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In this study, we revisit the microscopic kinetics model considering crystal
nucleation as reversible attachment and detachment of units from growing
clusters. Based on the variation of the rate constants of attaching and
detaching with cluster size, we derive some findings that contest the classical
nucleation theory. First, the equivalent thermodynamic parameters are deduced
from the rate constants, which reveal that the interfacial free energy per area varies
with cluster size and finally levels off. Second, if the crystal is not perfect, at the
melting point, the nucleation barrier will be definite rather than infinitely large.
Third, it is predicted that the critical nuclei size does not vary with supersaturation.
Fourth, when the neighboring units from the same polymer chain are used for
crystal nucleation, the attaching rate constant should decrease with cluster size,
which is distinctly different from the same attaching rate constant in the
nucleation of small molecular crystals. These interesting findings show that
teaching the old dog (the microscopic kinetics model) new tricks could lead to
new findings and deepen our understanding of crystal nucleation.
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1 Introduction

Crystallization is a type of self-organization of a variety of motifs, such as atoms, small
molecules, polymers, and motifs with a larger size, such as colloid particles, via
crystallization; matter obtains compact and ordered structure with strong interaction
among the unit motifs, which enables the material to be strong, heat or electric
conductive, optically active, etc. The properties of crystalline materials vary considerably
with the crystalline structures, which depend on both the chemical structures and the
crystallization process. In the past decades, the knowledge of crystallization has greatly
benefited the design and manufacture of crystalline materials.

Two types of theories, the thermodynamic and kinetic theories, have been applied to
crystallization. The thermodynamic crystallization theories consider crystallization as a first-
order phase transition between two phases with different orders and thermodynamic
properties. According to the thermodynamic description of heterogeneous systems, as
developed by Gibbs (1928), the free energy of a crystal embryo consists of two
components: the bulk free energy and the interfacial energy. It is assumed that the
interfacial energy per area and the gain of free energy per volume are independent of
crystal size, which is termed as capillary approximation. According to the frame,
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crystallization proceeds via nucleation; that is, it passes a free-energy
barrier. In the classical nucleation theory (CNT), melt directly
transforms into crystal during crystallization, and crystal directly
transforms into melt during melting. In contrast, Strobl (2000),
Strobl (2006), and Lee et al. (2016) propose that during
crystallization, melt transforms into mesophase, which is further
stabilized to form crystals. However, in all the aforementioned
theories, the order parameters change abruptly; namely,
crystallization is the transformation between several distinct
states with different orders. This basic assumption leads to
difficulties when these crystallization theories are applied to treat
nucleation at an early stage, where the crystal nuclei may have
thermodynamic properties different from those of the bulk crystals.

On the other hand, kinetic theories assume that crystallization
involves a series of attaching onto and detaching from the various
clusters with different sizes. The scheme was originally proposed
by Volmer andWeber (1926) and Becker and Döring (1935). Later,
Turnbull and Fisher used such a microscopic scheme to obtain the
rate of primary nucleation (Turnbull and Fisher, 1949). These
efforts have contributed to the classical nucleation theory (CNT).
In the field of polymer crystallization, Hoffman and Lauritzen
proposed the surface nucleation theory and applied the
microscopic kinetics model to obtain the rate of secondary
nucleation on existing crystal surfaces, considering the stem
with fixed length as a motif of attaching and detaching
(Lauritzen and Hoffman, 1960; Hoffman et al., 1976; Hoffman
and Miller, 1997). The free energy for the formation of the first
chain stem on the flat growth plane is the energy barrier for the
surface nucleation. Lamellae with a thickness less than the
minimum value have higher free energy than the melt, so they
are unstable. When the lamellar thickness exceeds the minimum
value, it will demonstrate decreased growth rate with increasing
thickness due to the arising energy barrier. Price applied the
Markoff chain model to treat the crystallization of stems with
different lengths on the smooth surface of polymer single crystals,
where the basic attaching and detaching motif was a segment
(Price, 1961). Later, the pinning effect due to folds and
crystallization on rough crystal surface was considered by
Sadler and Gilmer, who attributed the energy barrier of
polymer crystallization to the entropy barrier, and the
simulation results agreed with the observations (Sadler and
Gilmer, 1984; Sadler and Gilmer, 1986). Doye and Frenkel
(1999) suggested that the stem thickness allowing for steady
growth of the lamellae rather than that for the fastest growth
was chosen. Muthukumar took into account the entropy of the
connecting loops and proposed that folded polymer lamellae
rather than extended chain crystals of high molecular weight
polymers are thermodynamically stable (Muthukumar, 2004).

