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Granular matter takes many paths to pack in natural and industrial processes. The
path influences the packing microstructure, particularly for frictional grains. We
perform discrete element modeling simulations of different paths to construct
packings of frictional spheres. Specifically, we explore four stress-controlled
protocols implementing packing expansions and compressions in various
combinations thereof. We characterize the eventual packed states through
their dependence of the packing fraction and coordination number on
packing pressure, identifying non-monotonicities with pressure that correlate
with the fraction of frictional contacts. These stress-controlled, bulk-like particle
simulations access very low-pressure packings, namely, the marginally stable
limit, and demonstrate the strong protocol dependence of frictional
granular matter.
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1 Introduction

Packings of granular materials are relevant to many industrial processes and natural
phenomena. The prediction and control of particle packing in industrial processes for
particulate materials significantly impact property repeatability, such as additive
manufactured part strength assurance (Snow et al., 2019; Wischeropp et al., 2019).
Packings formed by natural forces, from hydrological (Gerhard and Reich, 2000) to
astronomical (Watanabe et al., 2019), or animal (Weiner et al., 2020; Buarque de
Macedo et al., 2021), rarely follow single, straight-forward protocols, which leads to
variable, or in some cases optimized, properties. Understanding the complex response
of these far-from-equilibrium granular packings is critical to developing more efficient and
effective means of controlling them.

Simulations use access to particle-scale information, such as particle–particle
forces, to study the effect of packing protocol in ideal and realistic materials.
Simulations have shown that frictionless sphere packings approach the maximally
random jammed state volume fraction (Torquato et al., 2000) and the coordination
number set by isostaticity (O’Hern et al., 2003) for many different packing protocols.
However, the jamming point depends on material-specific contact mechanics and
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protocol (Luding, 2016; Santos et al., 2020). Frictionless particle
packings can lead to various packing fractions by protocol
changes in isotropic compression (Chaudhuri et al., 2010) or
by applying shear strains (Bertrand et al., 2016; Srivastava et al.,
2022). Real granular particles have friction and can form looser
packings than frictionless spheres (Onoda and Liniger, 1990;
Silbert, 2010; Santos et al., 2020). Frictional particles access a
greater range of packing fractions depending on the protocol and
the particle friction coefficient. Song et al. (2008) attributed the
range of packing fractions to sampling an ensemble of jammed
states in a statistical mechanical definition of jamming. Friction
also modulates the coordination number—the average number
of particles each particle is in contact with—Z, which decreases
gradually from the frictionless value of Z = 6 to the frictional
isostatic value of Z = 4 as the coefficient of friction increases
(Silbert et al., 2002; Shundyak et al., 2007; Somfai et al., 2007;
Song et al., 2008; Silbert, 2010; Santos et al., 2020). The
coordination number and packing volume fraction ϕ—defined
as the ratio of the volume occupied by all the particles to that of
the container volume—of stable packings of particles with a
specific friction coefficient can depend on the protocol (Silbert
et al., 2002; Somfai et al., 2007; Bi et al., 2011).

Bililign et al. (2019) observed protocol dependence in
experiments of two-dimensional packings under various
protocols, for example, uni- and bi-axial compression. A
common method to create dense particle packings is by
isotropic compression. Volume-controlled compression can
be achieved by randomly distributing point particles in a
simulation cell and increasing the diameter (Lubachevsky and
Stillinger, 1990; Shundyak et al., 2007) or by decreasing the
simulation cell density of an over-compressed system while
minimizing the conformational energy (O’Hern et al., 2002;
Charbonneau et al., 2012). Flowing particles coming to a stop
is another way for them to pack, for example, from flowing down
an incline (Silbert et al., 2002) or by applying shear stresses (Bi
et al., 2011; Srivastava et al., 2019; 2022). Disrupting or re-
packing already packed systems is also one of the common
methods to modulate the packing fraction, such as tapping or
cyclical shear strains. These repetitive processes generally lead to
denser packings (Kohlrausch, 1854; Williams and Watts, 1970;
Knight et al., 1995; Philippe and Bideau, 2002; Richard et al.,
2005; Rosato et al., 2010; Kumar and Luding, 2016).

Simulation packing methods often control the volume, not the
stress. Achieving zero-stress stable packings is difficult for such
methods. Previous jamming studies of particles with sliding friction
as a function of pressure demonstrated that the packing fraction and
coordination number decrease monotonically with decreasing
pressure (Shundyak et al., 2007; Silbert, 2010). In this article, a
constant pressure in all directions allows the simulation cell to adjust
the edge length, and constant zero shear stresses allow the
simulation cell to adopt triclinic configurations. The final
packings repeatably and rigorously satisfy those stress conditions.
Dagois-Bohy et al. (2012) and Smith et al. (2014) showed that
packings formed by controlling the pressure are more stable to shear
deformation than volume-controlled methods. Furthermore, very
low pressures are accessible to this protocol without extrapolation,
unlike previous protocols (Silbert, 2010). Similar protocols have
been applied to 2D frictionless (Dagois-Bohy et al., 2012), 3D

frictionless (Smith et al., 2014), 2D frictional (Shundyak et al.,
2007; Somfai et al., 2007), and 3D frictional (Santos et al., 2020)
granular particles.

