phase behavior and phase
composition. They compared mixtures of PEO and dextran with
various molecular sizes and found that for each polymer, the short-
chain molecules preferentially partition to the phase enriched in the
other polymer.

There has been some effort in incorporating the polydispersity
of these polymers in the prediction of their phase behavior. Using a
universal quasi-chemical (UNIQUAC) model, Kang and Sandler
(1988) incorporated polydispersity in their prediction and found
that polydispersity of the polymers enlarged the two-phase region
considerably near the critical point and resulted in smaller
miscibility regions far from the critical point. They also found
significant fractionation, and the difference in the average
molecular weight of the components in each phase increased
with larger polydispersity.

Most often, when the phase behavior of a binary mixture is
studied experimentally, one or more dilution lines are used to
obtain the concentration of each component in each phase. These
concentrations are then used to construct the binodal
(Albertsson, 1970). However, this approach does not shed
light on polydispersity nor does it give an insight into the
demixing in the metastable region, where a system de-mixes
into multiple phases, but that is outside of the unstable (spinodal)
region. It is also difficult to quantify the impact of polydispersity
and its corresponding distribution on phase behavior (Dos
Santos et al., 2004). In order to get more insights into the
transition between one and two phases, Larsson and
Mattiasson (1988) determined the experimental phase
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boundary for polydisperse PEO and dextran. They found a
significant broadening of the phase boundary compared to the
approach of Albertsson (1970). The broadening increased with
increasing polydispersity at the depleted side of the said
polydisperse component (Larsson and Mattiasson, 1992).

In a previous numerical work, we predicted the phase
behavior of a polydisperse binary mixture of hard spheres in
solution using the virial coefficient approach (Sturtewagen and
van der Linden, 2021; Sturtewagen and van der Linden, 2022),
based on the theory of McMillan and Mayer (1945).
Polydispersity was incorporated into the system by means of
sub-components. The spheres had an asymmetric size ratio to aid
in demixing (Dijkstra et al., 1999). Polydispersity of the largest
component caused significant changes to the phase diagram.
With an increase in polydispersity, the critical point shifted to
higher concentrations, while also at the same time, the miscible
region decreased. Not only polydispersity plays a role but also the
type of distribution has an influence. We found that the largest
components of the distribution impacted the phase diagram the
most. De-mixed mixtures also showed significant fractionation.
The smallest sub-components of the large polydisperse
components favored the top phase that was enriched in the
small monodisperse component.

In recent works, the experimental phase diagram for the
macromolecules of PEO and dextran was theoretically
reconstructed using osmotic virial coefficients as obtained from
the fitting experimental data from an earlier published work
(Dewi et al., 2020) and the experimentally obtained critical point
of the binary mixture (Dewi et al., 2020). However, some aspects of
the experimental phase diagram remained unexplained by the
theoretically constructed one. Mainly, at low concentrations of
dextran, the experimental system showed thermodynamic
incompatibility and demixing into two phases, while the theory
predicted a homogeneous mixture for these concentrations. We
hypothesize that this discrepancy is due to the polydispersity of the
macromolecules.

In this article, we take the polydispersity of both these
components into account (by subdividing each polymer into
sub-components of different sizes) when predicting the phase
diagram based on the experimental data from Dewi et al. (2020).
We study the position of the spinodal and binodal. We model the
interactions between the different polydisperse sub-components
using the second virial coefficient, where we assume that the
polydisperse sub-components act as non-additive hard spheres.
We start with describing the underlying theoretical background
in Section 2. In Section 3, we describe the materials and methods.
In Section 4, we discuss the results and compare it with that of
other works in the area of multicomponent mixtures.