Though these kinetic theories of polymer crystallization agree
with the experimental results in some aspects, there are still some
unsolved problems: first, the rate constants of attaching and
detaching were coupled by thermodynamics, considering both
the interfacial free energy and bulk free energy according to the
capillary approximation; it is still in the frame work of Gibbs.
Second, CNT was directly applied to obtain the crystal nucleation
rate of flexible polymer chains, but the covalent linking of segments
on a polymer chain has not been fully addressed. As we know, CNT
is derived from the crystallization of small molecules, in which each

motif is not correlated in kinetics and thus can be treated with the
Markov process. However, for polymer chains, the attaching and
detaching of covalently linked segments in a polymer chain should
be a non-Markov process. As a result, small molecules can crystallize
to form crystals with infinite size in all the three dimensions, while
flexible polymer chains form lamellar crystals with thicknesses
around several to tens of nanometers due to the back and forth
folding of the chains.

Though intensive work has contributed to the field of
crystallization and a lot of theories have been proposed, which
can interpret some aspects of experimental observations, there are
still some open questions that remain (Armistead and Goldbeck-
Wood, 1992; Zhang et al., 2017; Xu et al., 2021). Some of them are
listed as follows:

What does the interfacial free energy mean, and does it vary with
crystal size?

Do undercooling and supersaturation have the same effect on
crystal nucleation?

What is the difference between crystal nucleation of polymer
chains and small molecules?

To further understand the remaining questions, considering
crystal nucleation from the root of the theories, namely,
revisiting the microscopic kinetics model, would be a natural
option. In the past century, the microscopic kinetics model has
been proposed and applied to interpret the nucleation and
growth of crystals. However, the merits of the model have
been shadowed by complicated mathematics equations. In
this work, we revisit the microscopic kinetics model and
derive the equivalent thermodynamic parameter, such as bulk
free-energy change per unit and interfacial free energy per area.
In the following section, we show that the microscopic kinetics
model can reveal the nature of interfacial free energy and the
different kinetics of small molecules and flexible polymer
chains, which will help answer the aforementioned questions
and shed new light on the understanding of crystallization.

2 Microscopic kinetics model for
crystallization nucleation of small
molecules

The microscopic process of crystallization from melt can be well
described by the cluster-growth scheme, which was proposed by
Volmer and Weber (1926), Becker and Döring (1935). The scheme
shows a series of cascaded elementary processes describing the
attaching and detaching of a motif from the clusters, as
presented in Figure 1. The smallest unit (motif) can be atoms,
molecules, polymer chain stems and colloidal particles, other
clusters, etc. This scheme works for crystallization from quiescent
melt or solution, in which the collision of clusters can be omitted due
to much slower rates. Otherwise, when there are external forces,
collision of clusters should be considered.

Theoretically, the scheme in Figure 1 can describe both
nucleation and spinodal-like crystallization. Nucleation occurs if
the attaching rate constants k+i are smaller than the detaching rate
constants k−i for clusters smaller than critical nuclei, and the
attaching rate constants become larger than the detaching rate
constants for clusters larger than the critical nuclei. Otherwise, if
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the attaching rate constant is larger than the detaching rate constant
for all the clusters, crystallization would proceed without an energy
barrier, resulting in spinodal-like crystallization behavior.

2.1 Correlation of the microscopic kinetics
model to thermodynamic theories

From the rate constants of attaching and detaching, the
equivalent thermodynamics can be derived (Xu et al., 2021). The
free-energy difference between a molar motif in clusters with size i +
1 and a molar motif in clusters with size i can be calculated from the
microscopic kinetics:

Δgi,i−1 � gi − gi−1 � RTln
k−i
k+i
, (1)

where gi is the chemical potential of the cluster with size i. The free-
energy change for formation of crystal clusters with size i is

∑i

j�2 gj − gj−1( ) � ∑i

j�2RT ln
k−j
k+j
. (2)

For simplicity, we consider the one-dimensional crystallization
of small molecules shown in Figure 2A. Thus, the free-energy change

for the formation of crystal clusters equals the area of the blue region
subtracted by the green region (Figure 2B), which is the same as the
area of the red region subtracted by the area of the gray region
(Figures 2C, D).

