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Pea protein isolate (Pisum sativum L., PPI) has been much studied in the last
decade because of its potential as a bio-based alternative for surfactants to
produce innovative and environmentally friendly emulsion products. PPI is ideal
due to its favorable nutritional properties, low allergenicity and low environmental
impact. Despite its growing popularity, understanding the stabilisationmechanism
of emulsions stabilized with PPI remains a key question that requires further
investigation. Here, we use fluorescence lifetime microscopy with molecular
rotors as local probes for interfacial viscosity of PPI stabilized emulsions. The
fluorescence lifetime correlates to the local viscosity at the oil-water interface
allowing us to probe the proteins at the interfacial region. We find that the
measured interfacial viscosity is strongly pH-dependent, an observation that
can be directly related to PPI aggregation and PPI reconformation. By means
of molecular rotor measurements we can link the local viscosity of the PPI
particles at the interface to the Pickering-like stabilisation mechanism. Finally,
this can be compared to the local viscosity of PPI solutions at different
pH conditions, showing the importance of the PPI treatment prior to
emulsification.
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1 Introduction

Emulsions are mixtures of two or more liquid immiscible phases, one dispersed in the
other as droplets. Due to high interfacial tensions and droplet sizes greater than 0.1 µm, these
systems are typically thermodynamically unstable Shahidzadeh et al. (1999);
Aswathanarayan and Vittal (2019). Despite the existence of thermodynamically stable
emulsions (e.g., microemulsions) or systems that display spontaneous emulsification,
standard emulsion preparation includes other surface-active ingredients to guarantee
kinetic stability, such as classic surfactants, proteins and other bio-based particles
Shahidzadeh et al. (1997); McClements (2004); Yan et al. (2020). The use of proteins to
stabilize emulsions has been extensively studied in recent decades, especially in the case of
dairy proteins such as casein and whey Zhang et al. (2021); Hinderink et al. (2020); Burger
and Zhang (2019); Lee et al. (2009); Tcholakova et al. (2006). Lately, the food industry has
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developed a great interest in the development of products with
plant-based proteins. Indeed, the global context has shown a need
for a shift in dietary habits from synthetic or animal-based products
to other alternatives Poore and Nemecek (2018). Thus, complex
systems such as emulsions stabilized by soy or lentil proteins have
become alternatives for surfactants for environmentally responsible
product development Tang (2017); Liu and Tang (2013); Can
Karaca et al. (2011).

Pea is one of the plant-based proteins that has attracted a lot of
attention recently. Due to its nutritional and emulsifying properties
as well as low allergenicity, research on PPI-stabilized emulsions has
grown Kornet et al. (2022c); Li et al. (2022); Sridharan et al. (2020b);
Lu et al. (2020); Lam et al. (2018). Pea protein isolates (PPI) are
mainly composed by two globular proteins: Globulin and Albumin
in a minor percentage. The former can be also separated into
Legumin and Vicilin. In addition, there is also a minority
presence of carbohydrates, lipids and moisture Burger and Zhang
(2019). The relative amounts of these components can vary and how
these different components interact with water-oil interfaces
depending to the environment is responsible for the great
complexity of the behavior of these proteins.

