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Honey foamhas applications in the food, cosmetic, and pharmaceutical industries.
For example, honey foam can be used in bread or biscuit spread (food industry), as
a carrier of topical bioactive ingredients (cosmetic industry), or as a carrier of drugs
(pharmaceutical industry). However, the conditions for obtaining a stable honey
foam remain unclear. In this study, we investigated the influence of particle
fluorination on honey foam volume and foam stability by aerating natural
(unadulterated) honey with fluorinated fumed silica (50%–75% SiOH) or
fluorinated sericite clay (PF-5–PF-12) particles. Higher foam volume (≤4.3 cm3)
and foam stability (up to a year) were observed with the least (75% SiOH)
fluorinated fumed silica particles, while lower foam volume and foam stability
were observed with the moderately (59% SiOH) and most (50% SiOH) fluorinated
fumed silica particles. In contrast, regardless of the degree of fluorination, the
fluorinated sericite clay particles yielded little (<1 cm3) and unstable foam that
collapsed completely within 4 weeks of preparation. Therefore, with respect to
honey foam stabilization, fluorinated fumed silica particles are superior to
fluorinated sericite clay particles. These foams can be used for topical
formulation of cosmetic and pharmaceutical products, and our findings will
guide future stabilization of honey foam for target applications.
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1 Introduction

Colloidal particles with suitable wettability are attached at fluid interfaces to form ultra-
stable emulsions, foams (Binks and Horozov, 2006), liquid marbles, and powdered liquids
(Tyowua, 2019) for various applications. With these particles, both aqueous (Binks, 2002;
Hunter et al., 2008; McHale and Newton, 2011; McHale and Newton, 2015; Fameau and
Saint-Jalmes, 2017; Murray, 2019) and nonaqueous (Fernandez-Rodriguez et al., 2017; Zia
et al., 2020) ultra-stable emulsions, foams, liquid marbles, and powdered liquids have been
prepared. Because of their stable nature, these materials have several applications in catalysis
(Carter et al., 2010; Pera-Titus et al., 2015; Nguyen et al., 2020; Rodriguez and Binks, 2020;
Chang et al., 2021; Zhang et al., 2022), cosmetics (Marku et al., 2012; Sharkawy et al., 2020;
Guzmán et al., 2022), drug delivery (Frelichowska et al., 2009a; Frelichowska et al., 2009b;
Marto et al., 2016; Tai et al., 2020), and food (Berton-Carabin and Schroën, 2015; Chen et al.,
2020; Dickinson, 2020).

Colloid scientists are also studying honey foams to address the problem of added sugar and
pigments in formulated food foams (Tyowua et al., 2022a; Tyowua et al., 2022b). Unlike aqueous
and nonaqueous foams, which require added sugar or sweeteners and pigments, honey foamdoes
not require added sugar or sweeteners and pigments because honey is naturally sweet and occurs
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in various color shades. In addition to food applications, honey foam
can be used in cosmetics for topical delivery of bioactive substances that
are poorly soluble in both oil and water, such as clotrimazole
(Jafarzadeh et al., 2022). Additionally, honey foam can be applied
topically in place of honey because foams generally spread faster than
liquids (Zhao et al., 2010). Furthermore, unlike liquids, foam leaves no
greasy residuewhen smeared onto the skin (Tang et al., 2015). However,
although the conditions and types of particles suitable for preparing
stable aqueous and nonaqueous foams are well known, those required
to obtain stable honey foam remain unclear. Tyowua et al. (2022b)
investigated the use of sodium dodecyl sulfate and calcium carbonate
particles as potential foaming agents in honey. They observed that the
surfactant produced more foam than the particles and that the
surfactant-stabilized foam was more stable (4 months) than the
particle-stabilized foam (4 weeks). In another study (Tyowua et al.,
2022a), fumed silica particles (14%–100% SiOH) containing different
amounts of dichlorodimethylsilane were studied with respect to honey
foam stabilization. An increase in foam volume and foam stability was
observed with decreasing % SiOH, particularly at higher particle
concentrations (≥1 wt.%). Nonetheless, the foam was stable for a
relatively short period of time (6 months). Commercially, foams
with relatively longer stability (≥1 year) are needed; therefore, it is
imperative to find particles that will stabilize honey foam for at least
1 year. Herein, we turned our searchlight on fumed silica and sericite
clay particles coated with fluorocarbons: tridecafluoro-1,1,2,2-
tetrahydrooctyltrimethoxysilane (silica) and C9—C15 perfluoroalkyl
phosphate diethanolamine salt (sericite). Although foams from these
particles cannot be applied in the food sector because the particles are
not edible, our interest in these particles stems from previous studies in
which they were used to stabilize oil foams and powdered oils, with
stability of over a year, for cosmetic applications (Binks and Tyowua,
2013; Binks et al., 2014). We asked two basic questions: i) Can a
substantial volume of honey foam be obtained using these particles? ii)
To what extent will the foam be stable? Our experiments were geared
toward answering these questions.

