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Predicting the mixing or segregation of granular of dense materials is difficult due
to their athermal nature and lack of general theories. The goal of this research is to
improve the design (diameter of the cylinder) and operation (rotational frequency
of the screw conveyor) of the stirrer to attain good mixing. We characterize the
mixing by some macroscopic measures and relate its behavior with the design
parameters. Afterward, we compute some microscopic measurements that
characterize the movement of the spheres and relate them with the operating
conditions. The quality of mixing is found to depend on the rotation frequency of
the screw conveyor and the gap between the latter and the enclosing cylinder.
Besides, some relationships between micro- and macroscopic measures are
drawn. This approach can provide guidance on the design or operation of
devices to handle granular media when their microscopic behavior is
previously known.
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1 Introduction

Granular materials are justly famous for being difficult to mix. Because of their intrinsic
out-of-equilibrium nature, they display anti-intuitive behaviors like the increase in order due
to segregation (Zuriguel et al., 2006). Since granular materials do not naturally diffuse (their
effective temperature is zero), an input of energy is required to start movement. This is
usually done by vibrating, tapping, or rotating a recipient full of grains. Segregation under
agitation (the Brazil nut effect) is one of the most studied problems in dense granular matter
(Rosato et al., 1987; Liffman et al., 2001; Nahmad-Molinari et al., 2003; Gajjar et al., 2021).
Granular particles also segregate under rotation in a cylindrical tumbler (Oyama, 1939;
Oyama, 1940; Hill and Kakalios, 1995; Rapaport, 2002; Fiedor and Ottino, 2003; Naji and
Stannarius, 2009; Rietz and Stannarius, 2012) or a rotating drum (Prigozhin and Kalman,
1998). Other surprising behaviors include the horizontal segregation under vertical
vibrations (Levanon and Rapaport, 2001; Rapaport, 2001), the reversal of segregation
(Breu et al., 2003), and even pattern formation (Aoki and Akiyama, 1996). In all cases,
the differences in the particles’ size, mass, or density are the subject of a mechanism that leads
to the separation of the particles according to their nature. The segregation of a massive
intruder can be caused by inertia (Huerta and Ruiz-Suárez, 2004) under tapping or by
Archimedean sinking under vibration (Jing et al., 2020); under similar conditions, a large
intruder will be segregated due to steric effects (Duran et al., 1993; Dippel and Luding, 1995).
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In large-enough containers, convection currents are the leading
mechanism (Knight et al., 1993). Similar processes are at play in
tumblers along with new processes like avalanching and waves. The
cause can also have a more subtle origin like a difference in the
friction coefficient (Ciamarra et al., 2006; Gillemot et al., 2017). For
dilute to moderately dense media, the kinetic theory can be used to
explain segregation and mixing using a granular temperature
proportional to the fluctuations of the velocities, as shown in
García-Chamorro et al. (2022).

In addition to its scientific interest, segregation has important
practical consequences (Simons et al., 2013). In many production
processes, it is necessary to mix particles, e.g., to produce cement
(Pinzón-Moreno et al., 2020), create drugs (Côté and Abatzoglou,
2006; Jaklič et al., 2015), and handle foodstuffs (Cullen, 2009).
Procedures for sorting require the opposite (Meier et al., 2007).
Thus, understanding the causes and mechanisms of segregation will
lead to optimized industrial processes. Regarding mixing, in the
1950s, it was thought that practice was the best source of knowledge
on techniques and apparatuses to mix solids (Weidenbaum, 1958).
However, soon the necessity to conduct the basic theoretical work
was recognized (Bourne, 1964; Hersey, 1975). It was pointed out that
the deduction of rheological properties on simple geometries would
be helpful in understanding the behavior of particulated solids in
complex mixers. This idea rooted in the field, and in the next years,
studies that analyzed the diffusion of particles in mixers emerged
(Cahn et al., 1966; Cahn and Fuerstenau, 1969; Bridgewater, 1976).
These were complemented with the definition of phenomenological
quantities, like the mixing index. This is just an adimensional
quantity defined to take values between 0 and 1, the former
corresponding to a segregated state and the latter to a well-mixed
state. Several definitions have been put forward (Lacey, 1954;
Bridgewater, 1976; Schofield, 1976; Poux et al., 1991; Julián et al.,
2016; Jin et al., 2022). With the advancement of computational
resources, the first numerical studies grew to full-scale simulations.
The literature is abundant. DEM studies on apparatuses similar to
the apparatus studied here can be found in Stewart et al. (2001),
Basinskas and Sakai (2016), Simons et al. (2016), Chandratilleke
et al. (2018), Halidan et al. (2018), Gao et al. (2019), and Tsugeno
et al. (2021). Researchers have also resorted to simulations using
different methods, e.g., (Nguyen et al., 2014; Bai et al., 2017).