PPI as an emulsion stabilizer has been studied from different
points of view. For instance, many parameters such as the globulin/
albumin ratio, protein solution pH Kornet et al. (2022c),Kornet et al.
(2022a); Liang and Tang (2013); Liu et al. (2009) or the agitation
process Yang et al. (2022); Kornet et al., 2022b, Kornet et al., 2021
have been identified as key aspects in the emulsifying capacity, the
stability of emulsions against coalescence, their rheological behavior
Kornet et al. (2020) and interfacial activity Drusch et al. (2021);
Chang et al. (2015); Gharsallaoui et al. (2009). Given its amphiphilic
nature and interfacial activity, PPI has been considered to stabilize
interfaces through a mechanism equivalent to classical surfactants
(hereafter referred to as the “molecular mechanism”). This includes
having a decrease in interfacial tension but also other mechanisms
and forces of uttermost importance such as van der Waals
interactions, electrostatic repulsions and depletion forces Burger
and Zhang (2019); Tcholakova et al. (2008). However, it has been
reported in several cases that these macromolecules can also behave
as particles to stabilize interfaces through a Pickering mechanism
Wang et al. (2022); Li et al. (2022); Sridharan et al. (2020a); Liang
and Tang (2014). Pickering emulsions are emulsions whose interface
stabilisation is mainly based on the existence of a steric barrier of
particles around the interfaces, without a significant decrease in
interfacial tension Velandia et al., 2021a; Velandia et al., 2021b);
Dinkgreve et al. (2016). Such emulsions have attracted attention for
food applications in recent years as they are believed to be highly
resistant to coalescence due to an almost irreversible adsorption of
the particles Schmitt et al. (2014); Sarkar and Dickinson (2020); Yan
et al. (2020); Berton-Carabin and Schroën (2015). Nevertheless,
whether particles decrease the interfacial tension is a matter of
debate due to the many articles reporting both behaviors Manga
et al. (2016); Kutuzov et al. (2007); Forth et al. (2019). Similarly, the
high resistance to coalescence has been questioned, since it has been
shown in several cases that Pickering emulsions can coalesce
relatively easily Dinkgreve et al. (2016); French et al., 2016,
French et al., 2015). For PPI-stabilized emulsions, front surface
fluorescence and gravimetric techniques have been used to deduce
the existence of this stabilization mechanismHinderink et al. (2021);

Sridharan et al. (2020b). Also, imaging methods including confocal
laser scanning microscopy (CLSM) and cryo scanning electron
microscopy (CryoSEM) have been employed to observe the
location of PPI at the interfaces as Pickering particles Kornet
et al. (2022a); Sridharan et al. (2020a). While all these methods
have yielded valuable information, more work is needed to
understand in detail how PPI films are built and stabilize interfaces.

Perhaps one of the most important features of protein-stabilized
emulsions is the strong dependence on the behavior of their
interfaces Berton-Carabin et al. (2018). In this aspect, interfacial
rheology plays a key role in protein film characterization. Whether
by means of dilational tests or interfacial shear, interfacial rheology
techniques allow to obtain information on molecular interactions
and network formation in the protein films Niu et al. (2023); Tseng
et al. (2022). Also, it has been shown that interfacial rheology can be
related to the bulk rheology of emulsions. This is notably the case
under high dispersed phase volume fraction conditions in which the
energy required to deform emulsions is strongly related to the
energy to deform an oil droplet Fuhrmann et al. (2022); Kim and
Mason (2017); Kim et al. (2016); Mason and Scheffold (2014). In
other cases, these methods have also been related to emulsion
stability. For example, it has been shown in protein films of
emulsions stabilized with oxidized proteins that a decrease in the
interfacial elastic modulus is characteristic of samples that are more
prone to coalescence Berton-Carabin et al. (2018). On a smaller and
local scale, microrheology techniques have also been used to study
interfacial properties of food gels and emulsions Moschakis (2013);
Lu and Corvalan (2016); Moschakis et al. (2006); Tisserand et al.
(2012); Wu and Dai (2007); Yang et al. (2017). The latter are very
attractive as they allow to obtain more information on the interface
stabilization process at a nanometer scale. However, these still
present challenges to be solved as the spatial resolution is limited
to thermal fluctuations and the tracer particles are limited by their
size and the nature of their surface Moschakis (2013); Wu and Dai
(2007); Yang et al. (2017). In the context of the complexity and
industrial interest in PPI as an emulsifier, the mechanical properties
of PPI films have been characterized Gharsallaoui et al. (2009).
Higher values of the interfacial elastic modulus were identified under
pH conditions in which PPI is charged. Interestingly, this correlates
with other researches in which PPI-stabilized emulsions show better
emulsifying capacity in the same conditions Liang and Tang (2013);
Gharsallaoui et al. (2012).