2 Materials and methods

2.1 Materials

2.1.1 Fluorinated fumed silica and sericite clay
particles with hydrocarbon-coated fumed silica
particles

The fluorinated fumed silica particles were prepared by Wacker
Chemie (Burghausen, Germany) from silica particles with 100%
SiOH groups and a Brunauer–Emmett–Teller surface area of
200 m2 g−1. These particles were fluorinated by reacting the SiOH
groups with different amounts of the fluorinating agent,
tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane,
CF3(CF2)5(CH2)2Si(OCH3)3. The resultant fluorinated particles
contained 50%–75% residual surface SiOH groups. In order to
produce these particles, a mechanical stirrer was used to fluidize
the precursor 100% SiOH-fumed silica particles (100 g) in a glass
cylinder, followed by purging (15 min) with nitrogen. Depending on
the targeted % SiOH, 10.5 g (75% SiOH), 21.0 g (59% SiOH), or
27.8 g (50% SiOH) of the fluorinating agent was added to the
cylinder in the form of aerosol via a mono-component nozzle

using compressed nitrogen (pressure 10 bar). The mixture was
stirred (15 min) and left in an oven (2 h, 150°C), which had been
purged by nitrogen. Finally, the mixture was cooled to room
temperature in a blanket of nitrogen, giving rise to the
fluorinated fumed silica particles. This reaction occurred through
four steps (Arkles, 1977): a) hydrolysis of labile OCH3 to OH groups,
b) condensation of neighboring chains of the fluorinating agent to
oligomers by forming an Si-O-Si backbone with either side
containing alkyl and ‒OH groups, and (c, d) formation of
hydrogen bonds between the oligomers (via OH groups) and
SiOH of silica particles, which dry to form covalent bonds
(R–Si–O–Si) (Supplementary Figure S1). The preferential reaction
between fluoroalkylsilanol groups leaves unreacted SiOH groups on
the surfaces of the particles. The precursor 100% SiOH fumed silica
particles were reacted with a sufficient amount of
dichlorodimethylsilane instead of the fluorinating agent to obtain
hydrocarbon-coated 14% SiOH fumed silica particles. This replaces
surface SiOH groups with Si-O-Si-(CH3)2 (Supplementary
Figure S1).

The fluorinated sericite clay particles were prepared by Daito
Kasei Kogyo Company Ltd., Japan, by reacting raw sericite
(hydrophilic) clay particles with varying amounts of C9—C15

perfluoroalkyl phosphate diethanolamine salt. The reaction
afforded PF-5‒PF-12 fluorinated sericite clay particles. Raw
sericite is a whitish powdered mica mineral made up of a three-
layered monoclinic unit cell, containing an Al2O3 octahedron and
two SiO2 tetrahedrons, linked by potassium ionic bonds (Perng
et al., 2008). As a result, raw sericite contains ~ 54% SiO2, ~31%
Al2O3, and ~7% K2O as major constituents (Arkles, 1977). To
facilitate the reaction between the anion of the salt and the
surfaces of the raw particles, a suspension of raw sericite was
prepared using an aqueous solution containing NaAlO2 and
H2SO4. This led to the formation of positive charges and
deposition of Al(OH)3 crystals on the surfaces of the particles,
both of which facilitated chemical modification. Depending on
the alkalinity, the chemical modification process can involve the
formation of metal salts and/or hydrogen bonds from the reaction of
perfluoroalkyl phosphoric acid with sericite particle surfaces
(Supplementary Figure S2). Fluorinated sericite clay particles are
used in the cosmetic industry to prepare long-lasting makeup that
promotes a natural and healthy appearance by withstanding sebum
and perspiration.

2.1.2 Honey
A natural honey sample was obtained from a beekeeper in

Kaduna State, Northern Nigeria, and used as received. The honey
sample was characterized in terms of density, refractive index (RI),
°Brix, viscosity, pH, conductivity, surface tension, moisture content,
and ash content to determine its authenticity.