In the aforementioned studies, one wishes to mix particles with
different properties. However, a pertinent question arises: what
happens when all particles are identical? In this case, we can still
speak of mixing because we can put a label in each particle and
follow its trajectory. It is possible to define measures of mixing that
will tell us whether particles that were close at the initial instant
remain close after a certain amount of time. The mixing of identical
grains under vertical vibration was experimentally studied in Zik
and Stavans (1991), concluding that it is a self-diffusive process.
Computational studies of beds of identical grains under shear
(Savage and Dai, 1993; Campbell, 1997) were also found to be
diffusive processes. In Barker and Mehta (1993), two regimes were
identified (flow and voidage) depending on the density of the bed.
The influence of flow parameters on self-diffusion in a vibrated
granular bed was studied by simulation and experiment in Yang and
Hsiau (2001). The crossover from a ballistic to diffusional regime
was investigated experimentally in Wildman et al. (1999) using
image processing technology to measure the self-diffusion

coefficients of hard disks in a vertical vibrated bed. Simulating
granular convection (Aoki and Akiyama, 1998) measured a self-
diffusion coefficient and characterized the underlying physics as a
phenomenon of mass diffusion induced by energy injection. In a
different system, Utter and Behringer (2004) analyzed shearing
experimentally and modeled it by a random walk, confirming the
diffusive nature of the flow. More recently, Artoni et al. (2021; 2022)
measured the self-diffusion coefficients in discrete numerical
simulations of steady, homogeneous, collisional shearing flows of
nearly identical, frictional, and inelastic spheres. They considered
homogeneous and inhomogeneous flows and modeled their results
by a random walk, confirming the diffusional nature of the process.

In this work, we analyze the mixing of identical granular
particles with the aim of optimizing mixing. Our motivation is a
practical application: mixing heated particles to homogenize an
applied temperature. The system chosen is a screw conveyor
enclosed in a cylindrical case, as shown in Figure 1. The process
starts by filling the mixer with ≃2000 balls. After they reach
equilibrium at the bottom of the mixer, the screw conveyor starts
rotating at a fixed velocity, causing the particles to move upward.
The design of the screw conveyor is such that the particles
accumulate close to the pole and fall by the sides. This pattern of
movement should produce a homogeneous mixing and facilitate the
even distribution of the applied temperature.

We run several simulations in which we change the rotational
frequency of the screw conveyor, the diameter of the enclosing

FIGURE 1
Two snapshots of the stirrer in the stationary state at different
rotating velocities.
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cylinder, and the size of the particles. In each case, the performance
of the apparatus is assessed and analyzed as a function under the
operating conditions. Next, we characterize the microscopic
variables, such as the mean-squared displacement, and try to find
a connection between the global performance of the mixer and the
microscopic description of the medium. The aim is to predict
whether a given granular material will mix well based only on
known diffusive behaviors or to choose (or restrict the range of
choices) the best granular material for given mixing application
before having to make costly and time-consuming experiments.

2 Materials and methods

2.1 Numerical method

We perform simulations using the well-known discrete element
method (DEM) (Rapaport, 2004). LIGGGHTS software (Kloss et al.,
2012) is used to implement them. This is free and open-source
software based on LAMMPS (Thompson et al., 2022), which
incorporates many models specific to the simulation of granular
materials. It is parallelized and optimized allowing to run fast
simulations. The diameters of the particles are d = 12 mm for the
reference case and 15 and 9 mm for the additional cases, which we
also refer to as big and small particles. The diameter of the screw
conveyor inside the stirrer is Ds = 128.23 mm and is fixed for all
simulations. The diameter of the enclosing cylinder is variable. We
used D = 20, 18, 17, and 16 cm for d = 12 mm, D = 28, 24, 20, and
18 cm for d = 15 mm, and D = 22, 20, 18, and 16 cm for d = 9 mm.
To rationalize all these measures, we define the adimensional gap λ =
(D − Ds)/2d, which gives the number of particles that fit between the
border of the screw conveyor and the wall of the cylinder. The length
of the cylinder is Lc = 55 cm and is fixed for all simulations. The
horizontal coordinates are X and Z, while Y is the vertical
coordinate.