We set out here to obtain more information about this interfacial
stabilisation mechanism using molecular rotors. Upon photo-
excitation, these molecules can return to their ground energetic
state through intramolecular twisting and fluorescence, with both
pathways being dependent on their local environment, in particular
on their local viscosity Mirzahossein et al. (2022); Caporaletti et al.
(2022); Bittermann et al. (2021); Hosny et al. (2013); Uzhinov et al.
(2011); Jee et al. (2010); Haidekker and Theodorakis (2010, 2007);
Strehmel et al. (1997). The scale of sensitivity of the fluorescence
probes to local structural changes and microviscosity is about a few
nm. Therefore, this property has been used to measure the local
viscosity of complex systems such as cells Kuimova (2012); Kuimova
et al. (2008), lipid membranes Páez-Pérez et al. (2021), micro
bubbles Hosny et al. (2013) and water-in-oil interfaces Kang
et al. (2020). Additionally, they have been successfully used to
assess the structural variation and aggregation process of proteins
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such as lysozyme and insulin in solution Kubánková et al. (2017);
Thompson et al. (2015); Hawe et al. (2010); Kuimova et al. (2008).
Due to the scale which they are sensitive to, the use of molecular
rotors at oil-water interfaces can potentially be viewed as a
microrheology technique allowing to measure structural changes
in the constituent parts of protein films.

In this research we probe the interfacial local viscosity of silicone
oil-in-water emulsion droplets stabilized with PPI by means of the
molecular rotor trans-4-[4-(dimethylamino)styryl]-1-methyl-
pyridinium iodide (4-DASPI). We are particularly interested in
getting a better understanding on how PPI, which is said to
exhibit both molecular and Pickering stabilisation mechanisms,
stabilizes water-oil interfaces. To this end, measurements of the
fluorescence lifetime of the molecular rotor within the protein films
are performed. To induce PPI structural modifications,
pH variations prior to emulsification are done. We then compare
these results to the fluorescence lifetime of 4-DASPI in PPI solutions
and relate them to the protein structure. To our knowledge, this is
the first time that the local viscosity of oil-water interfaces stabilized
with proteins are probed with molecular rotors and our results pave
the way to the understanding of the microscopic, molecular
mechanisms responsible for protein-based stabilisation of
emulsions.

2 Materials and methods

2.1 Materials

Yellow pea seed (Pisum sativum L.) were provided by Alimex
Europe BV (Sint Kruis, Netherlands). Milli-Q filtrated and deionized
water (18 MΩ cm resistivity) was used to prepare all the protein
solutions. Silicone Oil (density 0.96 g/mL at 25°C, kinematic
viscosity 50 cSt at 25°C), hydrochloric acid (HCl) 0.1 M and 4-
DASPI (98% purity) were purchased from Sigma-Aldrich. All
reagents were used as received unless specified.

2.2 Methods

2.2.1 Protein extraction
Pea protein isolate was obtained from a standard isolation

process and based on previous studies Kornet et al. (2020, 2021,
2022a). Briefly, yellow pea flour was dispersed and stirred for 2 h in
deionized water (1:10 ratio). Prior to stirring, the pH was adjusted to
8 with NaOH 1M. The solution was then centrifuged at 20°C and
10000 g for 30 min to remove the starch fraction. The supernatant
was then fractionated through a freeze-drying process by means of
an Alpha 2–4 LD plus freeze dryer (Christ, Osterode am Harz,
Germany). The resulting isolate was stocked at −18°C.

2.2.2 Protein solution preparation
Protein solutions were prepared by dispersing 1 wt% of the

protein isolate in water (pH ≈ 7.3). To break up as many aggregates
as possible resulting from the extraction process, the mixture was
magnetically stirred at 500 rpm and 20°C for 3 h. The solution was
stocked under refrigerated conditions overnight to ensure complete
protein hydration. Subsequently, the solution was diluted to a final

protein concentration of 0.5 wt% and the molecular rotor 4-DASPI
was added to obtain a 10–5 M concentration. The pH was adjusted to
acidic (pH = 3.0), isoelectric (pH = 4.6) or close to neutral conditions
(pH = 6.3) with 0.1 M HCl and the resulting solution was
magnetically stirred for 1 h.

2.2.3 Emulsion preparation
Silicone oil-in-water emulsions were stabilized using the PPI

solution of 0.5 wt% as the continuous phase. The dispersed phase
volume fraction remained constant at ϕO = 0.5, all samples had a
total emulsion volume of 40 mL and the emulsification temperature
was held constant at 20°C. Silicone oil was progressively added to the
PPI solution while using a Silverson L5 M-A emulsifier at 2000 rpm
for approximately 2 min. Then, the samples were homogenized by
stirring at 6000 rpm for 18 min. An ice bath was used to control the
temperature. Emulsions were characterized after preparation and
stored in a fridge at 4°C. The pH was verified before characterization
with a pH-meter.