2.2 Methods

2.2.1 Morphological characterization of particles
The morphological characteristics of the particles were

investigated by scanning electron microscopy. A scanning
electron microscope (Zeiss EVO 60 SEM) stub was coated with a
self-adhesive and dipped into a loose bed of particles on an

Frontiers in Soft Matter frontiersin.org02

Tyowua et al. 10.3389/frsfm.2023.1163393

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2023.1163393


aluminum foil. The adhesive held the particles to the stub. Loosely
held particles were removed by blowing low-pressure compressed
air over the stub, whereas tightly held particles, remaining on the
stub, were coated with a thin gold film (~2 nm). The gold-coated
particles were viewed under vacuum (beam voltage of 20 kV and
probe current of 100 pA) using the scanning electron microscope.
Images of the particles (Figure 1) from the scanning electron
microscope were analyzed using ImageJ software by measuring
the length of 250 random particle aggregates and particle grains.
Our measurements showed that irrespective of the degree of
fluorocarbon or hydrocarbon coating, the fumed silica particles
are composed of amorphous aggregates (length ≤25 μm) made
up of fused quasi-spherical particle grains (diameter ≤125 nm).
This is in contrast to the data supplied by the manufacturer:
individual particle grains ≤50 nm, particle aggregates ≤500 nm,
and particle agglomerates >> 1 μm. Comparatively, the sericite
clay particles were platelets (~2 μm), discrete, and textured
(~200 nm).

2.2.2 Physicochemical characterization of the
honey sample
2.2.2.1 Density

The honey sample (50 cm3) was filled into a 50-cm3 pycnometer
bottle of known mass (M1) and weighed (M2). The difference
between M2 and M1 was calculated and divided by 50 cm3 to
obtain the density ρ of the honey sample as follows (Oroian, 2013):

ρ � M2 −M1

50cm3
. (1)

This was repeated three times, and ρ was reported as the
average ± standard deviation.

2.2.2.2 Refractive index and °Brix
The RI of the honey sample was measured using an Abbe

refractometer (60/DR). A small amount of honey (~10 μL) was
placed on the glass prism and illuminated with light. RI values were
read at the point where the boundaries of the color fringe aligned
with the center of the cross wires using the prism knob to adjust the
illumination. Three measurements were performed and reported as
the average ± standard deviation. The °Brix values were estimated
using the IR values as follows (González-Méijome et al., 2007):

°Brix � RI − 1.3271
0.002

. (2)

2.2.2.3 Viscosity
The viscosity of the honey sample was measured with a

viscometer (DV-II+Pro, Brookfield, United Kingdom) using
spindle LV4 (S64). The honey sample (400 cm3) was placed in a
Pyrex glass beaker. The temperature probe was attached to the
viscometer and inserted into the honey sample, and viscosity values
were obtained at a spindle speed of 50 rpm. Three separate viscosity
values were obtained and reported as the average ± standard
deviation.

2.2.2.4 Moisture
Three Pyrex glass crucibles were filled with 2 g of honey,

weighed (W1), and heated (105°C) to a constant weight (W2) in
an oven (MINO/30, Genlab, United Kingdom) (Vanhanen et al.,
2011). The % moisture in each sample was estimated as follows and
reported as the average ± standard deviation:

%moisture � W1 −W2

2 g
× 100. (3)

FIGURE 1
Scanning electron microscope images of fumed silica particles for 75% SiOH and 50% SiOH fluorocarbon-coated particles and 14% SiOH
hydrocarbon-coated particles (A) and fluorocarbon-coated sericite clay particles [PF-5–PF-12, (B)]. The fumed silica particles exist as aggregates,
irrespective of the degree of fluorocarbon or hydrocarbon coating. Contrarily, irrespective of the degree of fluorocarbon coating, the sericite clay
particles exist as discrete individual platelet particle grains.
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2.2.2.5 pH and conductivity
The honey sample (3.75–22.50 g) was weighed into 100-cm3

Pyrex glass beakers containing 100 g of ultrapure water (pH ~ 6.8,
resistivity ~ 18 × 109 Ω cm) and stirred (500 rpm) using a magnetic
stirrer for homogeneity. After calibrating the pHmeter (Hydrus 400,
Fisherbrand, United Kingdom) with standard buffers (pH 4.0, 7.0)
and a conductivity meter (EC215, Hanna, United Kingdom) with an
aqueous KCl solution (10 mM), the pH and conductivity values of
the aqueous honey solutions were measured. Values were measured
in triplicate and reported as the average ± standard deviation.

2.2.2.6 Ash content
The honey sample (2 g) was weighed into three porcelain

crucibles and charred in a muffle furnace (600°C), with
intermittent cooling (30°C), and weighed to a constant weight
(W). The % ash with respect to each crucible was calculated as
follows, and the average was reported with the standard deviation:

% ash � W

2 g
× 100. (4)

2.2.2.7 Surface tension
The honey sample was drawn into a plastic syringe and forced

out through a thin stainless-steel needle (inner diameter ~0.8 mm).
This resulted in a pendant drop of honey at the tip of the needle.
Photographs of the suspended honey drops were obtained in air
(30°C ± 2°C) using a high-definition digital camera (4.3 V Power
Shot SX220 HS, Canon, Japan). The photographs were subsequently
edited using the GNU image manipulation program (open-source
software, version 2.10.30), as shown in Supplementary Figure S3.
Profiles of the edited images were used for surface tension estimation
using the method described by Hutzler et al. (2018). This procedure
was repeated with 10 separate honey drops, and the results are
reported as the average surface tension ± standard deviation.