We consider only contact forces. Given the size of the particles
and the material (SiC), we do not expect that attractive forces
develop. Two particles are in contact whenever their distance is
less than the sum of their radii rij < 0.5 (di + dj). The contact model
consists of two forces, one normal to the surfaces in contact,
i.e., along the line that joins the centers of the particles, and a
tangential force perpendicular to the first, which are given by

Fn � knξnij − γnvi,jnij, (1)
Ft � ktξtij − γtvi,jtij. (2)

In the first equation, the spring force is proportional to the overlap
ξ � 1

2 (di + dj) − rij of the particles. The second term is a damping
term proportional to the relative velocity of the colliding particles.
The parameter kn is the elastic constant, and γn is a viscoelastic
damping constant whose role is to dissipate energy during the
collision. Analogously, the force in the tangential direction
depends on a restoring term, proportional to the sliding of the
particles, and a damping term that dissipates energy. The damping
constants are related to the restitution coefficient (Section 2.1). They
control the amount of energy lost in a collision and thus influence
the rate at which the medium settles in a static state. The tangential
overlap ξtij increases, while the contact lasts but is truncated to fulfill

the Coulomb criterion Ft ≤ μFn, where μ is the friction coefficient.
For the simulation, we fix the values of the Young’s modulus Y,
Poisson’s ratio ], restitution coefficient e, and friction coefficient μ.
These are related to the constants of the force model as follows:

kn � 4
3
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√
, (3)
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�����
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The mixed variables are defined as follows:

1
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, (9)
1
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Y1
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1
R*

� 1
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+ 1
R2
,
1
m*

� 1
m1

+ 1
m2

. (11)

For this research, all particles in a given simulation are identical,
with radii as mentioned previously. The other parameters have
values Y = 5 × 108 Pa, ] = 0.2, e = 0.9, and μ = 0.5, and the mass is
fixed by setting the density ρ = 3600 kg/m3. These are typical
magnitudes given by the manufacturers (Kyocera, 2023;
Qualitymaterial, 2023). The value of gravity is set to g = 9.8 m/s2,
and the integration time step is δt = 10–6 s. We have checked that this
set of values gives rise to a realistic granular behavior; e.g., in
Figure 2A, the average overlap between spheres is well below 1%,
and increasing the Young’s modulus does not make a difference.

The collision of a particle with a wall is treated in the same
way as particle–particle collisions, but assuming that the second
particle has infinite mass and radius (flat wall limit). The
properties of the second particle are identical to the particles
of the granular medium.

2.2 Simulation protocol

A simulation starts with an empty stirrer which is filled by a
rain of particles released from the top. The number of particles is
fixed for design reasons to 2,060. During this phase, the screw
conveyor is not moving. When all particles have been released, they
are allowed to settle until their kinetic energy drops to ~ 10−10J, at
which point the bed can be considered at rest. Then, the screw
conveyor starts to move at a given rotational speed. We have used
three different frequencies ω = 36, 180, and 360 rpm. The
simulations that run until 10 s have been simulated. As shown
in Figure 2B, this provides ample time to reach a stationary state in
all cases.

During a simulation, we store frames of the particles’ positions,
velocities, forces, and other parameters at intervals of 0.2 and,
sometimes, 0.1 s. These are later used for analysis.
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3 Results

3.1 Macroscopic measures

The first result we focus on is the mixing index. As mentioned in
Introduction, this adimensional quantity takes values between 0
(segregated state) and 1 (mixed state). Among the several definitions
available in the literature, for this work, we choose the index
proposed in Siiriä and Yliruusi (2009). This index is defined as
follows:

Γ � M

Mmax
, (12)

M � ∑N
i�1

∑N
j�1

Rg|rij | 1 − Rg|rij−rt,ij |( )
N2

, (13)