2.2.4 Confocal microscopy
An inverted confocal microscope (Leica TCS SP8) with a hybrid

detector was used for the fluorescence lifetime imaging (FLIM)
measurements of the emulsions. A 470 nm wavelength pulsed laser
with 40 MHz repetition rate was used for all measurements. 4-
DASPI presents an absorptionmaximum at 488 nm and an emission
maximum at 600 nm Kim and Lee (1999). Therefore, an emission
range between 500 nm and 700 nm was selected. A ×20 dry objective
and a ×100 oil immersion objective were used for emulsion
visualization (Figure 1), to follow the droplet size variation and
to study the fluorescence lifetime at the interfaces (Figure 2A). It is
worth noting that only the fluorescent signal immediately
surrounding the drops, as shown in yellow in Figure 2A, is
selected as the interface. This is done using the Leica Application
Suite X software. For each drop of emulsion, a minimum of
10000 counts were taken to obtain a representative signal. To
obtain an average lifetime value, a fluorescence decay curve is
analysed as shown in Figure 2B. All fluorescence lifetime
measurements (interfacial and proteins in solution) were fitted to
a bi-exponential decay as hemicyanine dyes like 4-DASPI usually
require for better fit Jee et al. (2010); Kim and Lee (1999):

I t( ) � A1e
− t
τ1 + A2e

− t
τ2 (1)

where I(t) is the number of detected photons at time t, whileAi and τi
are the amplitude and the lifetime of the ith decay component
respectively. The average lifetime values reported here are
amplitude-weighted average lifetimes 〈τ〉:

〈τ〉 � A1τ1 + A2τ2
A1 + A2

(2)

The error bars indicate the standard error obtained from
10 measurements (10 drops of emulsion) for each pH tested.

3 Results and discussion

Fluorescence intensity images along with the normalized
line profiles (I − Imin)/(Imax − Imin) of oil droplets stabilized with
pea-protein isolate (PPI) at different pH values are shown in

Frontiers in Soft Matter frontiersin.org03

Velandia et al. 10.3389/frsfm.2023.1093168

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2023.1093168


Figure 1. As a water-soluble dye 4-DASPI only stains the aqueous
protein phase: the inside of the oil droplets remains non-fluorescent.
Under pH 3.0 and pH 6.3 we find 4-DASPI to homogeneously stain
the continuous phase (Figures 1A,C top). At the iso-electric point
(IEP, pH 4.6), however, we observe thick crowns at the peripheries of
the oil droplets, along with aggregates in the continuous phase
(Figure 1B top). Thinner crowns are also observed at pH 6.3 while no
clear crowns can be seen at pH 3.0 (See Supplementary Figure S1).
The intensity profiles also show this (Figure 1 bottom). A closer look
at the images (See Supplementary Figure S1) reveals that protein

aggregates accumulate in large numbers at the interface in the IEP
and pH 6.3 conditions. Additionally, PPI aggregates at the isoelectric
point are shared between oil drops, in the same fashion as bridging
particles in Pickering-stabilized emulsions French et al. (2015).
Interestingly, the PPI particles at the interface are not evenly
distributed around the film and thinner sections (or smaller
aggregates of particles) can also be observed at the interfaces,
suggesting the additional presence of a protein layer
(See Supplementary Figure S1). These observations at the IEP
and pH 6.3 allow to consider the presence of both the Pickering

FIGURE 1
(Top) Fluorescence intensity images of 4-DASPI in PPI stabilized emulsions at pH 3.0 (A), 4.6 (B) and 6.3 (C). (Bottom) Line profiles of a selection of
≈10 oil droplets per sample. The data is based on the fluorescence intensity I measured in each pixel normalized with the minimum and the maximum
value (Imin and Imax) along the normalized cross section of each drop L/Lmax (red line illustrated in B-top).