2 Theoretical background

To describe phase separation in a system containing particles of
different diameters and of different types, we choose a framework
that accounts for terms up to quadratic terms in concentration,
i.e., including up to the second-order virial coefficients that are
experimentally or theoretically accessible. We start from the

Helmholtz free energy F for an N-component mixture in a
common solvent:

F

RTV
� ∑N

i�1
ci ln ci( ) + ∑N

i,j�1
Bijcicj, (1)

where Bij ≡ Bji, R represents the molar gas constant, T represents
the temperature, and ci represents the molar concentration of
component i, with ci � ni/V, where ni denotes the number of
moles of component i in volume V, and Bij represents the
second virial coefficients, reflecting the interactions between
components i and j. The osmotic pressure Π of a mixture can be
written as

Π
RT

� − 1
RT

∂F
∂V

( )
T,ni

� ∑N
i�1
ci + ∑N

i,j�1
Bijcicj. (2)

In our case, the interactions between the particles are assumed to
follow the non-additive hard sphere model (Sturtewagen and van
der Linden, 2022), where the non-additivity refers to either an
attractive or repulsive extra interaction on top of the excluded
volume interaction. For such non-additive hard spheres, the virial
coefficients for a system of two compounds, i and j, consisting of
spheres of two different diameters, are given by

Bij � 2
3
π · σ i + σj

2
· 1 + Δij( )[ ]3, (3)

where σ i refers to the diameter of the sphere of the compound i, and
Δij reflects the interaction contribution that is different from the
excluded volume interaction. The term Δij can be negative or
positive in the non-additive regime, whereas it is zero while
referring to a pure excluded volume interaction, with the latter
referring to the so-called additive hard sphere model. The chemical
potential µi for component i can be obtained from

μi
RT

� 1
RT

∂F
∂ni

( )
T,V,ni ≠ j

� μi
0

RT
+ ln ci + 2∑N

j�1
Bijcj, (4)

where μi
0 is the standard chemical potential of compound i. Suppose

we search for conditions for one or two macroscopic phases, there
are three important aspects: the occurrence of instability, the critical
point, and the coexistence region.

The first aspect is the occurrence of instability. In a two-
component mixture, one refers to the boundary of this instability
as the spinodal, which is a curve. To analyze the local stability of the
mixture against phase separation, it is convenient to introduce the
so-called Hessian matrix M1. The Hessian matrix characterizes the
local curvature of the Helmholtz free energy surface. The limit of
stability is reached when the matrix has one zero eigenvalue and is
otherwise a positive definite (Heidemann and Khalil, 1980). For a
mixture with N distinguishable components, the Hessian matrix can
be represented by an N × N matrix, referred to as M1 according to

M1 �

2B11 + 1
c1

/ 2B1N

..

.
1 ..

.

2B1N / 2BNN + 1
cN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)
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The second aspect to consider is the critical point. In a binary
mixture, the critical point is a stable point which lies on the stability
limit (spinodal) (Heidemann and Khalil, 1980) and where the phase
boundary and spinodal coincide. In mixtures with more than two
components, these critical points are also called plait points.

Critical points and plait points are, in general, concentrations at
which two or more phases are in equilibrium and become
indistinguishable (Heidemann, 1994).

There are two criteria that have to be fulfilled to find the plait
points. The first one is det(M1) = 0, which is the equation for the
spinodal. The other criterion is based on the fact that at the critical
point, the third derivative of free energy should also be zero. For a
multicomponent system, this criterion can be reformulated using
Legendre transforms as det(M2) = 0 (Beegle et al., 1974; Reid and
Beegle, 1977), where

M2 �

∂μ1
∂n1

/
∂μn
∂nn

..

.
1 ..

.

∂M1

∂n1
/

∂M1

∂nN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

and matrix M2 is matrix M1 with one of the rows (in this case the
lowest row) being replaced by the partial derivatives of the
determinant of matrix M1. Note that it does not matter which
row of the matrix is replaced.

The third aspect is the coexistence region. This is characterized
by the equilibrium composition of the phases for N components,
which is in turn characterized by a manifold (for two components,
this becomes the binodal or coexistence curve). For a system that
separates into two different phases, this manifold is found by
simultaneously solving Eqs 7, 8:

ΠI � ΠII, (7)
μi

I � μi
IIwith i � 1, 2, . . . , N. (8)

For a mixture containing N distinguishable components, which
de-mixes into two phases, this yields (N + 1) equations with 2 × N
unknowns. In order to solve not only for coexistence concentrations
but also for phase volumes, we require extra equations. For the extra
set of equations, we build on the fact that no particles are lost and no
new particles are created during phase separation and the fact that
we assume the total volume does not change. For a system that
separates into two separate phases, indicated by I and II, we obtain
an extra set of equations (Sturtewagen, 2020):

c1 � αIcI1 + 1 − αI( )cII1 ,
·
·
·
cN � αIcIN + 1 − αI( )cIIN,

(9)

where αI � VI

VI+VII, in which VI represents the volume of phase I.
The solutions for the two-component mixtures are discussed

elsewhere (Ersch et al., 2016; Dewi et al., 2020; Dewi et al., 2021; Bot
et al., 2021a; Bot et al., 2021b). Eqs. 7–(9) allow for the determination
of the concentration of each component in each of the phases along
with the phase volume of each phase for any given parent
concentration, given that the mixture will separate into two phases.