Mmax � ∑N
i�1

∑N
j�1

Rg|rij |

N2
. (14)

Here, rij is the distance between particles i and j at time t = 0 and
rt,ij is the distance at time t. The parameter R is a dimensionless
quantity which can be chosen between 0 and 1. According to the
results in Siiriä and Yliruusi (2009), we set it to R = 0.87. The
quantity g is a scaling factor of dimensions length−1. We set its value
to g = 1/Lc. As shown in Figure 2B, we see that this definition with
these parameters allows distinguishing between the different

FIGURE 2
(A) Average overlap vs Young’smodulus. (B)Mixing index as a function of time (d= 12 mm). (C)Maximummixing index as a function of the frequency
of the screw conveyor (d = 12 mm). The dotted lines are only guides to the eye. (D)Mixing time as a function of the frequency of the screw conveyor (d =
12 mm). The dotted lines are only guides to the eye. (E) Mobilized particles as a function of the maximum mixing index (for all d values). (F) Mobilized
particles as a function of the maximum mixing degree. The size of the symbols is proportional to λ (for all d values).
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scenarios during the run by changing the frequency of the screw
conveyor and the parameter λ.

The mixing index starts at zero, as defined by Eqs 12, 13, and
increases relatively fast up to a stationary value that remains fixed
after a few seconds. The stationary value is higher for higher
frequencies and exhibits lower values of λ. Not only the
maximum Γ but the increasing speed also depends on the
frequency and, to a lesser degree, on λ, with analogous trends. In
Figures 2C, D, we can see this more clearly. The maximum Γmax

increases approximately linearly with the frequency and λ. The
mixing time τmix is calculated by fitting the data to the following
equation:

Γ � a 1 − be−t/τmix( ). (15)

As a function of the frequency, the mixing time decreases as the
former increases. The decrease is not linear, being much faster for
lower frequencies than for larger frequencies. Regarding λ, the
mixing time does not change monotonously, and we observe that
the curves in Figure 2D cross at some points.

An visual inspection of videos of the mixing process reveals two
facts that explain those results. For the lowest frequency, the screw
conveyor is not able to lift the spheres to a significant height. In this
case, the bed remains rather dense and close to the bottom. When
the frequency is increased, the particles acquire enough energy to
climb up the screw conveyor. At this point, λ starts to matter. For
relatively high values, the spheres fall from the screw conveyor since
there is a wide gap available and, again, do not attain very high
altitudes. Instead when λ is small, it is more difficult for the spheres
to fall before reaching the upper part, and consequently, Γ increases.

We introduce the variable height by defining mobilized spheres:
a sphere which reaches a height greater than 1/2Lc at some instant
during the mixing process. In Figure 2E, we plot the percentage of
mobilized spheres as a function of the maximum mixing index. It is
worth noting that the values of Γmax = 0.7 can be reached with a
small percent of mobilized particles. This means that most particles
remain in the lower part of the stirrer, so the mixing is not actually
effective as the beads do not increase and are exposed to the source
of heat (not within the scope of this study). Most of these cases
correspond to the lowest frequency, but cases with the highest
frequency are also observed.

We can clarify the previous figure by adding the variable λ to the
plot. As shown in Figure 2F, the size of the symbols is proportional
to the adimensional gap λ. We can now observe that the low values
of mixing index and mobilization are mostly associated with the
large values of λ. The steep increase inmobilization at approximately
Γmax = 0.7 corresponds to scenarios with low values of the
adimensional gap. As mentioned previously, this is due to the
fact that spheres fall easily if there is space available. So, in order
to have a good mixing, we need a stirrer with high frequency and
small gap, slightly above 1.

3.2 Microscopic variables

After studying the macroscopic measures that describe the
mixing behavior, we turn to microscopic quantities that
characterize the mobility of the spheres. In Figure 3A, we plot

the mean-squared displacement of the spheres as a function of time
for each coordinate and for the total displacement. We first note that
in all cases, the displacement is superdiffusive, i.e., is a power law
with an exponent larger than 1. Comparing with the reference line
given, we note that it is actually larger than 1.5. This is not surprising
since we are giving energy to the spheres. Before one second has
elapsed, the MSD turns almost flat, which corresponds to the
approaching of the maximum mixing index.