FIGURE 2
Fluorescence lifetime analysis of 4-DASPI at the interface of PPI-stabilized emulsions at different values of pH. (A) Snapshot of an interface (interface
selection in yellow, pH = 4.6) investigated using fluorescence lifetime microscopy (magnification = ×100). Scale bar is 25 μm. (B) Fluorescence decay
curves of droplet interfaces at different pH’s. (C) 4-DASPI exhibits the highest value in 〈τ〉 (circles) at the interface stabilized at pH 4.6. Using the calibration
curve predicts a sharp increase in viscosity (squares) with respect to the emulsions stabilized at pH 3.0 and 6.3.
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and molecular stabilisation mechanisms coexisting in the PPI
emulsions, as documented by other authors. Previously,
Sridharan et al. observed that it is possible to stabilize emulsions
by adsorption of self-assembled PPI particles in coexistence with PPI
molecules in the bulk Sridharan et al. (2020a); French et al. (2015).
The authors argued for the existence of these particles by claiming
that hydrophobic and van der Waals forces overcome electrostatic
interactions. Although from Figure 1A we did not observe a clear
crown at the oil/solution interface at pH 3, there is an indication of
difference between the lifetime measured at the interface compared
to the one in the bulk (0.58 ± 0.01 ns vs. 0.51 ± 0.02 ns), suggesting
that protein aggregation at the interface happens also at pH 3.0.

The fluorescence lifetime analysis at the interface of the PPI-
stabilized emulsions is shown in Figure 2. Based on the known
mechanism of interface stabilisation with proteins and the proven
interfacial activity from interfacial tension studies at different
pH’s, PPI forms an interfacial film around the droplets Drusch
et al. (2021); Gharsallaoui et al. (2009). We anticipate that both
film structure and emulsification properties of proteins vary with
pH as shown in other studies Chang et al. (2015); Liang and Tang
(2013); Gharsallaoui et al. (2009). For instance, pH influences
protein aggregation and therefore the local (nm) viscosity which is
probed by molecular rotors (see, for example, Thompson et al.
(2015)): a longer fluorescence lifetime will reflect a more viscous
environment. The fluorescence decay curves measured directly at
the oil-water interfaces (Figures 2A,B) allow us to confirm this
effect. For the case of pH 3.0 an equivalent measurement was
performed as for the other conditions, selecting the fluorescent
area in the interfacial region. A maximum amplitude-weighted
average lifetimes of 〈τ〉 = 1.78 ± 0.11 ns is observed at the IEP
followed by an intermediate (〈τ〉 = 1.23 ± 0.04 ns) and minimum
value (〈τ〉 = 0.58 ± 0.01 ns) at pH 6.3 and pH 3.0 respectively
(Figure 2C). It is important to mention that through molecular
rotors we are probing the film structure once a state of equilibrium
between proteins in the bulk and proteins at the interface is
reached. Also, it has been shown that molecular rotor binding
can influence the average lifetime in cellular systems Thompson
et al. (2015). In our case we know that 4-DASPI does not generate
covalent bonds with PPI. Possibly other interactions (electrostatic,
hydrophobic, van derWaals) may be influencing our measurement
but quantifying their effect separately in a complex system such as
proteins at interfaces is beyond the scope of our study. The
empirical Förster-Hoffmann equation τf = k · ηx with τf the
fluorescence lifetime and η the viscosity can be used to relate
the local viscosity with the fluorescence lifetime of 4-DASPI at the
PPI stabilized interfaces (See Supplementary Figure S4 for the
calibration curve of 4-DASPI) Förster and Hoffmann (1971). From
extrapolation of the obtained calibration curve, an inferred
viscosity is calculated for each interfacial condition as shown in
Figure 2C right Y-axis. Such values reflect states of higher (pH 4.6)
or lower (pH 6.3 and pH 3.0) film density in the environment of 4-
DASPI. Surprisingly, the values for the inferred viscosities are
between two to three orders of magnitude above the viscosity of a
PPI solution measured using rheometry (≈ 1 mPa.s).
Understanding the meaning of such an increase in film density
as a function of pH is a question that now arises.