2.2.3 Particle immersion test and liquid marble
formation

The honey sample (5 g) was placed into different screw-cap
plastic vials (inner diameter ~ 1.5 cm and height ~ 5.5 cm), followed
by carefully placing the particles (50 mg) on top of the honey. In
accordance with Tyowua and Binks (2020), the plastic vials were
tightly closed, and it was observed whether or not the particles were
wetted and immersed in honey. All the particle types remained on
the honey sample for more than 24 h because they were not wetted
or they were pinned to the honey surface due to their rough surfaces
(Zanini et al., 2018). Subsequently, the honey–particle mixtures were
aerated (13,000 rpm, 3 min) using a rotor-stator homogenizer
(Ultra-Turrax T25, IKA-Werke, Germany) with a stainless-steel
probe (diameter ~8 mm). After aeration, the resultant material
was gently smeared onto a dimple microscope glass slide (Fischer
Scientific) and viewed using an optical microscope (CX31, Olympus,
Japan). Stable air bubbles were observed in the honey for all
particles. Thus, the particles were further investigated in terms of
foam volume and foam stability at varying concentrations (wt.%). In
direct contrast to the particle immersion experiment, a honey drop
(40 μL) was carefully deposited, using a micropipette (Eppendorf,
Germany), onto a Teflon substrate (4 cm × 4 cm × 3 mm, Radio
Spares, United Kingdom) containing a loose bed of the particles

(100 mg). The honey drop was gently rolled back and forth on the
particle bed, and honey liquid marbles were obtained. The marbles
were photographed using a high-definition digital camera (4.3 V
Power Shot SX220 HS, Canon, Japan).

2.2.4 Particle fluorination and foam stability
The foam volume and foam stability were investigated with

respect to the degree of particle fluorination. For fumed silica
particles, 75%, 59%, and 50% SiOH represent the least,
moderately, and most fluorinated fumed silica particles,
respectively. Similarly, PF-5, PF-8, and PF-12 represent the least,
moderately, and most fluorinated sericite clay particles, respectively.
Honey (5 g) was weighed into screw-cap plastic vials, followed by the
addition of the required mass of fumed silica particles. This resulted
in varying particle concentrations (0.1–3 wt.%) in honey. In order to
obtain honey foam, the resultant honey–particle mixtures were
aerated (13,000 rpm, 3 min) using a rotor-stator homogenizer
(Ultra-Turrax T25, IKA-Werke, Germany) with a stainless-steel
probe (diameter ~ 8 mm). The initial foam volume (i.e., soon
after aeration) was measured. This was repeated after 24 h and
then weekly for a period of 1 year. To view the microstructure of the
foam, a small foam sample was smeared onto a dimpled microscope
glass slide (Fisher Scientific) and viewed under an optical
microscope (CX31, Olympus, Japan). Images of the foam
microstructure were captured using a digital camera (E-330,
Olympus, Japan) connected to the optical microscope. These
images were analyzed using ImageJ software to obtain the
percentage of dispersed air bubbles in the foams. Finally, the
viscosity of residual honey after aeration was measured using a
rheometer (DHR-2, TA Instruments, New Castle, USA) with
parallel plates of diameter 40 mm at a fixed gap of 1 mm.
Viscosity values were obtained at a shear rate of 0.1 s−1 at
ambient temperature (30°C ± 2°C).