The magnitude of the total MSD increases with frequency, as
shown in Figure 3B. As more energy is injected in the system, the
spheres become more mobile. Note that the power law for the total
MSD seems larger than 1.5. In addition to the quantitative
differences, the qualitative behavior of this measure is quite
similar in the three cases.

Plotted as a function of λ, as shown in Figure 3C, the total MSD
increases in magnitude as the former decreases. This is consistent
with the discussion in section 3.1. Since particles tend to fall from the
screw conveyor in systems with large λ, the total displacement does
not reach large values. So in this case, we see that a microscopic
measure of the behavior of the medium seems correlated with the
macroscopic behavior.

Finally, we show the velocity correlation function in Figure 3D.
The velocities in each component decorrelate very fast, reaching Cv =
0 in split seconds. Afterward, the horizontal components alternate
weak correlations and anticorrelations until ~ 3 seconds in which
the correlation is zero. The vertical component behaves differently,
showing only one oscillation of anticorrelation and remaining flat
after 2 s. The extremely fast decorrelation at the beginning is due to
the fact that spheres start in repose and are given a non-zero velocity
suddenly as the screw conveyor starts to move at its prescribed
frequency. In addition, the velocity of each sphere depends on
whether it is in contact or not with the screw conveyor and the
orientation of the contact. So in practice, the acquired velocities are
very different. The oscillations seen in the horizontal components
are due to the interplay between collisions (anticorrelation) and the
effect of the screw conveyor that tends to displace the particles in the
same direction (correlation).

To obtain more insights into these results, we fit the first part of
the total mean-squared displacement (MSDr) to the following
expression:

MSDr � bta. (16)
The value of the exponent, as shown in Figure 4A, Figures

4C, E, follows a descending trend with λ. The trend is noisy in
some cases, but one can see that it is roughly linear for
intermediate and large values of the adimensional
gap. Instead, for values close to λ = 1, the trend flattens as it
approaches an exponent equal to 2. The descending trend is
understandable in terms of the role of λ discussed in previous
sections. When λ decreases, the trend flattens as the exponent
tends to the limiting value 2, which would indicate a ballistic
regime. Large values of λ correspond to particles falling early
from the screw conveyor, and these trajectories are very short
and have a low weight in the computation of the MSD. This is
the reason why we do not see a large value of a for low λ. Only
the trajectories of spheres falling from a high altitude have an
important enough weight to increase the exponent to near-
ballistic values.
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The natural logarithm of the prefactor is shown in Figures 4B, D,
F. The linear trend indicates that b decays exponentially with λ. As
could have been anticipated, the prefactor increases with the
frequency of the screw conveyor. For all large values of λ

obtained for d = 9 mm, there seems to be a flattening of the
trend. This can be compared with Figure 2C, where the second
part of the curve becomesmore horizontal as the value of λ increases.

3.3 Correlation between micro- and
macroscopic variables

Finally, we would like to know whether there exists some simple
correlation between themacroscopic andmicroscopic variables studied.
There are many possible combinations. In Figure 5A, we plot the
maximum mixing index as a function of the natural logarithm of the
prefactor of the total MSD for all scenarios. This relationship is linear,
with some dispersion, indicating that the mixing increases with the
logarithm of the mean-squared displacement, since we have seen that
the prefactor sets the magnitude of the MSD. A relationship between
Γmax and b should exist that could have been anticipated intuitively, but
the precise nature of the relationship is not obvious.

The results shown in previous sections and intuition suggest that
there should be a relationship between themaximummixing index and
the kinetic energy imparted to the spheres by the screw conveyor. In
Figure 5B, we observe that Γmax increases linearly with the natural
logarithm of the total kinetic energy. Hence, the relationship shown in
Figure 5C indicates that the total kinetic energy and the mean-squared

displacement are proportional (the plot is clearer on a logarithmic
scale). The kinetic energy is measured in the steady state when the
mixing index attains its maximum value. In this state, the total kinetic
energy of the spheres has a well-defined average with small fluctuations.

