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The increased interest of the scientific community in lipid nanoparticles has pushed the
boundaries of personalmedicine and drug delivery. The focus has been set on vesicular
nanocarriers, as their structure and functionalities have been well described, but the
application of their non-lamellar counterparts, cubosomes and hexosomes, has shown
their potency as drug carriers. In addition, the sponge phase dispersion (L3, an
intermediate between the lamellar and the bicontinuous cubic) has also been
proved effective for the encapsulation of large macromolecules. Their
physicochemical characterization has improved in the past decades due to the
investigations conducted at high-power synchrotron facilities and the application of
surface-sensitive techniques, discovering new connections between physical
parameters and biological performance. Several administration routes of cubosomes
and hexosomes have been studied, such as intravenous, dermal, transdermal, and oral,
to evaluate their cytotoxicity and distribution in biological media. This review aims to
summarize the challenges and recent achievements of cubosomes, hexosomes, and
sponge nanoparticles as suitable carriers for the administration of bioactives.
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1 Lamellar or non-lamellar, that is the question

Modern nanoparticles useful for applications in nanomedicine are often designed to respond
to a multiplicity of tasks (Lammers et al., 2011; Biffi et al., 2015). By always keeping in mind the
need for the lowest possible cytotoxicity, the versatility of these nanocarriers toward different
administration routes and the possibility of modifying their surface via functionalization/
decoration with targeting agents and/or fluorescent dyes are additional examples of desired
qualities. In this arena, amphiphilic lipids are considered suitable building blocks (Aleandri and
Mezzenga, 2020; Murgia et al., 2020), as they fulfill these prerogatives, simultaneously offering
high biodegradability and showing rich polymorphism in water (Sahdev et al., 2014).

Among the various lipid-based self-assembled nanoparticles, lamellar phase dispersions,
composed of a lipid bilayer enclosing a water compartment and being known as liposomes or
vesicles, are the first and most widely studied, as they resemble the natural structure of cell
membranes. Liposomes are largely proposed as nanocarriers for nanomedicine applications, and the
first FDA-approved nanodrug was indeed a liposomal formulation (Doxil) (Barenholz, 2012), while
scale-up, stability, cost, and reproducibility issues have now been addressed (Crommelin et al., 2020).

OPEN ACCESS

EDITED BY

Charlotte Conn,
RMIT University, Australia

REVIEWED BY

Yuri Gerelli,
National Research Council (CNR), Italy
Nicholas Reynolds,
La Trobe University, Australia

*CORRESPONDENCE

Marco Fornasier,
marco.fornasier@fkem1.lu.se

Sergio Murgia,
murgias@unica.it

SPECIALTY SECTION

This article was submitted to Self-
Assembly and Self-Organisation,
a section of the journal
Frontiers in Soft Matter

RECEIVED 27 November 2022
ACCEPTED 15 February 2023
PUBLISHED 15 March 2023

CITATION

Fornasier M and Murgia S (2023), Non-
lamellar lipid liquid crystalline
nanoparticles: A smart platform for
nanomedicine applications.
Front. Soft. Matter 3:1109508.
doi: 10.3389/frsfm.2023.1109508

COPYRIGHT

© 2023 Fornasier and Murgia. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Soft Matter frontiersin.org01

TYPE Review
PUBLISHED 15 March 2023
DOI 10.3389/frsfm.2023.1109508

https://www.frontiersin.org/articles/10.3389/frsfm.2023.1109508/full
https://www.frontiersin.org/articles/10.3389/frsfm.2023.1109508/full
https://www.frontiersin.org/articles/10.3389/frsfm.2023.1109508/full
https://www.frontiersin.org/articles/10.3389/frsfm.2023.1109508/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsfm.2023.1109508&domain=pdf&date_stamp=2023-03-15
mailto:marco.fornasier@fkem1.lu.se
mailto:marco.fornasier@fkem1.lu.se
mailto:murgias@unica.it
mailto:murgias@unica.it
https://doi.org/10.3389/frsfm.2023.1109508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org/journals/soft-matter#editorial-board
https://www.frontiersin.org/journals/soft-matter#editorial-board
https://doi.org/10.3389/frsfm.2023.1109508


The non-lamellar counterparts of lamellar dispersions, namely,
cubosomes (Gustafsson et al., 1997) and hexosomes (Yaghmur and
Glatter, 2009), are nowunder investigation and often proposed as a valid
alternative. Moreover, in recent years, the “melted” cubic phase known
as the sponge phase (Angelov et al., 2011; Zhai et al., 2020a) has gained
much interest since it can accommodate quite large macromolecules
(e.g., proteins and enzymes) and can be dispersed in water similarly to
cubosomes and hexosomes to form sponge nanoparticles, known as
spongosomes (Chen et al., 2015; Valldeperas et al., 2019). Figure 1
reports the representation and morphology by an electron microscopy
connection for the lipid nanoparticles under discussion.

This review focuses on different aspects of these lipid
nanoparticles, cubosomes, hexosomes, and spongosomes,
highlighting the advances in physicochemical characterization
and biological performance. The most significant findings and
studies for the biennium 2020–2022 are presented.

2 The main characters: Cubosomes,
hexosomes, and spongosomes

In comparison to the original liquid crystalline phases,
cubosome, hexosome, and spongosome dispersions are diluted,
non-viscous aqueous materials with an internal nanostructure
suitable for nanomedicine applications.

They can usually be obtained via a high-energy emulsification
procedure (Murgia et al., 2020), such as ultrasonication, high-
pressure homogenization, or high-speed shearing, from their bulk
phase or by adding a hydrotrope, an amphiphile incapable of
displaying phase behavior by itself, thus providing a salting-in
effect on the building blocks otherwise insoluble in water
(Barriga et al., 2019; Murgia et al., 2020).