2.2.5 Contact angle of honey drops on films of the
particles

There are several methods for measuring the contact angle of
particles at liquid–air and liquid–liquid interfaces. These methods
are often limited by particle size and shape, making it impossible to
directly measure the contact angle. Therefore, the majority of these
methods are indirect. As summarized by Maestro et al., 2014, some
of these methods include collapse pressure of surface pressure-area
isotherms (Clint and Taylor, 1992), the Washburn capillary rise
technique (Galet et al., 2010), atomic force microscopy combined
with a colloidal probe (Preuss and Butt, 1998), the gel trapping
technique (Cayre and Paunov, 2004), freeze-fracture shadow casting
(Isa et al., 2011), excluded area technique (Grigoriev et al., 2007),
film caliper technique (Horozov et al., 2008), ellipsometry technique
(Hunter et al., 2009), and the sessile drop technique (Guo et al.,
2013). Compared with other techniques, which are limited to
spherical and discrete particles of certain sizes, the sessile drop
technique appears to be universal as it can be applied to both
aggregated and discrete particles of any shape and size. However,
contact angle values from the sessile drop technique are susceptible
to Wenzel (1936) or Cassie and Baxter (1944) wetting, leading to the
reduction or amplification of values. Because our particles are
aggregated and irregular in shape, we choose to use the sessile
drop technique, which requires a compressed disk or films of the
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particles. To obtain a particle film, a suspension (5 wt.%) of the
particles was prepared by dispersing the required mass of the
particles in a mixture of ethanol (60%) and water (40%), using
the rotor-stator homogenizer (13,000 rpm, 2 min). All particle
suspensions were prepared in screw-cap plastic vials with a
stainless-steel probe (diameter ~8 mm). Samples (30 μL) of the
suspensions were placed on microscope glass slides (2.5 ×
2.5 cm) (Fisher Scientific, UK) and allowed to dry in air (30°C ±
2 °C), forming thin films of the particles. Sessile drops (10 μL) of the
honey sample were formed on the particle films using a plastic
syringe with a thin stainless-steel needle (inner diameter ~0.8 mm).
These sessile honey drops were photographed, and the images were
edited using the GNU image manipulation program
(Supplementary Figure S3). The edited images were analyzed
using ImageJ software by measuring the contact angle of honey
drops on the particle films. For all particles, two separate contact
angle values were obtained, and their averages and standard
deviations were reported.

3 Results and discussion

3.1 Physicochemical properties of the honey
sample

The high demand for honey makes it prone to adulteration
(Fakhlaei et al., 2020); therefore, we verified the authenticity of
our honey sample before use. We measured the basic
physicochemical properties of the honey sample and compared
them with literature values (Table 1). All our measured values are
in good agreement with literature values, except for the surface
tension, which differs significantly. This difference can be
attributed to the chemical composition of honey, which varies
with the geographical location, floral composition, and length of
storage of a honey sample (Wang and Li, 2011; da Silva et al.,
2016). However, the surface tension agrees closely with that
(80.4 mN m−1, 30°C) of an aqueous sugar solution whose °Brix
(80) (Peacock, 1995) is similar (°Brix 77) to our honey sample.
The agreement of our measurements with literature values
indicates that the honey sample was unadulterated.

3.2 Particle immersion experiment, liquid
marble formation, and contact angle of
honey drops on particle films

Placing powdered particles on a liquid surface and observing
whether or not they sink into the liquid provides a qualitative
measure of the extent to which the particles are wetted by the
liquid. Upon aerating such a particle–liquid mixture, the particles
become suspended in the liquid if they are completely wetted by the
liquid (i.e., sank into it), but they coat surfaces of air bubbles and
produce foam if they are partially wetted by the liquid (i.e., does not
sink into it) (Tyowua et al., 2019). Both the hydrocarbon- and
fluorocarbon-coated particles were partially wetted by the honey
sample, thus aerating the particle–honey mixture yielded honey
foam. Therefore, we investigated the effect of particle fluorination on
foam volume and foam stability.

Another way to obtain qualitative information about the degree
of particle wettability is by placing a drop of liquid on a loose
powdered bed of particles and rolling it back and forth. This
experiment is the opposite of the particle immersion test, and a
paste is obtained if the particles are completely wetted by the liquid,
whereas a liquid marble is obtained if the particles are partially
wetted by the liquid. Both the hydrocarbon- and fluorocarbon-
coated particles were partially wetted by the honey sample; therefore,
honey liquid marbles (Figure 2) were obtained with all the particles.
We observed that the marbles did not buckle or crumble for more
than 6 months. This is presumably due to the low vapor pressure of
honey (Bentabol Manzanares et al., 2014), which causes it to
vaporize slowly. The particle immersion experiment and this
experiment indicate that both the hydrocarbon- and
fluorocarbon-coated particles are partially wetted by honey. We
quantified the degree of particle wettability by measuring the contact
angle of honey drops (10 μL) on microscope glass slides containing
films of the particles. Contact angles above 130° were obtained for all
particles (Table 2), but there was no clear correlation between the
extent of fluorination and these values. In aqueous (Horozov, 2008)
and oil (Binks et al., 2015) systems, contact angles slightly greater
than 90° are required for stable foam formation, whereas those >>
90° are required for defoaming (Denkov and Marinova, 2006;
Garrett, 2015). Therefore, these particles should not produce

TABLE 1 Measured values of basic physicochemical properties [density, refractive index, °Brix, viscosity, surface tension, pH, conductivity (at 30°C ± 2 C), %
moisture, and % ash] of the honey sample used versus literature values. The errors represent standard deviations of three separate measurements.