This work studies how the protocols available to stress-
controlled packing simulations change packing properties.
Details on the equations of motion for the stress-controlled
simulations are explained in Section 2.1. Specifically, in this
study, a volume-controlled over-compression method is
compared to four stress-controlled methods, including over-
compression and release, gentle under-compression, and
cyclical compression and release, which is defined in Section
2.2. With zero initial kinetic energy, most of the protocols show
similar behavior, as shown in Section 3.1. A cyclically compressed
and expanded packing method has a distinct, non-monotonic
dependence with respect to the number of cycles and pressure.
Section 3.2 aims to understand the non-monotonic pressure
dependence by analyzing the distribution of contact forces. In
addition, the non-monotonic pressure dependence in the other
protocols is investigated by varying protocol parameters like drag
and the initial pressure given in Section 3.2.

2 Methodology

2.1 Constant stress simulations and
particle modeling

Granular particles are modeled as spheres of diameter d and
mass m, which only interact when in contact through a Hookean
spring–dashpot–slider interaction potential (Cundall and
Strack, 1979). The normal (n) and tangential (s) particle
spring (k) and damping (γ) parameters are set equal to each
other kn = ks = 1 and γn = γs = 0.5τ−1, where τ � �����

m/kn
√

is the unit
of time. Here, the tangential forces are referred to by the letter ‘s’
to indicate that we include the sliding friction between the
particles, characterized by the sliding friction coefficient μs, as
implemented by Cundall and Strack (Buarque de Macedo et al.,
2021), whereby the Coulomb criterion for slipping is satisfied.
The unit of pressure is kn/d and applies to all stresses; the unit of
force is knd. The linear elastic behavior for inter-particle
contacts is reasonably accurate as a model for stiff particles at
most simulated pressures p < 10−1kn/d. Higher pressures p ≥
10−1kn/d are simulated to compare with past work despite large
particle overlaps during packing.

Discrete element method (DEM) simulations were performed
using LAMMPS (Thompson et al., 2022). The inter-particle forces Fi
and torques τi are used to integrate the equations of motion and
update particle positions and orientations. To simulate granular
particles under constant stress, the equations of motion include the
degrees of freedom for a deforming simulation cell. The granular
particles are placed within a periodic three-dimensional simulation
cell that maintains an applied stress tensor by allowing triclinic cell
deformations. In particular, the Shinoda et al. (2004) formulation of
a barostat was used to integrate the positions and momenta of the
particles and to maintain an applied pressure tensor by varying the
simulation cell. This formulation combines the hydrostatic
equations of Martyna et al. with the strain energy proposed by
Parrinello and Rahman (1981) (Martyna et al., 1994).
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_ri � pi

m
+ pcell

ωcell
ri. (1a)

_pi � Fi −
pcell − 1

Nf
Tr pcell[ ]

ωcell
pi. (1b)

_h � pcell

ωcell
h. (1c)

_pcell

kdrag
� V Pint − Pa( ) − hΣhT + 1

Nf
∑N
i�1

p2
i

m
I. (1d)

ωcell � NϵP2
damp. (1e)

Here, the degrees of freedomNf = 3N,N is the number of particles,
and ri and pi are the position andmomentum vectors of the ith particle,
respectively. A “cell” subscript refers to the simulation cell mass and
momentum. The simulation cell “momentum” is modularly invariant
and has md2

τ units. I is the identity matrix, V is the simulation cell
volume, Pa is the applied pressure tensor, and Pint is the internal
pressure tensor. The simulation cell “mass” ωcell has units of md2.
Fluctuations in Pint as the system approaches Pa are dampened by
Pdamp, which has units of τ. The energy scale ϵ = 1kn. As an athermal
system, DEM simulations using this barostat ignore contributions
typical to molecular dynamics simulations, such as thermostat
chains1 (Shinoda et al., 2004).

The triclinic deformations are captured by the simulation cell
matrix h. The hΣhT term comes from the Parrinello–Rahman
formulation (Parrinello and Rahman, 1981) and represents the
external applied stress, defined by the reference matrix h0, where
Σ � h−10 (Pint − Pa)hT−10 . The internal pressure tensor Pint components

Pα,β
int � 1

V
∑N
i�1

pα
i p

β
i

m
+ Fα

i r
β
i

⎡⎣ ⎤⎦. (2)

At jamming, Pint = Pa within numerical precision. The left-hand
term in Eq. 2 is the kinetic energy contribution to pressure Pkinetic. A
computational, unitless drag factor kdrag scales the simulation cell
acceleration:

kdrag � 1 − Δtfdrag

Pdamp
, (3)

where Δt is the time step and fdrag is a non-negative, unitless input
parameter2. The simulation cell drag factor can mimic experimental
packing protocols or ensure stability flow simulations.