3 Materials and methods

Size exclusion chromatography with multi-angle laser light
scattering (SEC-MALLS) for both polyethylene oxide (PEO35)
and dextran (D100) was performed by NIZO food research to
obtain the molar mass and size distribution (size distributions are
shown in Figure 1). The SEC-MALLS molar mass plots can be found
in the Supplementary Materials. The experimental critical point and
osmotic virial coefficients for the pure components PEO35 and
D100 were taken from Dewi et al. (2020) (see Table I). The cross-
virial coefficients used in the calculations are the result of a fitting
that includes polydispersity as follows.

Both components exhibited polydispersity (see Figure 1). The
size distributions for both components were binned [the number of
bins (N = NPEO + ND) was NPEO = 1, 2, and 5 for PEO and ND = 1, 2,
and 10 for dextran]. The obtained radii and fractions were taken as
the starting point for the fit of the theoretical polydisperse virial
coefficients to the experimentally obtained ones. The cross-
interactions between the sub-components of PEO and the sub-
components of dextran were also considered the same for all sizes
(ΔPD). For each bin size, one can calculate a virial coefficient and the
corresponding cross-virial coefficients with the other “components”.
Each virial coefficient resulted from a non-additive hard sphere
interaction according to Eq. 3 for Bij, where i can refer to D100 and
PEO35 and j can refer to D100 and PEO35. In addition, we assume
that for the “components,” the values for ΔD100, ΔPEO35, and ΔPD are
independent of the respective radii.

Subsequently, one calculates a number-averaged virial
coefficient for dextran and PEO, BD100 and BPEO35, respectively,
and the cross-virial coefficient, BPD, for the size distribution. These
calculated expressions still contain the unknown values for the
respective parameters, ΔD100, ΔPEO35, and ΔPD. One then
determines the values for the non-additivity parameters DD100,
DPEO35, and DPD, from fitting the calculated number-averaged
expressions to the experimental values of BD100, BPEO35, and BPD.
Once the non-additivity parameters are known, we then determine

FIGURE 1
Size distribution of the polydisperse samples that have been used
to determine the phase diagram.
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the coexistence relationships and the instability line, and the critical
point, and compare these with the ones obtained experimentally by
conducting phase diagram studies. One can explore this procedure
for the different binning strategies. While using the fitting procedure
mentioned above, the sub-component fractions are obtained from
the binned-size distribution, while adjusting the sizes of the sub-
components within a small range and the non-additivity parameters
(ΔPEO35, ΔD100, and ΔPD). The values for the virial coefficients and
critical points that were used in the fitting are given in Table 1. The
obtained matrix of virial coefficients was used to calculate the phase
boundary and fractionation of the polydisperse mixture. The
resulting phase diagram was compared to the experimental phase
diagram fromDewi et al. (2020). A fitting was considered good when
the critical point of the polydisperse mixture was on the two-phase
boundary and the dilution line through the critical point reached an
equal volume at the critical point.

4 Results and discussion

From Figure 1, we conclude that both PEO and dextran show
significant polydispersity. The distribution for PEO is relatively

narrow, is slightly bimodal, and has a small tail, while the
distribution for dextran has more peaks and a considerably fat
tail. Based on the research we did on the effect of polydispersity on
the phase behavior of a binary mixture of non-additive hard spheres
(Sturtewagen and van der Linden, 2022), we hypothesize that
especially the larger components of dextran modify the phase
behavior. The osmometric number-averaged virial coefficient of
PEO is considerably larger than the number-averaged virial
coefficient of dextran (Table 1), even though the radius of the
PEO molecules is not larger. This indicates that the repulsive
depletion interaction between PEO molecules is larger than the
repulsive interaction between dextran molecules.