Physicochemical property Measured value (30°C ± 2°C) Literature value Reference

Density/g cm−3 1.496 ± 0.006 1.386–1.403 (20°C–50°C) Oroian (2013)

Refractive index 1.481 ± 0.002 1.493 (20°C) Gómez-Díaz et al. (2009)

°Brix 77.00 ± 0.05 76–81 (20°C) Anupama et al. (2003)

Viscosity/Pa s 7.85 ± 0.01 7–10 (30°C) Oroian (2013)

% Moisture 18.8 ± 0.3 13.5–19.7 Silva et al. (2009)

pH 4.0–4.3 (3.6–18.4 wt.% honey) 4.0–4.6 (10 wt.% honey) El Sohaimy et al. (2015)

Conductivity/mS cm−1 0.2–1.0 (3.6–18.4 wt.% honey) 0.67–4.18 (20 wt.% honey) El Sohaimy et al. (2015)

% Ash 0.55 ± 0.01 0.09–0.52 Silva et al. (2009)

Surface tension/mN m‒1 80.1 ± 1.2 99.8–108.6 Balasubramanyam (2011)
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honey foam as the contact angle is above 130° (i.e., much greater
than 90°). However, with the production of stable honey foam with
these particles, it is possible that the contact angle values have been
amplified by the roughness of the particle-coated glass slides via the
Cassie–Baxter mechanism (Cassie and Baxter, 1944).

When the contact angle is greater than 90°, the particles are
hydrophobic (water) and oleophobic (oil) (Tyowua et al., 2019).
We extend this nomenclature to describe these particles (contact
angle >90°) in terms of honey as “honephobic.” The
corresponding description for contact angle <90° is
hydrophilic (water) and oleophilic (oil) (Tyowua et al., 2019),
which can be extended to honey as “honephilic.” This
nomenclature is necessary because although honey is a
concentrated aqueous solution of sugars (mainly fructose and
sucrose), it has a relatively higher surface tension (80.4 mN m−1,
30°C) compared with the surface tension of water (71.2 mN m−1,
30°C, Haynes et al., 2016), meaning it will wet surfaces or
particles differently from water. This can be seen in our
previous study (Tyowua et al., 2022a), where the contact angle

of honey drops (10 μL) on a glass slide containing films of
hydrocarbon-coated silica particles was observed to be higher
than the contact angle of water drops on the same glass slides.

3.3 Effect of particle fluorination on foam
volume and foam stability

Fluorocarbon-coated fumed silica particles were used to
study the effect of particle fluorination on honey foam volume
and foam stability. These particles were 75% SiOH silica (least
fluorinated), 59% SiOH silica (moderately fluorinated), and 50%
SiOH silica (most fluorinated). This was compared with 14%
SiOH fumed silica particles, which are almost completely coated
with hydrocarbon groups and have reportedly produced the
highest volume of honey foam compared with other
hydrocarbon-coated fumed silica particles with ≤50% SiOH
(Tyowua et al., 2022a). The visual appearance of plastic vials
containing honey foam stabilized by 75% SiOH fluorinated
fumed silica particles is shown in Figure 3, whereas those
stabilized by the other particles are shown in Supplementary
Figure S4. Although the honey sample used is brownish, the
corresponding foam is light brown with a microstructure that
contains spherical and non-spherical air bubbles (Figure 4).
Particle-stabilized non-spherical air bubbles have been
reported and are thought to arise from the jamming of
adsorbed particles (Subramaniam et al., 2005). With jammed
adsorbed particles, the surfaces of the air bubbles become rigid or
solid-like and are unable to relax to the energetically favorable
spherical geometry (Subramaniam et al., 2006). The foam volume
increases with increasing particle concentration (Figure 5) as
more particles are available to stabilize the incorporated air
bubbles and created interfaces. The initial foam volume was
highest with the hydrocarbon-coated (14% SiOH) fumed silica
particles, followed by the least (75% SiOH) fluorinated silica
particles, moderately (59% SiOH), and most (50% SiOH)
fluorinated silica particles. When particle concentration is
below 1 wt.%, foams stabilized by 14% SiOH (hydrocarbon-
coated) fumed silica particles have the highest percentage of

FIGURE 2
(A) Photographs (soon after preparation) of fluorocarbon- and hydrocarbon-coated fumed silica particle-stabilized honey liquid marbles (~40 μL)
on Teflon substrates. (B) Photographs (soon after preparation) of fluorocarbon-coated sericite clay particle-stabilized honey liquid marbles (~40 μL) on
microscope glass slides. Both particle types (i.e., fumed silica and sericite clay) were coated with varying amounts of fluorocarbons. Due to the low vapor
pressure of honey, the marbles did not evaporate and remained intact for over 6 months.