2.2 Packing methodology

For each applied pressure, protocol, and friction simulated, six
packings of N = 104 monodisperse particles were generated. Property
uncertainties were calculated as the standard deviation from the six
different packings. Simulations were initialized with particles at random
positions and low volume fraction ϕ0 = 0.05. The initial volume fraction

ϕ0 did not affect the properties of the final packing studied here so long
as ϕ0 was well below the jamming volume fraction (ϕ0 < ϕjam − 0.3).
Initial translational and rotational velocities were set to zero, except
when otherwise noted, in which case velocities sample a Gaussian
distribution with a mean of 0 and a standard deviation to produce an
applied initial kinetic energy. The simulation time step was set to Δt =
0.02τ. A time step Δt = 0.002τ was also tested and did not change the
results for the pressures studied within the uncertainties. After
initialization, the particles were isotropically compressed. Although
the precise initial state of the particles did not impact the packings,
the path to the final state had a large impact. Protocol dependence is
expected for granular particles because the system is dissipative and far
from equilibrium. To sample the possible pathways to pack with a stress
tensor control, particles are compressed using one of the following five
methods: method I: slow compression from a dilute state; method II:
slow expansion from a dense state; method III: repetitive compressions
and expansions; method IV: pressure-controlled progressive de-
compression from a dense state; and method V: volume-controlled
progressive de-compression from a dense state. The initial dilute state
for all methods was ϕ0 = 0.05. Method I applies a constant pressure Pa,f
at t = 0 until the system jams. In method II, first, the system jams at an
initial pressure Pa,0, and then, the applied pressure is instantaneously
changed to Pa,f. Method III repeats method II Ncycle times, where the
system jams after each Pa,0 and Pa,f is applied. The applied pressure is
step-wise decreased in method IV after the system jams at an initial,
high pressure Pa,0 > Pa,f, by a fraction of Pa,0 − Pa,f, re-jamming at each
step until the system reaches Pa,f. Method V is the same as method IV,
but the volume changes, not pressure, similar to a method used in
previous simulations (Silbert, 2010). Protocols I–IV are schematically
shown in Figure 1.

Beyond the effect of the packing protocol and method, the stress
tensor can be constrained in different ways. Triaxial compression tests
are a close experimental equivalent to the simulation constraints on the
stress tensor for isotropic compression (Reddy et al., 1992). However,
the presented simulations use periodic boundary conditions instead of

FIGURE 1
Schematic representation of the pressure-controlled isotropic
compression methods used in simulations. Procedures are shown as
arrows for methods I (black), II (blue), III (green), and IV (orange) and
are described in the text.

1 To exclude thermostat chain and options in LAMMPS (Thompson et al.,

2022), add pchain 0 ptemp 1 to the fix nph/sphere barostat options.

2 Add drag fdrag to the fix nph/sphere options to apply drag on the barostat in

LAMMPS (Thompson et al., 2022).
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walls. We simulate three cases of applied symmetric stress tensors σa: i)
Pa = σa,xx = σa,yy = σa,zz and σa,xy = σa,xz = σa,yz = 0, ii) Pa = (σa,xx + σa,yy +
σa,zz)/3 and σa,xy = σa,xz = σa,yz = 0, and iii) Pa = σa,xx = σa,yy = σa,zz, while
σa,xy, σa,xz and σa,yz are unspecified and the cell remains rectilinear3.
During packing in all these simulations, the final stress tensor equals the
applied stress tensor. The differences in the stress tensor of the final
packings highlight the importance of understanding the choice of the
applied stress tensor.

All of the stress tensor constraints form mechanically stable,
jammed configurations. However, the final stress tensors differ.

Figures 2A, B show the six components of the diagonal and off-
diagonal components of the stress tensor, respectively, using method
I. The off-diagonal stress components show the largest differences;
see Figure 2B. Simulation cells that are not allowed to tilt, where
σa,xy, σa,xz, σa,yz are unspecified, had nonzero, albeit small, values of
off-diagonal stress at jamming. Those non-zero shear stresses could
lead to different yield stresses (Dagois-Bohy et al., 2012). Simulation
cells that are allowed to tilt have off-diagonal stress values that decay
to zero and average angles off the orthorombic box of 90° ± 0.003° for
all the frictions and pressures tested. The diagonal components of
stress σa,xx, σa,yy, and σa,zz are less affected by the constraints. Unless
noted otherwise, simulations in Section 3 set diagonal members of
the applied stress tensor to the pressure, Pa = σa,xx = σa,yy = σa,zz, and
off-diagonal members to zero, i.e., σa,xy = σa,xz = σa,yz = 0. Such
precise control of stress is usually unattainable for experimental
packing schemes. However, the differences in final states
demonstrate the importance of knowing the relevant stress and
volume controls in experimental and simulation protocols.