Larsson et al. reported the first case of bicontinuous inverse cubic
dispersion in the late 1990s (Longley and McIntosh, 1983; Gustafsson

et al., 1997), opening the path to the history and application of
cubosomes. As for the lamellar phase, the reconstruction on the
nanoscale as dispersion does not affect the inner structure, and
cubosomes can present bicontinuous inverse cubic phases of
symmetry, where Im3m, Pn3m, and Ia3d are their original bulk
phases (Aleandri and Mezzenga, 2020). Generally, two sets of non-
connected water channels are formed by a tridimensional
arrangement of a lipid bilayer with an average zero curvature,
yielding a porous material suitable for the confinement of
biomolecules. The L3 or sponge phase is considered an
intermediate mesophase between the lamellar and cubic phase, a
“melted” cubic phase, in which it has a similar short-range structure of
interconnected water channels, but with no long-range order.
Spongosomes are obtained by the dispersion of the L3 phase and
have been studied extensively by the group of Nylander, especially
with regard to how to produce them from bulk phases with low-
energy methods (Gilbert et al., 2019; Valldeperas et al., 2019).

Similar to the bicontinuous inverse cubic and sponge phases, the
inverse hexagonal bulk phase can be fragmented into nanoparticles
called hexosomes. These are composed of cylindrical inverse
micelles closely packed in a hexagonal array, providing a network
of water channels. Usually, they are obtained using the very same
procedure and building blocks that should lead to cubosomes but
with the addition of surfactants characterized by small head groups
and long tails that affect the curvature of the system making it more
negative (Salentinig et al., 2010).

3 Building blocks: Toward
biocompatible carriers

Glycerol monooleate (GMO; monoolein) and phytantriol
(PHYT) are the most common lipids employed for the
preparation of cubosomes and hexosomes (Zhai et al., 2019;

FIGURE 1
Lipid nanoparticles from vesicles to hexosomes, increasing the curvature of the interface, passing through sponge and bicontinuous inverse phase
dispersions. The cry-TEM images were reproduced with permission from Valldeperas et al. (2016) (sponge phase), Fornasier et al. (2021) (hexosomes and
vesicles), and Demurtas et al. (2015) (cubosomes).
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Murgia et al., 2020), and their phase behavior was thoroughly
studied. The phase sequence with an increasing water content
includes an inverse micellar, a lamellar, and two inverse
bicontinuous cubic phases, the Schoen double gyroid (Ia3d space
group) and the Schwarz double diamond (Pn3m space group)
(Mezzenga et al., 2019). In addition, an inverse hexagonal phase
appears at high temperatures.

Scientific interest relies on the fact that above a certain
percentage of solvent and water, Pn3m or inverse hexagonal
phases can coexist separately (liquid crystal + water excess),
indicating the maximum solubilization capacity of that phase for
the solvent (Kulkarni et al., 2011).

The sponge phase can be obtained with monoglycerides by
adding organic solvents as propylene glycol, polyethylene glycol,
or ethanol that disrupt the short-range cubic network, yielding the
peculiar melted phase (Angelov et al., 2011). Recently, diglycerol
monooleate (DGMO) and a mixture of mono-, di-, and tri-
glycerides (Capmul GMO-50) were employed as the main
components of the sponge nanoparticle formulation, and its
phase behavior was reported (Valldeperas et al., 2016). Figure 2
summarizes the most common components for cubosome,
hexosome, and sponge nanoparticles, also referring to the
conventional stabilizers employed in their formulation.

Several studies also appointed polymers as suitable materials for
cubosome formulations (Blanazs et al., 2009; Chen and Li, 2021). Ha
et al showed how dendritic block copolymers can yield cubosomes
by tuning the molecular geometry of the amphiphile (Ha et al.,
2020). Chen et al. employed fluorescently labeled PEG-b-PTPEMA
as the material for preparing cubosomes and hexosomes with

aggregation-induced emissions (Ptissam, 2021). Mesoporous
cubosomes (average water channel diameter of ca. 45 nm)
formulated using a soft-template strategy were also tested for the
controllable encapsulation of albumin (Wu et al., 2022); the tunable
surface charge of this carrier allowed the selective adsorption of only
albumin, and its release was pH dependent.

4 Something old and something new:
An overview on stabilizers for non-
lamellar lipid nanoparticles

Dispersing a lamellar phase in water to obtain vesicles is an easy
task. Indeed, the ability of the lamellae to bend into a closed structure
that avoids contact between the hydrophobic domain and bulk water
permits the breaking of the bulk phase easily. On the contrary, the
dispersions of inverse hexagonal and bicontinuous cubic phases are
more difficult given the boundary conditions imposed on
fragmented crystals (Kulkarni et al., 2011; Murgia et al., 2013;
Barriga et al., 2019; Aleandri and Mezzenga, 2020). These
aggregates possess limited colloidal stability in aqueous
dispersions, and they are prone to flocculation. Therefore, an
additional surfactant is required to facilitate the dispersion of
these phases, and it acts as a stabilizer.

The non-ionic tri-block copolymers that present poly(ethylene
oxide)–poly(propylene oxide)–poly(ethylene oxide) moieties,
known as Pluronics, are historically chosen as stabilizers for
cubosomes and hexosomes (Meli et al., 2015; Akhlaghi et al.,
2016). The hydrophilic corona surrounding the nanoparticles

FIGURE 2
Molecular structures of themain components of lipid nanoparticles under review and combinations to obtain the desired carriers. (A)GMOor PHYT
can be used as the main components to produce cubosomes in water after adding Pluronics as stabilizers; (B) addition of oleic acid (or other long-chain
acids) to the same system induces the formation of hexosomes; (C) a mixture of DGMO and GMO-50 in the presence of Tween 80 as the stabilizer leads
to the formation of sponge phase dispersion in water under shaking. The hydrophilic and hydrophobic units are highlighted in blue and yellow,
respectively. The image of the sponge phase is reproduced from Valldeperas et al. (2016) with permission from ACS publications.
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provides steric stabilization, whereas the polymer hydrophobic
portion (the poly(propylene oxide) moiety) interacts with the
lipid bilayer, partially anchoring to it. To ensure the
functionalization of the stabilizer to impart targeting,
therapeutical, or imaging properties, poly(propylene oxide) ends
can be modified. Our group has been quite active in formulating
cubosomes with modified Pluronics and new stabilizers. We
investigated the functionalization of both Pluronic F108 and
F127 by coupling folic acid and fluorophores, formulating
cubosomes and hexosomes suitable for theranostic applications
(Caltagirone et al., 2015; Meli et al., 2015; Meli et al., 2017).
Moreover, we conjugated a photosensitizer to Pluronic F108
(Jenni et al., 2020), in order to formulate cubosomes suitable for
photodynamic therapy.