In classical nucleation theory, the free-energy change for the
formation of crystal clusters with size i is

ΔG � 2σ + iΔg, (3)
where σ and Δg indicate the end surface free energy per unit cross-
section and the bulk free-energy change of one unit after
crystallization.

For bulk crystals,

Δg � RTln
k−∞
k+∞

. (4)

Since the area of the gray region gives −iΔg, the area of the red
region should equal 2σ.

The microscopic kinetics model shows that even the bulk free-
energy change of attaching a unit is considered independent of
cluster size; the interfacial free energy should vary with cluster size. It
first increases with size and finally levels off only when the cluster
size is larger than the correlation length L*, as demonstrated in
Figure 3. Consequently, the clusters with size less than L* can be
treated as the intermediate states (or mesophase) during

FIGURE 1
Microscopic kinetic process of crystal nucleation. k+i and k−i indicate the rate constant of a motif attaching to and detaching from the cluster with i
motifs, respectively.

FIGURE 2
Microscopic kinetics model for crystal nucleation in one dimension (the simplest case) (A) and the derivation of interfacial free energy from the
microscopic kineticsmodel (B–D). The free-energy change for the formation of crystal clusters equals the area of the blue region subtracted by the green
region (B), which is the same as the area of the red region (the interfacial free energy) (C) subtracted by the area of the gray region (the change of bulk free
energy during crystallization) (D).
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crystallization. The capillary approximation in classical nucleation
theory that both interfacial free energy per area and bulk free-energy
change per unit is independent of crystal size stands only after the
crystal size is larger than the correlation length L*. At present, we do
not know the size of the correlation length, L*. However, it should be
larger than the conventional critical nuclei size, as indicated by
Figure 4.

If there was an infinitely large perfect crystal, it should melt only
at the temperature where

Δg � RTln
k−∞
k+∞

� 0. (5)

At the lower temperature, the negative Δg will lead to a negative
total free-energy change of an infinitely large perfect crystal, so it will
not melt. As shown in Figure 5A, at the melting point of the infinitely
large perfect crystal, the energy barrier for crystal melting will be zero;
thus, the crystal could not exist with large superheating, which
contradicts the experimental observation. According to CNT, the
critical size should be infinitely large when the supercooling
diminishes. Otherwise, if there is a maximum correlation size, L**,
for a perfect crystal, at the melting point, the energy barrier for crystal
nucleation and melting should be the same, both of which are of finite
value. We expect the latter case will be the truth, which needs further
investigation.

3 How to determine the critical size of
crystal nuclei?

At medium to low supercooling, nucleation is the rate-limiting
step of crystallization. The energy barrier related to the formation of
the critical nuclei predominantly affects the nucleation rate.
Determination of the size of the critical nucleus is a key for
understanding the mechanism of nucleation and allows testing
theories. However, it has been a great challenge for both
experimentalists and theorists to quantify the critical size of
crystal nuclei, especially for polymer chains. Though real-time
observations of crystal nucleation have been achieved (Ono and
Kumaki, 2018; Jeon et al., 2021), the size of critical nuclei is not easy
to quantify. On the other hand, theoretical calculation of the size
needs the thermodynamic parameters of the nuclei, which may be
different from those of the mature crystals (Okada and Hikosaka,
2013; Anzai et al., 2015).

3.1 Determining critical nuclei size via
nucleation theorem

Kashchiev (1982) proposed the first nucleation theorem, which
stated that the derivative of the nucleation work with respect to the

FIGURE 3
Variation of interfacial free energy per area with cluster size (A). The area of the red region gives the interfacial free energy per area, which increases
with cluster size and finally levels off (B).

FIGURE 4
Microscopic kinetics at the melting point of a perfect crystal with infinite size (A) and those for a crystal with finite correlation size.
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bulk Gibbs free-energy difference between the molten state and the
crystalline state equaled the critical nucleus size with a trivial bias.
Ford (1997) and Ford (2004) gave the proofs of the nucleation
theorems based on statistical thermodynamics, and Schmelzer
further commented on the theorem (Schmelzer, 2001).