Using method I and the stress constraint defined as case (i), a
representative simulation time progression of the kinetic energy,
volume fraction, and pressure are shown in Figure 2C. At t = 0, the
kinetic energy and pressure are zero, except for cases with a defined
initial pressure, discussed in Section 3.2, at the initial volume fraction
ϕ = 0.05. As the simulation cell volume decreases and picks up
momentum, the particle velocities increase due to affine motion, and
the kinetic energy and pressure increase. At t ≃ Pdamp, the
Parrinello–Rahman algorithm starts to control the pressure and the
simulation cell momentum, and the kinetic energy decreases. Near
jamming, the kinetic energy decreases by several orders of magnitude,
and the volume fraction plateaus. The pressure jumps to the applied
value as contacts form, with the full applied stress tensor satisfied by the
constraints. The near-jamming behavior was similar for all systems
studied. However, there are differences at earlier time steps based on the
barostat parameters and initial configuration. Lower values of drag
approach the applied pressure faster but with more oscillations.

The volume fraction ϕ and coordination number Z are the key
parameters calculated in this study. Both ϕ and Z are calculated without
“rattlers,” particles that have too few contacts to contribute to the
mechanical stability of the packings. Rattlers are identified if Zi < 4 for
frictional particles (μs > 0.01) and Zi < 6 for frictionless particles, where
Zi is the number of contacts of particle i. The critical friction value μs =
0.01 was chosen because it is the point where friction has an appreciable
impact on ϕ and Z (Santos et al., 2020). Rattlers are identified iteratively
so that the number of contacts per particle decreases based on the
number of rattlers in contact with the particle. If the number of contacts
decreases enough to constitute a rattler, by removing neighboring
rattlers, it is counted as such. The fraction of rattlers ranges from
0.1% to 10%, correlates with Z, and depends on μs and P.

All of the packings generated were taken from the final simulation
configuration after the simulationwas run for at least twice the jamming
time. The time to jam depends on the method, particle, and barostat
parameters, and therefore, some simulations ran longer than others.
The inflection point of the kinetic energy, plotted as symbols in
Figure 2C, corresponds well with the point where the volume
fraction stops changing and is a good estimate of the time to jam.
However, the volume fraction is not strictly constant once the
simulation cell stops moving and increases slowly for a longer time.
To allow for these changes, we run t/τ = 106 for Pa = 10

–4, fdrag = 0.0, and

FIGURE 2
(A) Diagonal and (B) off-diagonal components of the measured
stress tensor for Pa = 10–5. Three applied stress tensor constraints are
plotted: Pa = σa,xx= σa,yy = σa,zz, σa,xy= σa,xz = σa,yz= 0 (blue), Pa = (σa,xx+
σa,yy+ σa,zz)/3, σa,xy = σa,xz = σa,yz = 0 (green), and Pa = σa,xx = σa,yy =
σa,zz, with unspecified values of σa,xy, σa,xz and σa,yz (red) using packing
method I. The different components of the stress tensor are plotted as
different line types: xx, xy (solid); yy, xz (dashed); and zz, yz (dotted).
The off-diagonal components of the stress tensor are shown as
averages over 10 time steps for clarity. The red lines lie on top of the
blue lines because they have the same diagonal applied stress
components in (A). (C) Kinetic energy (black), measured pressure
(orange), and volume fraction (magenta) as a function of time for Pa =
10–2 (solid lines) and Pa = 10–4 (dashed lines) using method I. The
applied stress tensor is Pa= σa,xx= σa,yy= σa,zz and σa,xy= σa,xz= σa,yz= 0.
The jamming time tjam, determined as the inflection point of the kinetic
energy for t > Pdamp, is plotted as black circles for Pa = 10–2 (filled) and
Pa = 10–4 (open). For (A–C), the simulation cell parameters are Pdamp =
2 and fdrag = 0.1, and the friction state is μs = 0.2.

3 To apply those symmetric stress tensors in LAMMPS (Thompson et al.,

2022), use fix nph/sphere with the following options: i) xy 0 0 1 xz 0 0 1 yz

0 0 1 and ii) xy 0 0 1 xz 0 0 1 yz 0 0 1 couple xyz. Case iii) does not need

additional options. See LAMMPS documentation for more details.
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Pdamp = 2.25, which is well above the time to jam tjam ~ 1.5 × 104τ. The
inflection point in kinetic energy defines tjam (see Figure 2). The time to
jam is inversely proportional to the applied pressure, tjam ∝ fdrag

PaPdamp
, and

thus, the simulation time was scaled accordingly for lower P and/or
higher fdrag.

3 Results

3.1 Packing method dependence

To explore different routes for frictional particle packing (Silbert
et al., 2002; Shundyak et al., 2007; Silbert, 2010), we applied various
isotropic compression methods to particles with sliding friction. In
this subsection, the packings were formed at different applied
pressures Pa, where the internal pressure of the mechanically
stable packing was Pint = Pa, with sliding friction μs = 0.2. The
packing volume fraction is between the frictionless and high-friction
limits at μs = 0.2, where μs = 0.2 is in the middle of the experimentally
observed material friction range (Farrell et al., 2010). The low-
pressure range can be jammed stably at a low computational cost.
The packing behavior generated by pressure-controlled
compression methods I–V is shown in Figure 3 and detailed
in Section 2.2.