TABLE 2 Contact angles of honey drops (10 μL) on microscope glass slides
containing films of hydrocarbon- and fluorocarbon-coated particles (given).
The contact angle values are similar for all the particles.

Particle Contact angle/±1°

Hydrocarbon-coated

14% SiOH 134

Fluorocarbon-coated

75% SiOH 137

59% SiOH 131

50% SiOH 142

PF-5 135

PF-8 138

PF-12 135
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air bubbles, followed by foams stabilized by 75% SiOH, 50%
SiOH, and 59% SiOH fluorinated silica particles (Figure 6). This
correlates strongly with the initial foam volume observed with
these particles (Figure 5). Above 1 wt.%, foams stabilized by 50%
SiOH fluorinated fumed silica particles have the highest
percentage of air bubbles, followed by foams stabilized by 75%
SiOH fluorinated fumed silica particles, 14% SiOH hydrocarbon-
coated fumed silica particles, and then 59% SiOH fluorinated
fumed silica particles (Figure 6). In this case, there was no
correlation between the initial foam volume and the
percentage of incorporated air bubbles. This discrepancy
might result from errors associated with estimating the actual
percentage of incorporated air bubbles. The foam samples
underwent gravity-induced syneresis and coalescence so that
the foam volume decreased with time (Supplementary Figure
S5). By 1 year, a substantial decrease in foam volume was noticed
in the foam stabilized by 14% SiOH (hydrocarbon-coated) fumed
silica particles (Figure 7; Supplementary Figure S6) compared
with the rest of the fluorocarbon-coated fumed silica particles.
Overall, only a small decrease in foam volume was observed with

the least (75% SiOH) fluorinated fumed silica particles in
comparison with the 59% SiOH and 50% SiOH fluorinated
fumed silica particles, in which a substantial decrease in foam
volume was observed (Supplementary Figure S6). In other words,
increasing particle fluorination leads to a lower foam volume and
foam stability. This is in contrast to hydrocarbon-coated
particles, where the foam volume and foam stability increase
with increasing hydrocarbon coating, especially at higher particle
concentrations (≥1 wt.%) (Tyowua et al., 2022a). If it is assumed
that the foam microstructure is stabilized by two mechanisms,
namely, adsorption of individual particle grains and network
formation of adsorbed particles (Figure 8), then the difference in
trend between the hydrocarbon- and fluorocarbon-coated
particles can be explained. In the case of hydrocarbon-coated
fumed silica particles, network formation can occur through the
methyl hydrogens of the siloxane and SiOH groups of the
particles, as well as between SiOH groups of the particles
(Supplementary Figure S7). Thus, increasing the hydrocarbon
coating increases the possibility of network formation and,
hence, the incorporation of more air bubbles with a stable

FIGURE 3
Photographs of plastic vails containing honey foam stabilized by different concentrations of 75% SiOH fluorinated fumed silica particles (at 4 weeks
after preparation), showing an increment in foam volume as particle concentration increases from 0.1 to 3 wt.% (given).

FIGURE 4
Optical microscope images of honey foam stabilized by 1 wt.% of fluorinated fumed silica particles (given) at 4 weeks after preparation, showing a
mixture of spherical and non-spherical air bubbles.
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microstructure. However, in the case of fluorocarbon-coated
fumed silica particles, network formation can occur only
through the SiOH groups of the particles (Supplementary
Figure S7). Therefore, reducing the number of SiOH groups
reduces network formation and leads to the incorporation of
little air and an unstable microstructure for the incorporated air
bubbles. We confirmed this mechanism by measuring the
viscosity of honey suspensions containing 1 wt.% of
hydrocarbon- and fluorocarbon-coated silica particles, with
some of the suspensions coming from our previous work

FIGURE 5
Initial volume of honey foam versus concentration of fumed silica
particles for hydrocarbon-coated particles with 14% SiOH (×) and
fluorocarbon-coated particles with 75% SiOH (•), 59% SiOH (◇), and
50% SiOH (○). The foam volume increased with increase in
particle concentration (0.1–3 wt.%).

FIGURE 6
Percentage of incorporated air bubbles versus concentration of
fumed silica particles for 14% SiOH (hydrocarbon-coated, ■), 75%
SiOH (◇), 59% SiOH (△), and 50% SiOH (•) fluorinated fumed silica
particles. At particle concentrations below 1 wt.%, a strong
correlation exists between the initial foam volume and the percentage
of dispersed air bubbles. This correlation is broken at particle
concentrations above 1 wt.%.