The design of thermoresponsive nanoparticles can be achieved by
the inclusion of thermoresponsive polymers as shown by Balestri et al.
They used NIPAM-based block copolymers as stabilizers for GMO
cubosomes, indicating that the polymer phase transition is preserved
even after inclusion into the formulation (Balestri et al., 2022). The
inclusion of the polymer in the formulation yielded Im3m at a low
polymer content with a typical morphology of cubosomes, as shown by
cryo-TEM investigations. When approaching the polymer critical
temperature, the water channel radius of the Im3m phase decreases,
stabilizing cubosomes by NIPAM block copolymers suitable for
thermoresponsive drug delivery. Notably, increasing the
concentration of the polymer in cubosomes induced a phase
transition toward vesicles, as already seen in formulations of
cubosomes stabilized by Pluronic F127 (Gustafsson et al., 1997).

Although poloxamers are largely employed as stabilizers for
lipid nanoparticles, they are not biodegradable in vivo and can exert
a significant cytotoxic effect, which is concentration dependent
(Azmi et al., 2016). For this reason, investigations on new
stabilizers with a biodegradable moiety have been conducted in
the past years. A Pluronic F127 analog was synthesized based on
polyphosphoesters (PPEs) and used to stabilize GMO cubosomes
(Fornasier et al., 2020). The study highlighted that even at high
concentrations, PPEs did not affect the inner structure of
nanoparticles, and it improved the stability of the formulation.

The biodegradability of natural materials can also be exploited in
this regard. Hemicellulose, an abundant material discarded by the
wood industry, was still applied as a stabilizer for GMO cubosomes
(Naidjonoka et al., 2021). Two purified hemicellulosic extracts were
tested, which showed that the content of lignin plays a crucial role in
the stabilization of the water–oil interface.

Indeed, non-polymeric stabilizers have been suggested in the
past years. A mixture of propylene glycol and phospholipids can
ensure the stabilization of GMO cubosomes without any polymeric
material being added to the formulation (Bazylińska et al., 2018).
Even biosurfactants such as bile salts are able to stabilize the
interface of hexosomes suitable for the topical administration of
antioxidants (Fornasier et al., 2021).

Tween 80 has been employed mostly in cubosomes suitable for
crossing the blood–brain barrier. A recent study by Boyd and
coauthors showed that PHYT cubosomes coated by Tween
80 managed to significantly increase the uptake of the model
drug rhodamine B in zebrafish as compared to a control
suspension of the drug or cubosomes stabilized with Pluronics
(Azhari et al., 2021).

Linoleylethanolamide-based cubosomes stabilized with either
Pluronic F68, F127, and Tween 80 greatly influenced the size, inner
structure, and stability, as the interaction between the stabilizer and
the lipid rules the physicochemical properties of nanoparticles.
Interestingly, the authors showed that such stabilizers did not
impact their cytotoxic effect on cells (Mohammad et al., 2020),
even though this effect was highlighted in GMO-based cubosomes
stabilized by the same polymers. This finding strongly suggests that
the stabilizer–lipid interaction of the material composing
nanoparticles plays a significant role in their biological impact.

5 Physicochemical characterization

Scattering and microscopy methods have always been the
conventional approaches to characterizing lipid nanoparticles.
Given the increased interest in the field and the variety of
functionalities that were added to the systems, new different
approaches can be employed to investigate the nanoparticle
features at the physicochemical and biological level, depending
on the aim and application of these formulations.

Mainly, such techniques can be divided into three categories (a
schematic flow scheme is reported in Figure 3):

• Bulk techniques, which aim to assess the bulk properties of
aggregates such as the size, morphology, structure, and
colloidal stability

• Surface techniques, which investigate the surface of particles
suggesting how they could interact with other kinds of surfaces

• Bioassays in vitro and in vivo, which evaluate the biological
impact of nanoparticles on cells, tissues, and model animals

Spectroscopies such as nuclear magnetic resonance (NMR),
UV–Vis, fluorescence, Raman, and Fourier transform infrared
(FT-IR) can improve the knowledge of the local structure or the
orientation of specific molecules in the lipid bilayer.

The figures obtained by bulk and surface characterization can
give a hint about the possible biological impact of aggregates in vitro
or in vivo. Indeed, the correlation between all these complementary
techniques is crucial to developing the most efficient formulation for
drug delivery or imaging purposes.

5.1 Size and stability

Dynamic light scattering (DLS) experiments can provide
information on the size distribution and hydrodynamic sizes of
lipid nanoparticles. Electrophoretic light scattering (ELS)
measurements provide information about the zeta potential of
the formulation to investigate the colloidal stability.

Generally, cubosomes and hexosomes exhibit an average
hydrodynamic size of ca. 150 nm with a low degree of
polydispersity. Interestingly, GMO and PHYT cubosomes
formulated with Pluronics, as stabilizers, display a quite negative
(<20 mV) zeta potential. Although the components are non-ionic
and the pH of the formulation is quite far from their pKa, this
phenomenon puzzled the scientific community for some time. The
answer was found in a common phenomenon occurring at oil/water
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interfaces, where the water layer surrounding the lipid nanoparticle
is highly polarized by the lipid/stabilizer surface, inducing a negative
charge on the Stern layer, where the zeta potential is evaluated
(Beattie and Djerdjev, 2004; Driever et al., 2013). The higher the
electron density of the stabilizer (i.e., the higher the content of high-
electronegative atoms), the more negative the zeta potential of
nanoparticles (Fornasier et al., 2020).