To determine which effect has the largest influence on the phase
behavior (the large size difference between dextran molecules or the
higher repulsive interaction between PEO molecules), we have
stepwise introduced more polydispersity into our theoretical
calculations of the phase diagram. We have compared the
calculations to the experimental phase diagram from Dewi et al.
(2020). We performed analyses for three cases. First, we introduced
polydispersity only for PEO (Supplementary Materials),
subsequently we introduced polydispersity only for dextran
(Supplementary Materials), and third, we introduced
polydispersity for both PEO and dextran (Supplementary
Materials). We have compared the different binning strategies as
shown in Figure 2; in the main text, we show the result that best fits
all the three cases of the experimental coexistence and instability
lines. This best fit was obtained using polydispersity of dextran as
modeled by the means of 10 bins of equal width, and polyethylene
oxide being modeled as monodisperse.

From Figure 2, we can conclude that the incorporation of
polydispersity draws the (apparent) spinodal more toward the
horizontal axis and a typical W-form emerges. We note that the
term (apparent) spinodal stems from the fact that we plot the
concentrations as determined experimentally, effectively hiding
the polydispersity of the two polymers, which, if polydispersity
would have been included, would, in fact, lead to a multi-
dimensional phase diagram instead of a two-dimensional
phase diagram.

When subdividing dextran into 10 bins of equal bin width, we
capture the details of polydispersity in our fitting. This causes the
spinodal to bend toward the vertical axis at higher dextran
concentrations, indicating that at higher concentrations of
dextran, the mixture can de-mix into two phases of dextran. The
binodal of the mixture with this fitting also changes quite drastically.
At the dextran-enriched side, the phase boundary first shifts toward
higher PEO concentrations and then bends toward the axis with
increasing dextran concentrations. The curve has a noticeable nod.
This indicates a regime change in demixing. At the PEO-depleted
side of the curve, two-phase demixing is with a phase enriched in
PEO and a phase enriched in dextran, but it has a phase enriched in
the smaller components of dextran and a phase enriched in the

TABLE 1 Virial coefficients of polyethylene oxide (PEO35) and dextran (D100) and the critical point for their mixture obtained from experiments by Dewi et al.
(2020), which were used in the fitting for the polydisperse virial-coefficient matrix.

BPEO35 (m3/mol) BD100 (m3/mol) Critical point (PEO35; D100) (mol/m3)

4.74 1.31 (0.40; 1.06)

FIGURE 2
Coexistence line (black dotted) and instability line (black) for the
two-component system of PEO and dextran obtained from solving
Eqs 7–9 while substituting the three experimentally determined virial
coefficients, as determined by osmometry (see also Dewi et al.,
2020). The blue dotted line and the blue line represent the solutions of
Eqs.(7)–(9) while using the binning strategy for PEO and dextran, as
indicated in the inset of the figure and further described in the text. In
fact, PEO is used as monodisperse in the specific strategy depicted
here. The circular open symbols represent the experimentally
determined one-phase systems and the circular closed symbols
represent the two-phase systems.
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larger components of dextran, similar to that described for PEO
above. At the PEO-enriched side of the curve, the binodal shifts
toward lower concentrations of dextran while asymptotically
approaching the horizontal axis. Furthermore, the components
with this pairwise interaction can de-mix into more than two
phases; however, just as in the previous cases, the concentrations
required for multi-phase demixing are unattainable with this particle
distribution. The fitting captures more of the experimentally phase-
separated samples with low dextran concentrations (filled circles in
the plot) compared to the previous fittings. This indicates that our
hypothesis that the polydispersity of dextran would be a driving
factor in the demixing of these samples is valid.

Döbert et al. (1995) constructed a consistent osmotic virial
equation to predict the phase behavior of a different type of
polydisperse dextran and monodisperse PEO. They obtained an
average molecular weight osmotic virial coefficient for the different
polymer chains and compared their results to the predictions,
assuming a binary monodisperse system. They report a better fit
when polydispersity is taken into account. When predicting phase
separation for mixtures close to the phase boundary, they also report
that the binodal shifts closer to the axis in the dextran-depleted side
of the binodal. They report a strong influence of the volume fraction
of the phase enriched in dextran on the shape of the phase boundary
and the fractionation of polydisperse dextran.