A higher film density would intuitively be related to better
stability properties of the emulsions or to an increase of the

interfacial viscoelastic modulus. However, multiple reports
indicate that emulsions stabilized with PPI (and any other
protein) have the least optimal stability conditions against
coalescence at the IEP Chang et al. (2015); Liang and Tang
(2013); Gharsallaoui et al. (2009). Such behavior was also
observed by us for the samples at pH 4.6 (data now shown). As
mentioned before, confocal images of samples at the IEP (denser
film condition) show that the protein films are not homogeneous
(See Supplementary Figure S1). As there are areas of high PPI
density, e.g., where proteins are shared between interfaces, there are
also less denser regions similar to those observed at pH 6.3. The
former are produced by PPI aggregation which, in turn, is mainly
due to intraprotein electrostatic interactions and Van der Waals
forces Zhang et al. (2022a). Indeed, at the IEP almost no electrostatic
interactions occur which favours protein aggregation Lam et al.
(2018). However, at pH 6.3 and pH 3.0 repulsive electrostatic
interactions arise which also result in a decrease of the particle
size compared to pH 4.6. The PPI aggregation was confirmed on the
protein solutions and characterized with dynamic light scattering
(DLS) and infrared spectroscopy (IR) (See Supplementary Figures
S2, S3 for details about DLS and IR results). By comparing how the
PPI hydrodynamic radius in solution varies with pH and the
behavior of the local viscosity in the interface we identify that
both follow the same trend. The denser environment probed
with 4-DASPI at the IEP suggests that the observed behavior
results from the nanometric scale (protein aggregates) and not
the microscopic scale (protein film). This also agrees with the
spatial resolution of the molecular rotor since its estimated size is
1 nm. Thus, it is to be expected that 4-DASPI shows greater
sensitivity to structural changes occurring at a scale close to their
spatial resolution (PPI particles and not protein films). Protein
aggregation and the consequent increase in the density of the
medium explain the different local viscosities measured at the
interface. However, to go further, it is important to determine if
what is observed in Figure 2C comes only from PPI aggregation or
whether other mechanisms play a role. For this, we measured the
amplitude-weighted average lifetimes for PPI solutions under
different pH conditions in a separate experiment, as shown in
Figure 3A. This provides a structural indicator on how
pH impacts the building blocks in the bulk, before film
formation. Indeed, being in solution, only the confinement
associated with inter-protein and intra-protein interactions in the
bulk is probed. Two aspects stand out about these results. First, the
major effect of pH on the amplitude-weighted average lifetime is also
seen for PPI solutions. The same trend is observed as for 4-DASPI
behaviour at oil-water interfaces. 〈τ〉 has a maximum under
isoelectric conditions and two lower values at pH 6.3 and pH 3.0.
This can be again correlated to protein aggregation (See
Supplementary Figure S3). Higher hydrodynamic radius in
solution suggest that the protein aggregates are more densely
packed at pH 4.6. As a consequence this induces greater local
confinement to the fluorescence probe and causes a larger
fluorescence lifetime with τsolution = 2 ns at the IEP. Since the
fluorescence lifetime measures the local confinement of the
protein aggregates and local crowding, it follows the same trend
as the hydrodynamic radius of PPI measured by DLS. Secondly,
τinterface shows comparable values to τsolution, which indicates that
PPI preserves its structure at the interface. This highlights that the
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final film structure greatly depends on the protein structure and
conformation before emulsification Zhang et al. (2022a); Kornet
et al. (2022b), Kornet et al., 2021). Such a characteristic supports
both the particle-like activity of proteins as emulsifiers and the
presence of a Pickering stabilizing mechanism with PPI. These
results can also be contrasted to the dependence on pH of the
dilational elastic modulus of PPI films and the stability of emulsions
with PPI as measured in other studies under comparable
circumstances Amine et al. (2014); Liang and Tang (2013);
Gharsallaoui et al. (2009) While we observe a maximum in the
IEP and minima in electrostatically charged conditions, the opposite
trend has been reported in literature for emulsion stability and
interfacial elastic modulus Ladjal-Ettoumi et al. (2016); Gharsallaoui
et al. (2009). This confirms, on the one hand, that we are not directly
measuring the resistance of the film to deformation with 4-DASPI,
but rather the molecular structure of the constituent parts. On the
other hand, our findings are consistent with the theory that a more
homogeneous film is produced under electrostatically charged
conditions (i.e., pH 3.0), primarily as a result of a significantly
smaller PPI size Gharsallaoui et al. (2009). It was previously
proposed that the high elasticity of the interfacial films under
non-isoelectric conditions could be due to the fact that the
subunits of PPI (molecular mechanism) had enough time to
adsorb and reorganise at the interface Gharsallaoui et al. (2009).
By directly measuring the interfacial film region with molecular
rotors and confocal microscopy observations, the results support
this theory. This remains an interesting piece of information as it is
also seen that the Pickering mechanism is moremarked as a function
of particle aggregation and favoring it implies less optimal stability
properties for the emulsions Amine et al. (2014). This suggests, from
a nanometre scale, that the most important mechanism for film
elasticity and emulsion stability is also the molecular one as
mentioned by other studies Sridharan et al. (2020a).