The same phenomenon is observed for the zeta potential of
spongosomes, even though the main components do not exhibit a
charge in water at the pH of application. On the other hand, the size
distribution of sponge nanoparticles is broader, ranging from
around 110 to 200–250 nm (Yaghmur and Glatter, 2009;
Valldeperas et al., 2016).

5.2 Inner structures

Small-angle scattering of X-rays and neutrons represents the
most powerful tool to investigate the local ordering and structure of
colloidal systems in the length scale 1–300 nm (Biffi et al., 2015). The
angle is typically less than 5°. The advent of large synchrotron
facilities and the use of high-energy and monochromatic sources
allowed subsequent access to deeper information on the structure of
soft materials, which scatter less than silica and metal nanoparticles.

The main parameters acquired by scattering experiments are
phase and lattice parameters. In addition to these pieces of
information provided by X-ray experiments, small-angle neutron
scattering (SANS) methods can also provide information on the
thicknesses of the bilayer structure, fluctuations, and topological
changes (Glatter, 2018; Valldeperas et al., 2019). The chemical
deuteration or solvent contrast matching offers a means of
altering the neutron scattering length density of a specific
component in the mixture, highlighting peculiar features in the
structure. A better and more comprehensive discussion about
scattering experiments can be found elsewhere (Glatter, 2018).

The presence of a stabilizer can also affect the native
nanostructure of lipid nanoparticles (Muller et al., 2010; Chong

et al., 2015; Valldeperas et al., 2016; Valldeperas et al., 2019;
Fornasier et al., 2020). Such a phenomenon impacts the drug
delivery properties of the carrier (Nakano et al., 2001), as
discussed in the following sections. So far, only a limited amount
of studies have reported formulations of cubosomes where the
stabilizer did not induce a biphasic system or a phase transition
(Fornasier et al., 2020; Naidjonoka et al., 2021; Balestri et al., 2022).
On the other hand, spongosomes are obtained by exploiting the
interaction of the stabilizer polysorbate 80 with the lipid bilayer,
yielding the melted cubic phase L3.

Interestingly, GMO cubosomes prepared using PPEs display a
phase transition to hexosomes at temperatures higher than 40°C
(Fornasier et al., 2020), a much lower temperature than that reported
for GMO/W binary systems (ca. 90°C) and for GMO cubosomes
stabilized with Pluronic F127 (higher than 95°C). This temperature-
dependent phase transition is related to the higher mobility of GMO
acyl chains as the temperature increases. However, considering that
PPEs were used as stabilizers and that PF127 shares an almost
identical hydrophobic block, the anticipated cubic-to-hexagonal
phase transition recorded in PPE-stabilized cubosomes can be
taken as proof of the strong interaction of PPE hydrophilic
blocks with the lipid bilayer.

Commonly, hexosomes are obtained in GMO and PHYT
systems on the addition of unsaturated acids with a long acyl
chain, since these wedge-shaped molecules promote a more
negative inverse curvature of the lipid/water interface, favoring
the cubic-to-hexagonal phase transition. In addition, these kinds
of molecules can also make the nanostructure tunable to changes in
the pH or ionic strength (Nguyen et al., 2011; Fong et al., 2020).

5.3 Morphology

Cryogenic transmission electron microscopy (cryo-TEM), a
microscopy variant of TEM in which the sample is vitrified prior
to the measurements, represents a powerful tool to investigate both
the structure and morphology of soft matter-based systems. During

FIGURE 3
Step-by-step approach for formulating lipid nanoparticles, followed by the key bulk surface and biological characterization.
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the vitrification process, the sample is deposed on a grid, immersed
quickly into liquid ethane (−190°C), and then, stored in liquid
nitrogen prior to any measurements (Knapek and Dubochet,
1980). The fast-cooling rate vitrifies the sample, preserving its
morphology and structure.

Although cryo-TEM is adopted to study the morphology, size,
and size distribution of the aggregates, fast Fourier transforms of
cryo-TEM images can be used to precisely determine interplanar
distances and angles between crystallographic planes, giving
structural information, such as SAXS measurements (Demurtas
et al., 2015; Murgia et al., 2020; Naidjonoka et al., 2021).

The advent of cryo-TEM, especially, assisted in understanding
the presence of interlamellar attachments and folding on the bilayer
in an arrangement between a lamellar and bicontinuous cubic phase,
in GMO cubosomes, hexosomes, and spongosomes on increasing
the concentration of the stabilizer (Borné et al., 2002; Demurtas
et al., 2015). The investigations on interlamellar attachments were
fundamental in explaining the fact that theymaymediate membrane
fusion between the cell membrane and lipid nanoparticles (Siegel
et al., 1989). Some cryo-TEM images of nanoparticles under
discussion are reported in Figure 1.

5.4 Surface properties

Unveiling how nanoparticles interact with cells for their
application in nanomedicine requires knowledge of surface and
interfacial properties. These features have been recently evaluated
via the interaction with a model or complex surfaces characterized
by hydrophilic, hydrophobic, or amphiphilic properties (Zhang and
Wang, 2012; Ellipsometry, 2015). Among the different techniques
employed, quartz crystal microbalance with dissipation monitoring
(QCM-D) gives information about the interfacial wet mass adsorbed
on a surface, its viscoelastic properties, and the kinetics of
adsorption. In a typical experiment, an alternating voltage is
applied at a specific frequency to make a quartz crystal oscillate
at its resonance frequency (Chen et al., 2016). When a molecule is
bound or adsorbed to the crystal surface, a decrease in the resonance
frequency (Df) is detected.