Figure 3A shows methods I and II, which are the under- and
over-compression methods. Method I applies a pressure at t = 0
to a dilute packing; a lower pressure translates to slower
compression. Method II follows method I at first, where an
initial pressure Pa,0 is applied to a dilute system (ϕ = 0.05) to
form a mechanically stable packing. A lower pressure Pa,f is
applied to the packing formed at Pa,0 to form a new
mechanically stable packing. The pressure on the x-axis of the

left panel of Figure 3 is Pa,f for method II. The Supporting
Material includes method II packing fractions with other
initial pressures Pa,0. As expected (O’Hern et al., 2003; Silbert,
2010), ϕ from method I decreases monotonically. Although the
absolute values between methods I and II are similar, method II
has a minimum pressure. The non-monotonic pressure
dependence is analyzed in Section 3.2.

FIGURE 3
(A)Method I (red circles) packing fraction as a function of pressure ϕ(Pa) is compared withmethod II (light blue triangles), where Pa,0 = 10–4 and Pa,f =
Pa. (B)Method III, akin to tapping, is shown after a different number of compressions Ncompress = 1 (dark green diamonds), 10, 100, and 1,000 (light green
diamonds). The packings are compressed to Pa,0 = 10–1 in between relaxations. (C) Progressive compression methods with stress (IV, blue squares) and
volume (V, orange squares) control show different ranges of pressure. The initial large stress for method IV is Pa,0 = 10–1. Method V volume step
changes were constant Δϕ = 0.01. Particles are frictional μs = 0.2 and are packed with simulation cell parameters Pdamp = 2.25 and fdrag = 0. Uncertainties
are similar to the symbol size.

FIGURE 4
Volume fraction ϕ increases monotonically with Ncycle using
method III by cycling from Pa,0 = 10–1 to different low-pressure
compression values Pa,f = 10–2 (magenta), 10–3 (orange), 10–4 (dark
red), 10–5 (cyan), and 10–6 (brown). Lines drawn are stretched-
exponential fits to simulation data (see Eq. 4). The KWW fit parameters
α (red crosses, right inset axis) and β (blue pluses, left inset axis) are
plotted in the inset as a function of the applied pressure Pa. The shades
of the green arrows at the top of the graph indicate the number of
compressions that correspond with the ϕ(P) data shown in Figure 3B.
Uncertainties are similar to the symbol size.
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Like method II, method III can lead to monotonic or non-
monotonic ϕ(Pa). Method III, essentially, cyclically repeats method
II. The first cycle in method III, Ncycle = 1, is the same as in method II
with the Pa,0 = 10–1, at which point there is no minimum in ϕ(Pa), as
shown in Figure 3B. The minimum in ϕ(Pa) appears after a few cycles
(5 < Ncycle < 100) and disappears at higher cycles (Ncycle > 100).

The non-monotonic ϕ(Pa) behavior, seen in Figure 3B, occurs
over a range of Ncycle, shown in Figure 4. For each Pa, ϕ(Pa, Ncycle)
increases monotonically with Ncycle. Lower pressures Pa < 10–4

compact at a faster rate with respect to Ncycle and saturate as
Ncycle → ∞. The lower Pa packing fractions crossing the higher
Pa values, around Ncycle = 5 and Ncycle = 70, provide the same result
as the non-monotonicity observed in ϕ(Pa); see Figure 3B. Yet, since
the lower Pa packings have compaction asymptotes at fewer Ncycle,
higher Pa packings are denser, and ϕ(Pa) is monotonic at higher
Ncycle. The lower pressures have a larger difference with Pa,0, which
allows more time to pack and re-form contacts to build more
compact networks with fewer Ncycle. At higher Ncycle, method III
forms denser packings with more predictable monotonic
ϕ(Pa) behavior.

The behavior observed in ϕ(Ncycle) is captured by fits to a
Kohlrausch–Williams–Watts (KWW) law (Kohlrausch, 1854;
Williams and Watts, 1970):

ϕ Ncycle( ) � ϕ∞ − ϕ∞ − ϕ0( )e− Ncycle/α( )β , (4)

where the fitting parameters are ϕ∞, ϕ0, α, and β. The intercept ϕ0
and asymptote ϕ∞ values are monotonic, inferred by the low and
high Ncycle curve values in Figure 4. Figure 4 inset shows that the
parameters α and β are non-monotonic with pressure. The KWW fit
parameters α and β quantify the trends in ϕ(Ncycle, Pa) and show
different behavioral patterns above and below Pa = 10–4.