Regarding the validity of the virial approach up to the second
order, we like to remark that we determine the second virial
coefficients from the slope of the reduced osmotic pressure,
(Π/RTc) as a function of c, in the limit of c approaching zero.
The contributions of the higher order virial coefficients can be
ignored for our system since the slope was found to be constant
in the concentration range that was used. We note that the osmotic
pressures were determined in the concentration range of
0.02–0.2 mol/m3, which is well below the critical concentrations:
(PEO35; D100) = (0.4; 1.06) (Dewi et al., 2020). Interpreting the
osmotic pressure experiments in terms of the polymers being
modeled by non-additive hard spheres is justified as follows. The
(estimated) overlap concentration of the polymers, c*, for this
system, lies in the order of 0.5 mol/m3 when assuming a radius
of gyration of 10 nm. This radius of gyration is taken from the size
distribution in Figure 1. The measurements for the virial coefficients
are conducted well below this overlap concentration. The critical
concentration is in the same range as the overlap concentration, but
it is noted in support of the second-order approximation that the
results for the critical point, as deduced from substituting the
experimental values for the virial coefficients in the theoretical
second-order model, yield a consistent picture with the
experimental critical point. We, therefore, expect that the second-
order virial approach gives reasonable predictions and refers to a
more elaborate discussion on this topic in Sturtewagen and van der
Linden (2023).

Predicting the phase behavior of multiple components has been
of interest in the literature for some time. One approach that has
been put forward recently builds on a convenient parameterization
that leads to a set of equations that are much more easily analyzed
than applying numerical methods to solve all equations (Bot et al.,
2023). We briefly summarize this work in the following paragraph.

First, consider for simplicity the binodal of a two-component
system. Two coexisting phases, named I and II, are represented by

two molar concentration coordinates (cI1 and cI2) and (cII1 and cII2 )
on the binodal, which are connected by a so-called tie-line.
Introducing the parameter Sm,21 � −(cII2 − cI2)/(cII1 − cI1),
corresponding to (minus) the tie-line slope, allows for rewriting
the coexistence equations. Introducing the parameter Sm,21 may
seem like a step back, since it adds a fourth equation to the
coexistence equations. However, two of these equations have
analytical solutions in terms of the Lambert W function (Corless
et al., 1996), and as a result, the original four-variable problem is
reduced to a more succinct problem in the two concentration
coordinates and the parameter Sm,21. From a physical perspective,
the choice of (minus) the tie-line slope as a parameter seems to be a
defendable choice, as the tie-line contains important information on
the physics of the problem. For real arguments, the Lambert W
function has zero, one, or two solutions, corresponding to,
respectively, the isotropic mixing, location of the critical points,
and binary phase separation. In case of two solutions, the solution
for each component in phase I and II is located either on the W−1-
branch or W0 branch of the Lambert W function. Surprisingly, this
approach can be generalized to many components, i.e., for higher
values than N = 2. There are N2 parameters
Sm,ij � −(cIIj − cIj)/(cIIi − cIi ), of which (N − 1) are free variables
and Sm,ii � −1 is fixed (for components i and j). This reduces the
number of variables in the problem from 2N concentration variables
to N concentration variables plus (N − 1) variables Sm,ij. For more
details, we refer to a recent publication of Bot et al. (2023). The
results in Table 2 present a scheme to calculate the phase diagram
using the abovementioned parametrization. Previously, results have
been published for N = 2 (Bot et al., 2021a; Bot et al., 2021b) andN =
3 (Bot and Venema, 2023). A comparison between the calculations
in terms of the parameters Sm,ij (Table 2) and the numerical results for
polydisperse two-componentmixtures of PEO and dextran, which are
presented in Section 4.2, remains to be evaluated. The calculation of
the binodal manifolds in particular pose numerical challenges because
of the large number of coupled non-linear algebraic equations. The
calculation of the critical and spinodal manifolds presents fewer
complications. For an arbitrary, large number of components N, it
can be considered complementary to another interesting method,
referred to in the literature as the random matrix theory (RMT) (Sear
and Cuesta, 2003; Thewes et al., 2023).