FIGURE 7
Volume of honey foam (1 year after preparation) versus
concentration of fumed silica particles for hydrocarbon-coated silica
particles with 14% SiOH (▲) and fluorocarbon-coated silica particles
with 75% SiOH (•), 59% SiOH (◇), and 50% SiOH (○).

FIGURE 8
Schematic illustrations showing stabilization of honey foam
microstructure by adsorption of individual silica particle grains (A) and
network formation of adsorbed silica particles (B).
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(Tyowua et al., 2022a). Although the viscosity of honey
suspension containing hydrocarbon-coated particles increased
with decreasing % SiOH, the viscosity of suspensions containing
fluorocarbon-coated particles decreased with decreasing % SiOH
(Supplementary Figure S8). This observation can be adduced to
an increase in network formation in the former (hydrocarbon-
coated) but a decrease in network formation in the latter
(fluorocarbon-coated). In contrast, Whitby et al. (2018)
investigated the rheology of olive oil suspensions containing
hydrocarbon-coated fumed silica particles and reported a
decrease in storage and loss moduli as the degree of hydrogen
bonding decreases due to increasing hydrocarbon coating.
Previously, we showed that foam formation does not occur
unless hydrocarbon-coated particles contain ≤50% SiOH
(Tyowua et al., 2022a). In other words, there is no foaming
with the 75% SiOH hydrocarbon-coated particles compared
with the 75% SiOH fluorinated particles, which provided
excellent foam in this work. Presumably, with the
fluorocarbon groups possessing a lower surface free energy
than the hydrocarbon groups (Chaudhury and Whitesides,
1992), fluorination improves the wettability of the particles for
honey foam formation much more than hydrocarbon groups.

We further investigated the effect of particle fluorination on foam
volume and foam stability using fluorocarbon-coated (PF-5‒PF-12)
sericite clay particles. In this case, PF-5, PF-8, and PF-12 represent the
least, moderately, and most fluorinated sericite clay particles,
respectively. In contrast to the fluorocarbon-coated fumed silica
particles, the fluorocarbon-coated sericite clay particles gave little
foam (<1 cm3) that collapsed completely within 1 month,
irrespective of the degree of fluorination, as shown in
Supplementary Figure S9 (visual appearance) and Supplementary
Figure S10 (foam volume). We attributed the foam volume and
unstable microstructure to the stabilization of air bubbles by
individual sericite particle grains rather than through the particle
network (Figure 8). We confirmed this by measuring the viscosity of
honey suspensions formed after aeration and obtained a fixed viscosity
value (~8 Pa s, similar to honey) irrespective of the degree of particle
fluorination. Unlike the fluorinated fumed silica particle-stabilized
foams with a mixture of spherical and non-spherical air bubbles, the
microstructure of the fluorinated sericite clay particle-stabilized foam
contained only spherical air bubbles (Supplementary Figure S11).
Presumably, the sericite clay particles did not jam on air bubble
surfaces like the fumed silica particles.

4 Conclusion

We studied the influence of particle fluorination on the volume
of honey foam and foam stability using fluorocarbon-coated fumed
silica and sericite clay particles. For the fumed silica particles, 75%
SiOH, 59% SiOH, and 50% SiOH silica represent the least,
moderately, and most fluorinated particles, respectively.
Similarly, for sericite clay particles, PF-5, PF-8, and PF-12
represent the least, moderately, and most fluorinated particles,
respectively. The contact angle of honey drops on microscope-
glass slides containing films of these particles is greater than 90°;
therefore, the particles can be described as “honephobic.” Aerating
a mixture containing these particles and honey produced honey

foam. The fluorinated fumed silica particles produced more foam
than the fluorinated sericite clay particles. With fumed silica
particles, we observed that foam volume and foam stability
decreased with increasing particle fluorination. In other words,
higher foam volume and stability were observed with the 75%
SiOH fluorinated fumed silica particles, whereas lower foam
volume and stability were observed with the 59% and 50%
SiOH fluorinated fumed silica particles. Foam from the 75%
SiOH fluorinated fumed silica particles had superior stability
because they did not collapse completely for up to 1 year.
Conversely, for fluorinated sericite clay particles, the foam
volume and foam stability were independent of the degree of
particle fluorination. Regardless of the degree of fluorination,
these particles produced unstable foam (<1 cm3) that collapsed
completely in 4 weeks. Overall, unlike hydrocarbon-coated fumed
silica particles with foam stability of only 6 months (Tyowua et al.,
2022a), we have shown that stability of up to 1 year can be achieved
with fluorinated fumed silica particles. This is a significant
advancement toward real-life applications of honey foams,
especially in topical formulation of cosmetic and
pharmaceutical products.
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