The KWW and logarithmic heuristic (Knight et al., 1995) fits
have been applied to experimentally tapped packings. The KWW fit
had consistently lower residual standard deviations compared to the
logarithmic heuristic fit for the presented data, as shown by Richard
et al. (2005). Method III is considerably different from the
experimental tapping protocols (Knight et al., 1995; Philippe and
Bideau, 2002), which are compressed in all directions, have no walls,
have varying peak tap accelerations, but not the pressure, and lead to
denser volume fractions ϕ > 0.64. The KWW fits to experimental
data (Knight et al., 1995; Philippe and Bideau, 2002) parameters
range from 1 < α < 500 and 0.14 < β < 0.65. Simulation and
experimental exponential KWW β fit parameters are in the same
range. The α fit parameters have a different meaning in experiments,
which track ϕ(t), not ϕ(Ncycle), in which case α is a rate. However,
both experiments and simulations found that β increases and α

decreases with increasing packing intensity. However, the DEM
simulations showed that, like experimental tapping, “loose”
packings are compact with tapping (Knight et al., 1995; Rosato
et al., 2010). Kumar and Luding (2016) observed similar behaviors
and found that the memory of the deformation theory could explain
the denser-than-experiment volume fractions.

Methods IV and V, shown in Figure 3C, differ frommethod II by
gradually, instead of instantaneously, decreasing the applied target
pressure at each step, allowing the particles to pack after expansion.
Method IV uses pressure-controlled compression, like in methods
I–III, and in method V, the volume is decreased by Δϕ = 0.01.

Smaller volumetric decreases can lead to looser packings (Silbert,
2010). Neither method IV nor V has a minimum in ϕ(Pa), as
observed in method II. The absence of a minimum is likely
because the volume change is not large enough to break the
majority of the contact network. Stable packings could not be
formed with method V for ϕ < 0.599 and P < 5 × 10−4. Silbert
(2010) observed similar volume-controlled packing limits. Ramped-
pressure compression simulations of cohesive, frictional grains have
exhibited a strong history and protocol dependence (Nan and Hoy,
2023). These methods show that stable packings of the same model
frictional particles with the same stress state can have a wide range of
volume fractions and are protocol-dependent.

3.2 Non-monotonic volume fraction
pressure dependence

Depending on the packing protocol, the final packing volume
fraction can increase with decreasing pressure. The minimum in
ϕ(Pa) shown in Figures 3A, B for packing methods II and III
showcases the protocol-dependent nature of the packing
process. A minimum is not observed in the coordination
number, which is relatively insensitive to the packing
protocol. This leads to the possibility of two packings with

FIGURE 5
(A) Packing fraction ϕ and (B) average coordination number Z
without rattlers as a function of the pressure Pa. Packings were
generatedwithmethod I, Pdamp = 2.25, fdrag = 0, and varied amounts of
initial total translational kinetic energy contribution to pressure
Pkinetic
i � 0 (red squares), 9.5 × 10−2 (green circles), and 4.7 × 10−1 (blue

diamonds). Inset: Volume fractions as a function of the initial total
translational kinetic energy contribution to pressure Pkinetic

i at low
pressure P = 10–6. Coordination number symbols lie on top of each
other. Uncertainties are similar to the symbol size.
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the same volume fraction but different coordination numbers.
The initial kinetic energy, drag coefficient, and friction are
varied to observe the scale protocol parameter impacts on the
non-monotonic behavior.

The initial pressure and kinetic energy are important
contributions to the packing microstructure. Packings in Figures
3, 4 were initiated with zero initial kinetic energy and pressure.
Increasing the average initial particle translational kinetic energy
causes a volume fraction minimum using packing method I.
Figure 5A shows the role of initial kinetic energy contribution to
pressure Pkinetic

i (see Eq. 2). The ϕ(Pa) non-monotonicity is more
pronounced with increasing Pkinetic

i . Figure 5B demonstrates that
packings with the same particle interactions can be made with the
same volume fraction, for example, ϕ = 0.62, with an average one
fewer contact per particle (compare Pkinetic

i � 9.5 × 10−2 at Pa = 10–6

and 10–2 in Figure 5). The inset in Figure 5A shows that low-pressure
volume fraction p = 10–6 increases with increasing initial kinetic
energy contribution to pressure Pkinetic

i but has a limit of
approximately Δϕ = 0.03. The Supporting Material shows the
role of initial kinetic energy on the transient approach to packing
and on method II packings.

The minimum value of ϕ in Figure 5A occurs at Pa = 10–4,
comparable to the lowest pressures (for intermediate to high μs)
accessible in volume-controlled studies [see Figure 3C and
references (Shundyak et al., 2007; Silbert, 2010)]. The behaviors
of the cyclical packings, generated with method III, also transition at
Pa = 10–4, specifically the KWW fit parameters α and β in the inset in
Figure 4. Experimental and simulation tapping studies observed a
minimum in ϕ with the number of cycles (Pugnaloni et al., 2010;
Carlevaro and Pugnaloni, 2011).