According to the first nucleation theorem proposed by
Kashchiev (1982), the following equation is applied to determine
the critical nucleus size:

dW*
dΔg � −n* + zFs

zΔg

∣∣∣∣∣∣∣∣n�n*
, (6)

where W* is the nucleation work of the critical nucleus, which is
equal to the nucleation barrier. n is the number of crystallization
units in the cluster, and n* is the number of crystallization units in
the critical nucleus. Δg is the absolute value of bulk Gibbs free-
energy difference of one crystallization unit when crystallizing from
the amorphous state. For a one-component system, Δg is also the
difference of the chemical potential between the old and new phase
during crystallization and is often named as Δμ, as in the original
paper of Kashchiev 13, 17, 23. Fs is the total surface free-energy of
the cluster. Generally, Fs is weakly dependent on Δg, so the latter
term in Eq. 2 can be omitted.

We consider that diluting the crystallizable units with non-
crystallizable units in the melt causes no thermal effect but only the
change of entropy during melting, Δs, since Δs is equal to kB lnx,
with x indicating the volume fraction of crystallizable units. The
following equation can be obtained:

Δg � Δg0 + kBTc ln x. (7)

The classical nucleation theory gives the relationship between
crystal growth rate G and the nucleation work W* as follows
(Eqs 7–9):

G � Aexp −W*/kBTc( ), (8)
where A is a pre-exponential factor containing the diffusion term.
Combining Eqs 2–4, we obtain

z ln G

z ln x
� n* + C, (9)

where C is determined by the derivative of lnA with respect to lnx
and is usually very small (between 0 and 1). Equation 5 reveals that
the slope of the fitting straight line of lnG with respect to lnx can be
regarded as the critical secondary nucleus size n* (Šarić et al., 2016).
Using Eq. 5, we determined the number of urea molecules in a
critical secondary nucleus of urea/poly (ethylene oxide) inclusion
compound crystals (Gao et al., 2019).

3.2 Determining critical nuclei size via
microscopic kinetics of stochastic
nucleation

We have also proposed a method for computing the critical
size of lamellar crystals of folded polymer chains via a
combination of the theoretical probability of stochastically
choosing crystallizable units and the measured nucleation
kinetics (Zhang et al., 2019; Zhang et al., 2020). We assume

FIGURE 5
Method to determine the number of units (m) and that of chains (n) in a critical nucleus via variation of the secondary nucleation rate with the volume
percentage of crystallizable units in the random copolymers and the volume percentage of crystallizable chains in polymer blends, respectively.
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that nucleation is a stochastic process to choose the right
conformation for homopolymers and both the crystallizable
units and the right conformation for the diluted system
(random copolymers or miscible homopolymer/amorphous
polymer blend). When the homopolymer and diluted system
have the same viscosity and dilution has not caused change of
enthalpy, we can easily obtain the relationship between the
nucleation rate of the diluted system and that of homopolymer.

For homopolymer chains, the rate to form critical nuclei
consisting of m repeating units is termed as ihom. The probability
for each repeating unit to adopt an ordered conformation
appropriate for nucleation is p. Thus, the probability to have m
repeating units packed together in order is pm. For each nucleation
event during time τ, M trials in total have been tried to find the
ordered conformations for nucleation. So, the rate of nucleation is as
follows:

ihom � Mpm

τ
. (10)

For random copolymer chains with the volume fraction of
crystallizable repeating units (A) as pA, there are also M trials
during the time τ, provided that the copolymer and homopolymer
have the same viscosity. However, among the M trials in random
copolymers, only those choosing m crystallizable units
simultaneously, pm

A , are possible candidates for nucleation.
Among these MpmA trials, the number of successful trials where
all the m A units possess the right ordered conformation for
nucleation is Mpm

Ap
m. Consequently, the nucleation rate of

random copolymer chains is deduced:

iran � Mpm
Ap

m/τ � pm
A ihom, (11)

where iran and ihom represent the nucleation rate in random
copolymers and homopolymers, respectively. pA is the volume
fraction of crystallizable repeating units in the random copolymer
chains, andm is the number of crystallized units in a critical nucleus.