Different in terms of physical phenomenon, ellipsometry (EP) is
a non-destructive technique based on the analysis of polarization
changes caused by the reflection of light, and it allows the detailed
optical and microstructural characterization of surfaces, thin films,
and multilayers (Tompkins and Irene, 2005).

Both QCM-D and EP have found a large variety of applications;
however, they have recently been employed in characterizing the
surface and interfacial properties of lipid nanoparticles.

Most studies highlight the formation of a supported lipid bilayer
as a model to mimic the nanoparticle surface and to evaluate the
interactions.

A limited amount of papers were, however, focused on the
adsorption of cubosomes on model surfaces made with
phospholipids and biosurfactants (Fraser et al., 2012; Tajik-
Ahmadabad et al., 2017; Boge et al., 2019; Dyett et al., 2019).
The interaction with cell membranes for therapeutic applications
can be mimicked via the formation of a supported lipid bilayer on
the QCM-D crystal or EP silica surface (Jackman and Cho, 2020).

Regarding QCM-D measurements, cubosomes usually exhibit
high values of dissipation. Such a finding is mostly due to the nature
of lipids and their architecture in the bicontinuous cubic phase,
leading to a more viscoelastic system (Tajik-Ahmadabad et al.,
2017). The adsorption features measured via QCM-D and EP are
strongly dependent on the composition, especially on the stabilizer
employed. Incredibly, no papers have so far been devoted to the
surface characterization of hexosomes and sponge nanoparticles, to
the best of our knowledge. Indeed, this represents a new and rich
field of investigation, allowing a systematic comparison, in terms of
interfacial properties, between cubosomes, hexosomes, and
spongosomes.

A recent study by Jabłonowska and collaborators also showed
how Langmuir monolayers can be exploited to study the interactions
of GMO and PHYT cubosomes with model membranes. By
mimicking a single leaflet of the cell membrane, significant
differences between the two building blocks were obtained, with
PHYT nanoparticles being more effective in disrupting the lipid
layer assembly, thus resulting in high cytotoxicity in vitro
(Jabłonowska et al., 2021).

6 Biomedical applications

The biocompatibility and biodegradability of lipids have
attracted great attention in the pharmaceutical field since they
can be employed as emulsifiers, solubilizers, and, especially,
building blocks for drug delivery platforms (Tan et al., 2022).
Indeed, the use of lipid nanoparticles as drug carriers is less
invasive in comparison to other methods, and it allows an
increase in the selectivity and effectiveness of the therapy
(Barriga et al., 2019; Lai et al., 2020; Murgia et al., 2020).

The route chosen directly affects the drug’s bioavailability (Suk
et al., 2016), thereby determining the onset and duration of
pharmacological effects. Such routes are influenced by various
factors, e.g., state and age of the patient, nature of the drug, first-
pass metabolism, and convenience of application.

Depending on these parameters, administration routes can be
divided into local (or topical) and systemic. The former is the
simplest mode of administration; the formulation containing the
drug is applied where the desired action is required. On the other
hand, the systemic administration of a drug or a formulation is a
more complex route, since the enteral (via the gastrointestinal
system) or the parenteral (bypassing the gastrointestinal system)
mode can be adopted.

The enteral route involves drug adsorption via the gastrointestinal
tract and includes oral, sublingual, and rectal administration, whereas
the parenteral route bypasses the gastrointestinal system, and it exploits
injection (e.g., intravenous, intramuscular, and subcutaneous),
inhalation, or transdermal delivery. Indeed, each route presents
advantages and drawbacks depending on the nature of the drug and
the biodistribution necessary to achieve a therapeutic effect. Figure 4
summarizes the administration routes of lipid nanoparticles discussed
in the following sections.

Up to date, lipid nanoparticle formulations exploit both local
(Lai et al., 2020) and systemic administration routes (Mulet et al.,
2013).
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6.1 Systemic administration of lipid
nanoparticles

Among all the injectable routes of administration, the
intravenous drug infusion or injection provides the most efficient
and rapid effect, given the minor limitations in terms of
administration volume.

After the injection, nanosized objects interact with physiological
fluids (e.g., blood or extracellular matrices) and several kinds of
protein-like macromolecules that can be adsorbed on the surface of
nanoparticles, thus leading to the formation of the so-called protein
corona (Francia et al., 2019). Some of these proteins bind on the
nanoparticles’ surface irreversibly and, subsequently, affect their
biodistribution, immune system activation, cellular recognition, and
final fate.

The protein corona composition is strongly related to the
physicochemical properties of the nanoparticles, such as the size,
geometry, charge of the interface, and, especially, surface features
(Lesniak et al., 2013; Francia et al., 2019). For the latter reason,
understanding the surface properties of the nanoparticle is pivotal in
predicting the formation of the protein corona with a specific
formulation.

6.1.1 Lipid nanoparticles for anti-cancer drugs
Regarding the systemic administration of lipid nanoparticles,

anti-cancer treatment is still a pivotal field of application (Varghese
et al., 2022), as cubosomes and hexosomes have been quite applied in
this regard, showing promising results (Yaghmur and Mu, 2021).

Recently, GMO cubosomes encapsulating bedaquiline were tested as
excellent inhalable medicine to treat non-small-cell lung cancer
(Patil et al., 2021). In order to improve the encapsulation of
cisplatin and paclitaxel, GMO cubosomes were coated with poly-
Ɛ-lysine (Zhang et al., 2020). The characterization showed this
formulation to be effective in reducing the proliferation of HeLa
cells with a sustained release of drugs over time. Paclitaxel was also
encapsulated in GMO cubosomes stabilized with Pluronic F127 and
DSPE-PEG-malemide. In vivo investigations showed a significant
reduction of the A431 tumor size (ca. 50%) in the cubosome-treated
group (Zhai et al., 2020b). Cytryniak showed that GMO cubosomes
could be doped with DOTAGA-OA177Lu as a radiotracer and
accommodate doxorubicin for effective cancer treatment
(Cytryniak et al., 2020). Icariin, a poorly soluble anti-cancer drug,
was loaded into GMO cubosomes stabilized with Pluronic F127,
which showed the significant cytotoxic effect of the formulation
against SKOV-3 ovarian cancer cells (Fahmy et al., 2021). Mokhtar
and collaborators tested GMO cubosomes targeted for breast cancer
therapy (Mokhtar et al., 2022); the inclusion of methotrexate
conjugated with lactoferrin exhibited a synergistic effect of the
two molecules, with a high uptake within 4 and 24 h. The
addition of omega-3 polyunsaturated fatty acids such as
docosahexaenoic acid to DOPG hexosomes was studied by
Yaghmur and collaborators (Bor et al., 2022a). The PEGylation
process of such carrier yielded a phase transition to the lamellar
phase and the resulting vesicles presented an increased circulation
time in vivo. Indeed, aminolipids were also added to the GMO to
produce carriers with pH-tunable properties, shifting from