Particle friction is known to lower the packing fraction and
coordination number but also changes the ϕ(Pa) minima. Packing
fractions in Figures 3–5 are from particles with intermediate friction
μs = 0.2. The non-monotonicity in ϕ(Pa) affects the friction
dependence of ϕ(μs), as shown in Figure 6. The general form of
ϕ(μs) is similar to previous studies of packing with sliding friction

(Shundyak et al., 2007; Santos et al., 2020); however, the initial
pressure and drag change the pressure dependence.

For Pa < 10–3, frictionless particles approach the hard-sphere
limit and ϕ approaches the μs = 0maximally jammed state. The non-
monotonicity with pressure occurs for frictions μs > 10–3, where the
different pressure curves cross. Lowering the pressure narrows the
low-to-high μs transition, when initialized with non-zero pressure.
Although it seems that ϕ(μs) tends to a step function as Pa → 0, this
behavior depends on the protocol. Going to lower pressures to see if
a step function arises is computationally difficult because the time to
jam the system scales inversely with the applied pressure. The ϕ(μs)
behavior, as does ϕ(Pa), highlights the interdependence of particle
interaction and control parameters. The larger pressure, Pa > 10–3,
behavior of ϕ(μs) is shown in the Supporting Material.

Applying drag in simulations (Delaney et al., 2011; Hoy and
Kröger, 2020) or placing particles in density-match fluid in
experiments (Farrell et al., 2010) slows the packing and contact
formation processes and forms low-density packings. In
simulations, drag, which scales the simulation cell acceleration by
fdrag, also slows the processes. Like the initial kinetic energy
contribution to pressure, drag can have a significant effect on the
final packing fraction. Figure 6 shows data for packings generated
with the drag, while packings in Figures 3A, B have no drag. Figure 7
shows that although the drag can change the volume fraction, a
minimum in ϕ(Pa) is present for all values of fdrag packed using
method I with non-zero initial pressure. For a lower pressure, Pa <
10–4, the ϕ(Pa) minimum is more narrow for a larger drag fdrag. A
limiting value of ϕ(Pa→ 0) ≃ 0.63 is the same with all simulation cell
drags. The inset in Figure 7 shows that drag has a small effect on
packings when initialized with zero pressure. The ϕ(Pa) dependence
on fdrag demonstrates another of many components of protocol
design that impact the final packing of frictional particles.

FIGURE 6
Packing fraction ϕ as a function of the sliding friction coefficient
μs with non-zero initial kinetic energy contribution to pressure
〈Pkinetic

i 〉 � 9.5 × 10−4. Different pressures are shown, Pa = 10–3 (red),
10–4 (orange), 10–5 (blue), and 10–6 (magenta). Packings were
generated using method I and protocol parameters Pdamp = 2 and
fdrag = 0.1.

FIGURE 7
Packing fraction as a function of the pressure ϕ(Pa) with particle
friction μs = 0.2. Initial kinetic energy contribution to pressure
〈Pkinetic

i 〉 � 9.5 × 10−4 causes drag-dependent non-monotonic
behavior. Drag is applied to the simulation cell by different drag
factors fdrag = 0.0 (blue circles), 0.1 (green squares), 0.3 (red
diamonds), and 1.0 (black triangles) with Pdamp = 2.25. Inset: A zero
initial kinetic energy contribution to pressure Pkinetic

i � 0 yields
monotonic ϕ(Pa) behavior. Packings were generated using method I.
Uncertainties are similar to the symbol size, and lines are guides for
the eye.
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The distribution of contact forces at jamming offers an
explanation for the non-monotonicity of volume fraction with
pressure. The distributions Fs/μsFn, where Fs and Fn are the
magnitudes of the tangential and normal forces, respectively, are
shown in Figure 8 for the zero and non-zero initial kinetic
contribution to pressure cases. As shown in Figure 5, the non-
monotonicity in ϕ(Pa) occurs when there is a non-zero initial
kinetic contribution to pressure Pkinetic

i > 0. The probability
distribution is normalized so that ΣFs/μsFnP(Fs/μsFn) � 1. The
impact of the ϕ(Pa) non-monotonicity is visible in P(Fs/μsFn)
for Pa ≤ 10–4. For Pkinetic

i � 0, which does not show non-
monotonicity in ϕ(Pa), contacts are more likely to be near the
Coulomb criterion as the pressure decreases (Figure 8A). For
Pkinetic
i > 0, contacts near the Coulomb criterion (Fs/μsFn > 0.94)

become less likely as pressure decreases from Pa = 10–4 to Pa =
10–6 (Figure 8B). Pkinetic

i � 0 shows the more expected behavior
because Pa ∝ Fn.