While the values for τinterface and τsolution are comparable in
magnitude, it should be mentioned that a small difference between
amplitude-weighted average lifetime in solution and at the interface
is observed. The τinterface is in all cases slightly smaller than τsolution.
To identify whether this is caused by PPI interparticle interactions or
is due to the oil-water interface, exploring a solution-based
environment analogous to the protein film at the interface is a
useful method. This can be accomplished by increasing the protein
concentration in solution to look for a rise in fluorescence lifetime
brought on by a change in confinement. This was carried out in the
isoelectric case where higher PPI aggregation was found as shown in
Figure 3B. Interestingly, no amplitude-weighted average lifetime
variation was observed while increasing protein concentration in the
studied range. This suggests that increasing the concentration of
protein does not change the structure of aggregates, and only
increases the number of aggregates. PPI structural modifications
in the oil-water interfacial region is thus the last feature that could
explain the observed lifetime of 4-DASPI. Indeed, it is well known
that the way in which proteins interact with oil also impacts the
interfacial reconformations Zhang et al. (2022b). Therefore, in
presence of an interface, the hydrophobic regions tend to relocate
to be in contact with the oil Beverung et al. (1999). This might
explain the small but systematic decrease in the lifetime of 4-DASPI
at the oil-water interface compared to the solutions. Additionally,
this is in agreement with the molecular size of 4-DASPI given that
such reconformation is occurring on the scale of protein particles.
Molecular rotors therefore appear as a robust tool to identify
multiple features of protein interfacial films, notably how these
are built in a nanometric scale. In the future, we foresee that these
tools are also used to probe multiscale properties so a more direct
relationship between local viscosity of the protein films and
properties such as film elasticity or resistance to coalescence can
be obtained.

FIGURE 3
Fluorescence lifetime analysis of 4-DASPI in PPI solutions (empty squares) with varying pH (at constant protein concentration 0.5 wt%) (A) and
varying protein concentration (B). The amplitude-weighted average lifetime reaches a maximum at the isoelectric point, whilst remaining largely
independent of protein concentration. The lifetimes measured at the oil-water interfaces (filled squares in A) are systematically lower than the ones
observed in solutions at the same pH.
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4 Conclusion

To conclude, the molecular rotor 4-DASPI was used to probe
local interfacial viscosities of silicone-oil-in-water emulsions
stabilized with PPI under pH modifications. A Pickering
stabilisation mechanism was identified with PPI proteins,
especially under isoelectric conditions. Bridging of PPI
aggregates was observed between oil droplet interfaces. We
successfully identified how protein film structures are modified
as a function of pH. PPI aggregation and PPI reconformation in the
interface characterise the stabilisation mechanism of these oil-
water interfaces and can be correctly quantified with 4-DASPI.
Amplitude-weighted average fluorescence lifetime in solutions
showed an equivalent trend, but systematically higher, as the
measurements in the interface with varying pH. Protein
aggregates at the interface thus present lower local viscosity
compared to simple solutions. We also observe that increasing
the protein solution concentration did not impact the measured
local viscosities, showing that 4-DASPI is mainly measuring a
structural modification at the nanometer scale of PPI. From this
study we identify that molecular rotors can be a robust tool to
characterize oil-water interfaces with globular proteins that exhibit
a Pickering stabilisation mechanism such as PPI.
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