FIGURE 4
Schematic representation of the administration routes of non-lamellar lipid nanoparticles for nanomedicine applications. The image was partially
created with BioRender.com. The structure of the sponge phase is reproduced from Valldeperas et al. (2016) with permission from ACS publications.
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cubosomes to hexosomes by playing with the pH of the bulk solution
(Rajesh et al., 2021).

6.1.2 Lipid nanoparticles to tackle antibiotic
resistance

Antibiotic resistance represents a current threat to modern
medicine, and antimicrobial peptides have been addressed as a
powerful solution to this problem. Some studies have highlighted
the possibilities of encapsulating these peptides in cubosomes (Boge
et al., 2017), as they can allow a high loading of antimicrobials and
the intrinsic biocompatibility and biodegradability of lipid
components. Shen and collaborators employed PHYT cubosomes
loaded with antibiotics and studied their performance against A.
baumannii, P. aeruginosa, and K. pneumoniae (Lai et al., 2022),
finding that these lipid nanoparticles can be suitable carriers in
treating diseases related to superbugs. Meikle and coauthors studied
the encapsulation of different antimicrobial peptides within GMO
and PHYT cubosomes stabilized with Pluronic F127 (Meikle et al.,
2021). The peptides were successfully encapsulated by changing the
buffer condition or the lipidic composition, yielding a bicontinuous
cubic structure in most cases, except in the case of melittin and
indolicidin, where a phase transition to vesicles occurred. The effect
of these formulations in vitro was highly variable; PHYT cubosomes
exhibited almost an exclusive antimicrobial activity, due to a
different possible uptake of PHYT and GMO nanoparticles, as
the authors mentioned. The same group also investigated how
Gram-positive and -negative bacteria uptake GMO and GMO/
DOTAP cubosomes loaded with antibiotics (Dyett et al., 2021).
The nanoparticles interact in two stages with Gram-negative
bacteria, first presenting their fusion with the outer membranes
followed by the diffusion of the inner wall, whereas the cubosomes
are slowly internalized after adhering to the outer layer in Gram-
positive bacteria.

In order to formulate PHYT cubosomes with antimicrobial
features, miltefosine (hexadecylphosphocholine), a broad-
spectrum antimicrobial drug, was encapsulated (Malheiros et al.,
2022). The study showed how the concentration of the drug can
induce a phase transition from Pn3m to Im3m; this is a common
phenomenon when the drug loading is high or when the drug
interferes with the self-assembly properties of the lipid. Also, the
transition from Pn3m to Im3m and vice versa is crucial for the
diffusion of hydrophilic compounds through the water channels of
both phases (Zabara and Mezzenga, 2014; Aleandri and Mezzenga,
2020), given their different topologies and geometries. Such
differences may also impact the diffusion and release of the drug,
thereby influencing the efficacy of the therapy. Indeed, further
investigations are needed to quantify this parameter for
applications in drug delivery in biologically relevant media.

6.1.3 Impact on the immune system
A significant aspect of the systemic administration of lipid

nanoparticles is the reduction of the immune response since the
body can recognize the material as “non-self” (Rodrigues et al.,
2018), destroying the nanoparticles before they reach their target. In
this regard, several attempts have been carried out to increase the
biocompatibility of the formulations (Yaghmur and Mu, 2021). Our
group synthetized PPEs as an analog of Pluronic F127 and used
them as stabilizers of GMO cubosomes (Fornasier et al., 2020). The

conventional and PPE formulations were then tested in terms of the
activation of the complement system, the first line of defense of our
body. These results showed how the immune response of the
cubosomes is greatly connected to the stabilizer used and that
the hydrophilicity is indeed crucial. Another strategy to regulate
the response is to actually support the immune system in patients
with compromised activity due to immune illnesses. Ovoalmbumin
was loaded in cubosomes formulated with CTAB and Polygonatum
sibiricum polysaccharide, an immunostimulant and active
ingredient of Polygonatum sibiricum (Liu et al., 2020a). Such a
formulation was able to activate dendritic cells and promote
lymphocyte proliferation, stimulating the immune response.

Given the current attention toward vaccine delivery, cubosomes
have been tested for this application as well (Gajda et al., 2020).
PHYT cubosomes containing also CTAB were functionalized with a
layer-by-layer approach with poly(diallydimethyl ammonium
chloride) (PDDAC) and encapsulated ovalbumin as a model
antigen. The humoral- and immuno-response after decoration
with PDDAC was beneficial, opening a new route of application
of bicontinuous cubic lipid nanoparticles (Liu et al., 2020b).

The combination of in vitro and in vivo studies enables a better
understanding of the performance of lipid nanoparticles, linking
model systems with actual complex environments, where the
formulation needs to dispatch its therapeutic effect. Pramanik
and collaborators employed click chemistry to decorate the
surface of GMO cubosomes with affimers for targeting colorectal
cancer cells, given that the affinity of the protein for
carcinoembryonic antigens was expressed by this cell line
(Pramanik et al., 2022). Their results showed a significant
accumulation of cubosomes in the target area and the delivery of
copper acetylacetonate as a model drug.