The peak location of P(Fs/μsFn) is another manifestation of the
non-monotonic ϕ(Pa) behavior. The peak in P(Fs/μsFn) is shifted
below Fs/μsFn = 1 for Pa ≤ 10–4 if Pkinetic

i > 0. This implies that those
larger sliding forces were able to relax due to slower compression. In
addition, as the sliding friction contacts weaken, the contacts
become less frictional. Seemingly, the tangential constraint sets
the average coordination number, regardless of its strength.
Therefore, the sliding constraint network is maintained as the
constraint weakens, but the packing is able to compact. Based on
this hypothesis, one would expect the volume fraction to be
monotonic, not with pressure but with the number of contacts
near the Coulomb criterion. The fraction of contacts near, within
1%, the Coulomb criterion fslide, where μsFn = Fs, also has a non-
monotonic dependence with pressure. The ϕ(fslide) dependence is
shown in Figure 8C. The fraction of contacts within 1% of the
Coulomb criterion has an inverse relationship with volume fraction,
which yields a monotonic ϕ(fslide) relationship, within uncertainty.
Based on this discussion, the packing microstructure depends on the
connectivity of the tangential force network, which sets Z, but the

strength of those tangential contacts, specifically the fraction of
contacts near the Coulomb criterion, sets ϕ. Similar behaviors were
observed in other packings and are plotted in the
Supporting Material.

4 Conclusion

Simulations of three-dimensional frictional granular spheres
were packed into mechanically stable configurations using
pressure-controlled protocols to study the protocol dependence
of jamming. The protocols modeled bulk-like packings, with
periodic boundary conditions and precisely defined internal states
of stress. Five packing protocols were studied: I) slow compression
from a dilute state, II) slow expansion from a dense state, III)
repetitive compressions and expansions, IV) pressure-controlled
progressive de-compression from a dense state, and V) volume-
controlled progressive de-compression from a dense state.

Non-monotonic packing fraction dependence on pressure was
observed in multiple protocols. This led to configurations packed with
the same contact mechanics and the same packing fraction but up to one
average contact less per particle. If dilute initial particle configurations are
initialized with non-zero velocities or pressure, the packing fraction has a
minimum with respect to decreasing pressure. Regardless of the initial
kinetic energy, the coordination number decreased monotonically with
pressure. For the cyclical protocol, method III, non-monotonic packing
fraction pressure dependence occurred for an intermediate number of
packing cycles. The volume fraction evolution with the number of cycles
ϕ(Ncycles) changed qualitatively with pressure. The parameters for fits to
ϕ(Ncycles) transitioned at intermediate pressure p = 10–4. Packings at high
pressures compacted continuously withNcycles, but low pressures stopped
compacting after Ncycles = 30. Future study of the progression of particle
correlation and force distribution in these two types of cyclical packings
could help model the parameters in the fits to ϕ(Ncycles, P).

The tangential force distributions and fraction of frictional
contacts were calculated. Low-pressure force distributions were

FIGURE 8
Probability distribution of the tangential force Fs normalized by the maximum, μsFn, for different pressures: Pa = 10–2 (solid lines), 10–4 (dotted lines),
and 10–6 (dashed lines). Pkinetic

i � 0 [(A) red] and Pkinetic
i >0 [(B) blue] show different ϕ(Pa) behaviors. (C) Volume fraction as a function of the fraction of

contacts within 1% of the sliding friction Coulomb criterion μsFn = Fs. The packings were generated usingmethod I and varying amounts of kinetic energy
contribution to pressure Pkinetic

i � 0 (red squares), 9.5 × 10−2 (green circles), and 4.7 × 10−1 (blue diamonds). Large uncertainties in fslide are due to small
absolute denominator values.
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found to be protocol-dependent. Low initial kinetic energy, and
therefore volume fraction, packings had fewer contacts at and near
the Coulomb criteria. The inverse correlation between the volume
fraction and the fraction of contacts near the sliding friction Coulomb
criterion suggests that lower volume fractions are supported by a
higher fraction of frictional contacts. The coordination number and
packing fraction are often insufficient to define the packing state. The
fraction of frictional contacts, shown in this study, the fabric
(Srivastava et al., 2022) and/or the stress tensor state (Pugnaloni
et al., 2010) may be required to define a packing state. These behaviors
disappear for low, but significant enough, frictions μs < 10–2, at least in
method I. Packings initiated with non-zero initial kinetic energy also
result in a sharper packing fraction transition with respect to the
friction coefficient from frictionless to high-frictional behavior.

Stress-controlled packing protocol dependence likely reaches
beyond the properties studied here. Further analysis at the
microstructural level, such as properties of the contact network,
possibly with the dynamical matrix and fabric tensor, along with a
macroscopic approach, such as analysis of the static structure factor
and elastic moduli, may further characterize the existence of states
with high volume fractions and low coordination numbers. Particles
with more restraints on contacts, those with rolling friction, cohesion,
or non-spherical packing, will also depend on the packing protocol,
likely in pronounced ways. The protocols presented can be applied to
deformation geometries beyond isotropic, such as shear- and
extension-jamming. Studies on packing protocol support applying
conclusions from well-defined packing protocols to more complex
industrial and natural packings.
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