We deduced that the exponent in a power-law relation between
nucleation rate and the probability to choose a crystallizable unit from
random copolymer chains consisting of crystallizable and non-
crystallizable units gives the number of crystallizing units within a
critical nucleus. The method was originally proposed by Andrews et al.,
though there was a mistake in the equation (Andrews et al., 1971). The
slope of the double logarithmic plot of nucleation rate of random
copolymers versus the content of crystallizable units rather than the
slope minus one gives the number of units in a critical nucleus. For
miscible blends of crystallizable and amorphous polymer chains, the
nucleation rate as a function of the probability to find a crystallizable
polymer chain in the melt also follows a power-law relation with the
exponent related to the number of polymer chains in each critical
nucleus. Based essentially on the probability to select a crystallizing unit
or a chain during crystal nucleation, the number of units or chains in a
critical nucleus could be determined. This approach does not require
prior knowledge on the detailed nucleation pathway. A critical
secondary nucleus of poly (butylene succinate) was determined to
consist of 15–27 butylene succinate units, corresponding to 5 to
8 stems when the polymers were isothermally crystallized from
quiescent melt at temperatures ranging from 70°C to 95°C. These
stems in a critical secondary nucleus are derived from one or two

polymer chains and the number of chains decreased with rising
crystallization temperature. Our results contest the classical
Lauritzen–Hoffman theory, which expected that the critical
secondary nucleus was formed by a single stem.

Our approach can be generally applied to the lamellar crystals of
other crystallizable flexible polymers, such as poly (L-lactide) and
poly (L-lactide)/poly (D-lactide) stereocomplex crystals. In addition,
our approach is not limited to secondary nucleation and can be
adopted for primary nucleation as well.

3.3 Will dilution change the critical nuclei
size?

We have determined the critical size of secondary nuclei in PEO/
urea inclusion compounds (Gao et al., 2019) and the size of primary
nuclei in P3HT crystallized from supersaturated solution via the first
nucleation theorem (Wu et al., 2022). In addition, the number of
crystallizable units in folded lamellar crystals of poly (butylene
succinate) and poly (L-lactide) were obtained from the slope of
lnG-lnpA (Zhang et al., 2019; Zhang et al., 2020). All the
experimental results show that the number of crystallizable units
in a critical secondary nucleus does not vary with the dilution ratio,
which contradicts the deduction that the critical nuclei size should
vary with the supersaturation.

Before dilution, the bulk free-energy change of the critical
nuclei is

Δg n*( ) � gn* − n*g1, (12)
where gn* is the free energy of 1 M critical nuclei (each with n*
units), and g1 is the free energy of 1 M amorphous units. We now
consider the simplest case that the crystallizable unit A is replaced by
some non-crystallizable units B while mixing of the two types of
units leads to only the change of entropy and the enthalpy does not
change.

Δg′ n*( ) � gn*
′ − n*g1

′, (13)
where gn*

′ and g1
′ are the free energy of 1 M critical nuclei (each with

n* units) and that of 1 M amorphous crystallizable units after
dilution, respectively.

gn*
′ − gn* � −RTln Cn*

′

Cn*
, (14)

g1 − g1
′ � −RTln C1

′

C1
, (15)

where Cn*
′ and C1

′ are the equilibrium concentration of critical nuclei
(each with n* units) and that of amorphous crystallizable units after
dilution, respectively. Cn* and C1 are the equilibrium concentration
of critical nuclei (each with n* units) and that of amorphous units
before dilution, respectively.

At equilibrium, we have:

Cn*

Cn*
1

� ∏
n*

2

k+j
k−j
, (16)

Cn*
′

C( 1
′)n*

� ∏
n*

2

k+j
k−j
. (17)
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Combining the abovestated equations, we obtain

Δg′ n*( ) − Δg n*( ) � gn*
′ − gn* − n* g1 − g1

′( ) � 0. (18)

Since the critical nuclei and the amorphous units are both
diluted, Δg does not change with dilution. Consequently, the

critical nuclei size will not vary with dilution, though the
nucleation rate considerably slows down after dilution.