6.2 Topical administration of lipid
nanoparticles

Application of a formulation on the skin represents a non-
invasive and safe route of drug administration (Lai et al., 2020). The
stratum corneum (SC) is the outermost layer, and it is formed by
corneocytes (protein-enriched dead cells) and lipid sheets (Pyo and
Maibach, 2019). A closer examination of SC barriers reveals a brick-
and-mortar structure as described by Elias (2012), where the bricks
represent non-living corneocyte cells rich in cross-linked keratin
and the intracellular mortar is a mixture of lipids organized in
lamellar arrays. This architecture resembles a gel state characterized
by the low mobility of the lipid alkyl chains.

Underneath this layer are the viable epidermis (EP) and the
dermis (DE). As the protein corona hinders the application of a drug
carrier in intravenous administration, SC represents a challenging
barrier in the administration of drugs. The alternation of
hydrophilic and hydrophobic layers in the SC strongly restricts
the diffusion of drugs through it (Lai et al., 2020).

Indeed, various approaches can be adopted to enhance the
penetration of a drug into the skin layers. One way is
represented by the use of formulations based on chemical
permeation enhancers, e.g., lipids, which disrupt the highly
ordered bilayer structures of the intracellular lipids found in SC
(Pham et al., 2018).
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Phospholipid vesicles were the first carriers tested for such
applications, due to their natural resemblance with cell
membranes (Lai et al., 2020). On the other hand, non-lamellar
liquid crystalline nanoparticles were studied in the last decade as an
alternative platform to the vesicles for the dermal/transdermal
release of drugs. Even though few examples have been reported
so far, hexosomes and cubosomes were reported to deliver
antimicrobial peptides (El Zaafarany et al., 2010), drugs (Rapalli
et al., 2020), and photosensitizers (Bazylińska et al., 2018).

6.2.1 Dermal and transdermal application of lipid
nanoparticles

By overcoming the first line of defense, the repartition coefficient
of the drug decides its fate, allowing its therapeutic effect on the skin
(dermal release) or reaching the capillaries and entering the systemic
route (transdermal release). Chang et al. evaluated the differences
between cubosomes and liposomes in terms of the loading of
curcumin and of their biological performances in vitro (Chang
et al., 2021). The cytotoxicity (against NIH-3T3 and B16-F1 cell
lines, suitable for understanding the biocompatibility of a
formulation for such application) of curcumin-loaded cubosomes
was higher than the one obtained with DSPC liposomes, showing the
potency of the bicontinuous cubic phase dispersion as a carrier for
poorly water-soluble drugs.

Cubosomes have been quite studied in the past years as suitable
nanomedicines for ophthalmology-related diseases. Flak et al.
loaded GMO cubosomes stabilized with Pluronic F127 with the
anti-cancer drug AT101 to treat glioblastoma multiforme in vitro;
their study showed a high loading efficiency of the drug within the
formulation with a sustainable release that is able to induce a strong
cytotoxic effect against A172 and LN229 cell lines (Flak et al., 2020).

PHYT cubosomes encapsulating latanoprost managed to reduce
the intraocular pressure in rabbits in vivo, reaching better
performances than a molecular dispersion of the free drug
(Bessone et al., 2021). Cubosomal gels containing
beclomethasone dipropionate were prepared for the management
of uveitis, increasing corneal irrigation after treatment (Gaballa
et al., 2020).

The inclusion of edge activators in the formulation can
significantly improve the penetration properties. Among them,
bile salts have been found to be quite efficient in achieving this
result (Lai et al., 2020; Fornasier et al., 2022). We showed that the
inclusion of taurocholate in GMO cubosomes shifts the curvature of
the interface toward the lamellar phase dispersion (high bile salt
content) or the inverse hexagonal phase (low bile salt content),
yielding hexosomes suitable for the topical administration of
catechins, a natural antioxidant (Fornasier et al., 2021).

Cubosomal gels formed by GMO, Pluronic F127, and CTAB
were employed to encapsulate colchicine in order to treat gout, a
common inflammatory disease characterized by the deposition of
serum urate crystals in synovial fluids and joints. The in vivo studies
highlighted that the transdermal application of such nanomedicines
improved drug adsorption, with a significant bioavailability of
colchicine (Nasr, 2020).

Cubosomes loaded in a hydrogel matrix were formulated using
the quality-by-design approach (using software to optimize the
formulation) to develop an economically optimized formulation

for the topical administration of ketoconazole (Rapalli et al., 2021), a
drug having antifungal activity.

A hyaluronic acid-based hydrogel was prepared for
accommodating PHYT cubosomes in its matrix and evaluating
the drug release profile of diclofenac for topical application
(Gradella et al., 2022). The study showed that the cubosomes
maintain their inner structure and properties within the
hydrogel, opening up new possibilities for complex formulations
composed of a polymeric matrix and lipid nanoparticles.

Victorelli et al. prepared GMO/DOTAP cubosomes containing
curcumin, a natural antioxidant with anti-inflammatory and anti-
cancer properties. Such a formulation was tested against HeLa cell
lines in comparison with the free drug formulation and an
antiangiogenic effect in vivo by using the CAM model (Damiani
et al., 2022).

6.2.2 Photodynamic therapy using cubosomes
The application of cubosomes in the field of photodynamic

therapy has been very scarcely explored, and only a few papers (all
belonging to our group, to the best of our knowledge) are reported in
the literature (Bazylińska et al., 2018; Jenni et al., 2020). In our last
study, we formulated GMO cubosomes loaded with both inorganic
up-converting nanoparticles (UCNPs) and daunorubicin. In this
formulation, the UCNPs were the NaYF4 nanoparticles co-doped
with Yb3+ and Er3+ rare earth materials, and they served as energy
harvesters and diagnostic agents, while daunorubicin was the
photosensitizer. Since cubosomes typically possess a negative zeta
potential, we used the layer-by-layer technique to cover the
cubosomes’ surface with subsequent layers of chitosan, a
positively charged polymer, DNA, as a model genetic material,
and folate-conjugated chitosan to impart these nanoparticles an
active targeting for tumor tissues. As a result of the partial
superimposition of the daunorubicin absorption spectrum with
the visible emission by the UCNPs after NIR excitation, a
photodynamic activity was observed because of a singlet oxygen
species generation. This is the first example of hybrid cubosomes for
NIR-activated photodynamic therapy (Bazylińska et al., 2022).