In Figure 5D, we plot the maximum mixing index as a function of
the decorrelation time τdecorr. The latter is defined from the velocity
autocorrelation function for the X component, as the time needed for
this function to reach the zero value for the first time
τdecorr � t(Cvx � 0). In this case, there is no simple
relationship. The decorrelation time for ω = 360 and 180 rpm is in
the range of 0.1–0.25 s for all the values of λ. Furthermore, there is no
systematic dependence on the latter, and one can see large- and small-
sized symbols covering the range of τdecorr values. The small symbols
(low λ values) accumulate in the upper part of the plot (large Γmax) due
to better mixing, as was discussed in reference to Figure 2F. The data
points for ω = 360 tend to have lower values of the decorrelation time,
but there is some mixing with the ω = 180 points and the dependence
with frequency seems very weak in any case.

For the lowest frequency, we find a wide range of values of τdecorr,
ranging from 0.45 to 1 s. For this frequency, themixing degree increases
with the decorrelation time, following a saturating curve. As in the case
of the large frequencies, there is no systematic dependence on λ since we
can find small and large symbols in very different values of the
decorrelation time. From Figure 5D, one can infer that τdecorr
depends on the frequency of the screw conveyor, strongly for low
frequencies and very weakly for the larger frequencies. However, more
data for intermediate frequencies would be needed to clarify the
relationship between both quantities.

FIGURE 3
(A) Mean-squared displacements for the case d = 12 mm and D = 10 cm, ω = 360 rpm. (B) Total mean-squared displacements as a function of
frequency for the case d = 12 mm and D = 10 cm. (C) Total mean-squared displacements as a function of λ for the case d = 12 mm and D = 10 cm. (D)
Velocity autocorrelation function for the case d = 12 mm and D = 10 cm, ω = 360 rpm.
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Finally, let usmention that plots of τdecorr versus frequency or even λ
(not shown) show the same vertical organization. So in this case, we can
conclude that τdecorr is not a useful variable to distinguish the different
cases and discriminate the best scenario for optimizing mixing.

4 Summary and discussion

We have presented simulations to characterize and optimize the
design and operation of a stirrer whose purpose is to mix a bed of
identical granular spheres. We have first studied some macroscopic
measures, such as the mixing index. We conclude that the mixing is
improved by increasing the frequency of the screw conveyor and
decreasing the adimensional gap λ. The first gives more energy to

the spheres to move upward the screw conveyor, while the second
prevents the spheres to fall by the side of the screw conveyor before
reaching a high altitude. We have shown that the mixing index offers
limited information though. Effectively, by defining what we have called
mobilized spheres (those who reach above half the height of the stirrer),
we show that high values of the mixing are compatible with a small
mobilization. Thus, it is necessary to consider several measures to
characterize mixing and attain a good design.

Next, we have studied some microscopic measures that characterize
the movement of particles. The mean-squared displacement is
superdiffusive in all cases due to the constant supply of energy. It
behaves as a power law during the time in which the mixing index
increases and afterward flattens. The value of the exponent changes
linearly with the frequency of the screw conveyor and linearly with λ.

FIGURE 4
(A) Exponent of MSDr for d = 9 mm. (B) Prefactor of MSDr for d = 9 mm. (C) Exponent of MSDr for d = 12 mm. (D) Prefactor of MSDr for d = 12 mm.
(E) Exponent of MSDr for d = 15 mm. (F) Prefactor of MSDr for d = 15 mm.
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In this case, the exponent tends to 2 as λ reaches 1; this case represents the
limiting case in which the spheres reach a high altitude in the stirrer. The
prefactor of the power law is similarly correlated with the frequency of the
screw conveyor and λ. In the latter case, we observe a flattening of the
curves for large λ which corresponds to the flattening of the MSD at large
times.

Finally, we have seen that it is possible to find correlations between
the microscopic and macroscopic measures. In particular, we find that
themaximummixing index increases with the logarithm of the prefactor
of the mean-squared displacement. This type of relationship can be used
to design or operate apparatuses to handle media whose microscopic
properties are known. Although some correlation might be expected
based on physical reasoning, the precise form it takes can be far from
obvious. In that case, simulations can be critical, especially when dealing
with dense granular media for which a general theory is still lacking.

The openquestion ofwhether these relationships can be fruitfully used
in industrial design remains unanswered. More research is required to
assess the degree of generalization to different systems or to define
frameworks that can lead frommicroscopic properties to design guidelines.
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