Therefore, both experimental results and theoretical
deductions confirm that dilution will not change the size of
critical nuclei, which contests the classical nucleation theory.

FIGURE 6
Free-energy change (A), the rate constants of attaching and detaching (B), and the variation of the free energy of crystal nuclei with size (C) during
crystal nucleation in small molecules. Free-energy change (D), the rate constants of attaching and detaching (E), and the variation of the free energy of
crystal nuclei with size (F) during crystal nucleation in flexible polymer chains. The symbol s and q indicate the number of small molecules and that of
segments in a folded chain in a critical nucleus.

FIGURE 7
Rate constants of attaching and detaching for interchain nucleation (A) and those for intrachain nucleation (B). The former is similar to the crystal
nucleation of small molecules (Markov process), while the latter is a non-Markov process.
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4 Crystallization of flexible polymer
chains is a non-Markov process

Crystallization of small molecules is a Markov process, in which
all the attaching rate constant per surface area is a constant for
different clusters. As a result, the size of small molecular crystals will
increase linearly with time when crystallized from bulk melt.
However, crystallization of flexible polymer chains is a non-
Markov process. If we want to use the Markov process shown in
Figure 6 and Figure 7 to describe polymer crystallization, the
attaching rate constant for the covalently linked segments should
vary with the number of attached segments according to the
following equation:

ki � Aexp −bi( ). (19)
The decreasing attaching rate constant is due to the increasing

entropic barrier for intrachain nucleation because the probability to
attach a new segment from the same chain should decrease with the
number of attached segments from one chain. This leads to the increase
of lamellar thickness with logarithm of time.

The non-Markov nature indicates that the segments in one chain
could not attach or detach independently. In fact, the kinetics of attaching
the ith segments should be approximately equal to that of attaching all the
i segments in one step, which holds true for detaching as well.

To derive the rate of secondary nucleation, Hoffman and Lauritzen
assumed that the attaching rate of the third stem was the same as that of
the second stem, which only stands for interchain nucleation; that is, the
stems should be chosen from different chains, or they are completely far
away from each other even though they are located in the same chain. In
our theory, for the adjacent chain folding (intrachain nucleation), the
entropic barrier of secondary nucleation should be proportional to the
total length of all the adjacent folded stems rather than one stem length.
Another difference between the Hoffman–Lauritzen theory and the
theory proposed here is that a critical secondary nucleus of polymer
crystallization consists of different numbers of stems. The former
predicted one stem, while ours expected multiple stems in each
secondary nucleus.

The effect of chain length can be briefly discussed using the kinetics
model. There is competition between intrachain and interchain
nucleation. Intrachain nucleation is thermodynamically favored but
kinetically unfavored compared with interchain nucleation (Zhang
et al., 2019). As a result, only a portion of the chain adopts adjacent
folding in a nucleus, and further growth of the nucleus will use stems
fromother chains. This is the reasonwhy it is only a portion of the chain
rather than the whole chain that takes part in adjacent chain folding. As
a result, the chain length will have a limited effect on the number of
adjacent chain folds and the rate of attaching and detaching. However,
with increasing molecular weight, the rate of chain diffusion should
decrease. These two factors, namely, attaching/detaching and chain
diffusion, work together to slow down polymer crystallization with
rising molecular weight.

5 Conclusion

The microscopic kinetics model considering attaching and
detaching is at the root of the classical nucleation theory, which

has been modified and extended to polymer crystallization. In
this perspective, we revisit the microscopic kinetics model and
deduce some interesting findings from variations of the rate
constants of attaching and detaching with cluster size. First,
even though we assume that the bulk free-energy change per
unit is a constant, the interfacial free energy should increase with
cluster size and finally level off after reaching a critical cluster
size. Second, there may not exist a perfect infinitely large crystal,
which has no energy barrier of melting at the melting point.
Third, dilution with inert non-solvent (no change of enthalpy
during mixing) will not change the critical nuclei size. Four,
intrachain nucleation of flexible polymer chains is a non-Markov
process, in which the rate constant of attaching should decrease
with more neighboring units from the same chain attached.
These four deductions contest the classical nucleation theory
and prove the power of the microscopic kinetics model. Teaching
the old model new tricks is expected to deepen our understanding
of crystal nucleation.
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