This randommatrix theory has been put forward in the context of
phase behavior two decades ago by Sear and Cuesta (2003) as an
alternative approach to handle the complexity of mixtures with many
components, as a utilization of the general work by Wigner (1967).
Setting details aside, this method allows for calculating the spinodal
curve of complex mixtures using only averages and standard
deviations of the second virial coefficients of the molecules in the
mixture. This simplifies the calculations considerably. The RMT uses
essentially the same expression for free energy as shown in Eq. 1.
Additionally, it makes use of the large number of components and
accordingly the large number of second virial coefficients. Instead of
finding solutions for the spinodal manifold (with the result shown in
the left column of Table 2), Sear and Cuesta (2003) calculated a point
on the spinodal along the line c1 � c2 � . . . � cN, where ci is themolar
concentration of component i, for a system of many components N.
Note that because the number of componentsN is large, the individual
concentrations of the components are very small. This approach was
recently extended to the arbitrary concentrations of the components
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by Thewes et al. (2023). The second virial coefficients Bij are assumed
to form a (symmetric) matrix, composed of diagonal elements that
can be randomly chosen due to the large number of components
present, allowing randomization in this choice, with an average value
b’ and a standard deviation σ and off-diagonal elements with an
average value b and also a standard deviation σ. The virial coefficients
satisfy the criterion of statistical independence, and their absolute
value is smaller than a finite value. These assumptions ensure that the
virial coefficients, i.e., the matrix components, can be randomly
chosen according to a predefined distribution. This considerably
simplifies many aspects of the calculations of the spinodal
manifold of such mixtures. The premise of the RMT is that if the
randommatrix is large enough, the actual values ofBij typically do not
matter anymore and only their average and standard deviations are of
importance, and for some aspects, even the details of the distribution
itself do not play a role anymore. It is not completely clear, however,
which simplifications in the calculations are driven by mathematical
convenience and which ones are driven by physical relevance, thus
yielding some words of caution while applying the RMT approach, as
was also mentioned by Jacobs (2023). The exact analytical expressions
given in Table 2 allow us to separate the mathematical aspects of the
RMT approach from the physical aspects in the calculation. In
particular, the results in Table 2 encompass the critical point, the
coexistence manifold, and the spinodal manifold, whereas the RMT
only yields the spinodalmanifold, often withmore severe assumptions
regarding the concentrations of the different components being all
equal. For the present article, a direct comparison between the
predictions of the RMT and Table 2 is out of scope.

5 Conclusion

The equilibrium phase behavior of multicomponent systems is
relevant for understanding gelation of such mixtures. Controlling
the gel properties can be attained via controlling the structures being
formed during the non-equilibrium processes taking place during
gel formation, while crossing equilibrium phase boundaries.

We have described the theoretical (numerical) work on
predicting the equilibrium phase behavior of a multicomponent
system consisting of polydisperse polymers and compared this to the
experimental data on the phase diagram. Taking into account the
polydispersity helps to more accurately predict the particular form
of the spinodal and binodal.

Polydispersity plays an important role in the phase behavior of the
polydisperse polymers PEO and dextran. The components with a
larger-than-average molecular weight govern the transition between

one and two phases close to the phase boundary in their respective
depleted concentration ranges. This causes a decrease in miscibility
and a shift of the phase boundary to lower concentrations. This causes
drastic changes to the shape of the phase boundary. When both
components are polydisperse, the phase boundary drastically changes
shape, and changes from a U-shape to a W-shape. It is not only the
phase boundary that changes shape, but the spinodal curve also has
different boundaries depending on the polydispersity. Even though
multi-phase separations for mixtures with the fitted interactions are
possible, the existing particle size distributions of PEO and dextran
make concentrations resulting in multi-phase systems unattainable.

Upon demixing, the distribution of polydisperse components
changes in each phase (Supplementary Materials). This
fractionation is dependent on the parent distribution, the pair-
wise interaction between the components of the same type, the
pair-wise interaction of the components of a different type, and the
concentration of both components in the parent mixture.

Our method of incorporating polydispersity allows for a more
precise prediction of the phase boundary compared to assuming
monodispersity, especially in the metastable region. Next to that, our
method allows for prediction of the concentration and fractionation
of each component in each phase depending on the parent
concentration and the volume fraction of the said phases.

The best fit with the available data to the experimental data was
when dextran was polydisperse and PEO was monodisperse.
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