6.3 Oral administration of lipid nanoparticles

The oral administration of drugs represents a non-invasive and
easy route. Indeed, the age of the patient can hinder the therapy since
parameters such as the taste and the smell of the formulation, non-
relevant in other administrations, are indeed crucial.

The complex digestive mechanism of the gastrointestinal tract is
designed to absorb as many nutrients as possible from our diet. The
materials administered orally experience a harsh acidic environment
in the stomach (pH 2–3), containing several enzymes, e.g., lipases
and proteases (Krieser et al., 2020). The partially digested material in
the stomach, chyme, is then passed to the first segment of the small
intestine (duodenum), where the pancreatic enzymes and bile salts
are released from the common bile duct. The pH rises to 5–6 in the
duodenum and is close to neutrality in the mid-to-distal jejunum.
Such knowledge is crucial whenever a pH-sensitive carrier is used,
keeping in mind the possible phase transition of the structure (Pham
et al., 2015). The digestive processes are coordinated to sequentially
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break down complex nutrients into their building blocks and then
selectively absorb these nutritional elements in an organized fashion.

Many efforts have focused on bypassing these harsh
environments by encapsulating the drug in carriers. Indeed, the
design of the formulation needs to take into account the effect of the
lipase. Lipid nanoparticles are suitable for this task, given the natural
biodegradability of the lipids.

The group of Boyd extensively studied the application of non-
lamellar lipid nanoparticles (especially cubosomes) for oral
administration (Nguyen et al., 2011; Boyd et al., 2019). PHYT
cubosomes showed good delivering properties for intestine
targeting (Porter et al., 2004; Nielsen et al., 2017), while GMO
cubosomes are more labile due to their lipase actions and are,
thereby, efficient for stomach targeting (Negrini and Mezzenga,
2011). This finding is related to the activity of lipases that are not
able to hydrolyze PHYT, in comparison with GMOs.

Another aspect to be considered for oral administration is the
strong taste of several drugs, which hinders their therapeutic
application in pediatric patients. Aiming to improve the
administration properties of cefpodoxime, a common antibiotic
for children, Fan and coauthors prepared a taste-masking
cubosome formulation, and its taste-making ability was
confirmed by using an electronic tongue, reaching better
performance in comparison with other commercial products (Fan
et al., 2020). These results show the efficacy of drug encapsulation
within a cubosome formulation, removing a common drawback (the
strong taste) but ensuring the efficacy of the therapy.

7 Conclusion and perspectives

Since cubosomes enable the encapsulation of poorly water-
soluble drugs and can be engineered with specific functionalities,
they are proposed as suitable candidates as nanomedicines. The
variety of applications of such formulations shows their potency
and versatility. Moreover, given their bigger water channel
diameters, hexosomes and sponge phase nanoparticles can
ensure the immobilization of large macromolecules (Meli
et al., 2015; Meli et al., 2017; Barriga et al., 2019; Gilbert
et al., 2019; Murgia et al., 2020). Even though hexosomes and
spongosomes have been studied for more than 20 years, few
papers have been published in comparison with cubosomes.
For instance, most of the research papers devoted to
spongosomes are related to their physicochemical aspects,
while their biological impact remains poorly understood, and
studies on their possible use as nanomedicines are missing.
Furthermore, their surface/interfacial properties lack proper
investigation. While cubosomes were investigated early under
this aspect (Larsson, 1983; Hyde et al., 1984; Neto et al., 1999),
hexosomes and sponge nanoparticles surface are yet to be probed
in a systematic manner on bare surfaces (hydrophilic and
hydrophobic) and on model membranes. This appears as one
of the most important missing links between the physicochemical
features and the biological/medical applications of these
nanoparticles. In general, as underlined by many reviews (Biffi
et al., 2017; Tran et al., 2017; Zhai et al., 2020b), only a limited

number of research papers have appeared presenting in vitro and
in vivo investigations on non-lamellar nanoparticles, and this is,
especially, true for hexosomes and spongosomes. As a
consequence, important aspects, such as the nanostructure
relationship with nanoparticles’ cellular uptake, remain rather
obscure and yet to be fully clarified (Bor et al., 2022b), not
allowing the drawing of fundamental conclusions on the fate
of these nanoparticles once administered and on their effect on
our bodies. In addition, non-lamellar nanoparticles are often
proposed as possible alternatives to liposomes, so the question
arises in which cases they may be superior. Due to the higher lipid
volume convoluted in the space in non-lamellar nanoparticles,
they certainly allow greater encapsulation of drugs per unit of
volume, but a control sample of vesicles is usually missing as a
comparison in most of the studies, making it harder to assess the
best option of treatment between lamellar or non-lamellar
formulations.

All the nanoparticles discussed in this review, either
lamellar, cubic, sponge, or hexagonal, exhibit peculiar aspects
that place them, in terms of use, in the pharmaceutical area of
controlled drug release for various pathologies. Definitely, each
of them has intrinsic advantages and disadvantages, ultimately
related to the physics and the chemistry of the molecules used for
their preparation. A clarifying example could be the better
performance shown by the non-hydrolyzable PHYT compared
to GMO in oral drug administration (see Section 6.3), although it
is commonly found more cytotoxic than GMO. However, rather
than simple limitations, such disadvantages should be
considered florid fields of research where investigations are
needed to clarify the biological role of the components of
these nanoparticles, which is well beyond the physicochemical
properties of the nanostructure they originate when dispersed in
water.
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