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In this work, we study the equilibrium configurations in a nematic pi-cell under

an electric field using the one-dimensional Oseen-Frank director model. The

equilibrium orientational configurations that can be attained in a pi-cell are

known as splay, bend, and twist. Among those, bend and twist are topologically

equivalent and can be transitioned into one another as voltage varies. The

transition can be continuous or abrupt depending on the material parameters.

On the other hand, the splay configuration becomes asymmetric for sufficiently

high voltages if the liquid crystal has a positive dielectric anisotropy. We

determine those threshold voltages and characterize the order of transitions

in terms of the elastic constants and the pretilt angle at the boundary.
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1 Introduction

Amultistable-state device has two or more locally stable states which are separated by

energy barriers. The transitions among the states can be realized by applying an external

field large enough to overcome the energy barrier to reach another state. After the field is

removed, the device will remain in its locally stable state without a constant supply of

power. Some known bistable devices include cholesteric liquid crystal (LC) display (Yang

et al., 1994), bistable twist nematic (BTN) (Berreman and Heffner, 1980), surface

controlled bistable nematic (Berreman and Heffner, 1981; Dozov and Durand, 1998;

Kim et al., 2001), and Zenithally bistable nematic device (Bryan-Brown et al., 1994), just to

name a few.

In 1980, Boyd, Cheng, and Ngo (Boyd et al., 1980) proposed a nematic LC display,

later referred to as the pi-cell: nematic liquid crystals are enclosed between two parallel

substrates; the boundaries are conditioned to induce the same pretilt alignment,

characterized by the polar angle θ0 of the directors at the plate surfaces; and the top

plate is rotated by angle π relative to the bottom plate, see Figure 1A. Three locally stable

configurations, known as horizontal (H) for predominately splay, vertical (V) for

predominately bend, and twist (T) states, can be achieved by specifying appropriate

boundary conditions and proper material parameters. Switching among the topologically

distinct states (V/T and H) can be realized via formation and movement of disclinations

near the bounding surfaces after the application of electric and magnetic fields.
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In 1984 (Bos and Koehler/Beran, 1984), demonstrated that

the pi-cell can be used for fast optical-switching devices in the

V-state, also known as optically compensated bend (OCB) mode.

Since then, many liquid crystal display devices with fast response

time, large viewing angles, and high transmittance have been

proposed based on the pi-cell (Yu and Kwok, 2004; Jhun et al.,

2006; Wu et al., 2012; Lin et al., 2015; Zhou et al., 2017).

There are seven possible equilibrium orientational patterns

of a nematic pi-cell under an electric field applied normal to the

cell, as shown in Figure 1; three are predominately splay

configurations, which we label as Hs, Hs*, and Ha, three are

predominately bend configurations, which we label as Vs, Vs*,

and Va, and one is the out-of-plane twist configuration, which

we label as T. Here Hs stands for monotonic symmetric splay

where the tilt angle θ(z) monotonically increases from the

bottom plate to the midplane, Hs* is for nonmonotonic

symmetric splay where the tilt angle θ(z) first decreases and

then increases from bottom plate to the midplane, and Ha

represents the asymmetric splay. Similarly, Vs is for monotonic

symmetric bend where the tilt angle θ(z) monotonically

decreases from bottom plate to the midplane, Vs* is for

nonmonotonic symmetric bend where the tilt angle θ(z) first

increases and then decreases from bottom to the midplane, and

Va for the asymmetric bend. Among them, the Hs* and Ha

configurations can only be found for LCs with positive

dielectric anisotropy under sufficiently strong field. Similarly,

Vs* and Va exist only for LCs with negative dielectric

anisotropy under sufficiently strong field but, as we shall

show, are unstable to twist state (T). The director field in the

plane parallel to the bounding plates is assumed to be uniform.

In this work, we aim at a thorough parameter study of

equilibrium configurations in a nematic pi-cell under an

electric field. We do not consider the switching among the

topologically distinct configurations in this work. The paper is

organized as follows. Section 2 introduces the mathematical

model, where the distortion energy of the director field in the

pi-cell is modeled with the one-dimensional Oseen-Frank elastic

theory, and the electric field satisfies the Maxwell equations. The

Euler-Lagrange equations and the corresponding first integrals

for the equilibrium configurations are derived. In Section 3, the

results of the equilibrium configurations in the absence of electric

field are presented in terms of the elastic constants and the

boundary pretilt angle. In Section 4, we show the effect of the

electric field on the equilibrium configurations. We summarize

the paper in Section 5.

2 Mathematical model

In this section, we first present the free energy of the system,

featuring the Oseen-Frank elastic energy and the electric

energy. We then derive the Euler-Lagrange equations and

corresponding first integrals which determine the

equilibrium director fields.

2.1 Free energy

In this work, we assume that the orientation field of the

nematic liquid crystal is uniaxial and has a constant scalar order

parameter throughout the cell, thus can be described by the unit

vector field n(x). We take the free energy due to the distortion in

the director field n as given by Oseen-Frank theory (Oseen, 1933;

Frank, 1958),

FIGURE 1
(A) A schematic of the nematic pi-cell with boundary pretilt conditions θ0, showing the coordinate system and definitions of angles θ and ϕ for
the director n. (B) A schematic showing seven possible equilibrium orientation patterns of a nematic pi-cell under a vertical electric field. They are
referred to as monotonic symmetric splay (Hs), nonmonotonic symmetric splay (Hs*), asymmetric splay (Ha), monotonic symmetric bend (Vs),
nonmonotonic symmetric bend (Vs*), asymmetric bend (Va), and twist (T). The director field is assumed to be uniform in a plane parallel to the
bounding plates.

Frontiers in Soft Matter frontiersin.org02

Allen and Zheng 10.3389/frsfm.2022.984400

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2022.984400


FOF � 1
2
∫
Ω

K1 ∇ · n( )2 + K2 n · ∇× n( )2 + K3|n ×∇× n|2

+ K2 +K4( )∇ · n · ∇( )n − ∇ · n( )n[ ]dV.
(1)

Here K1, K2, and K3 are the elastic constants corresponding to

splay, twist, and bend distortions, respectively, and the

combination K2 + K4 is the saddle-splay constant. This energy

is bounded from below if K1 ≥ 0, K2 ≥ 0, K3 ≥ 0, K2 ≥|K4|, and

2K1 ≥ K2 + K4 ≥ 0 (Ericksen, 1966). The last term, known as null

Lagrangian, can be integrated by divergence theorem and

becomes a surface term, which depends on the director

variation along the bounding surface. Since we consider

strong anchoring on the surface, this becomes an additive

constant in the energy, thus can be ignored.

The electric energy is given by (cf. (Lagerwall, 1999))

FE � −1
2
∫
Ω

D · EdV, (2)

where the electric displacement is D = ε(n)E, with the dielectric

tensor

ε � ε0 ε⊥I + ε‖ − ε⊥( )nn( ). (3)

The constants ε‖ and ε⊥ are the relative dielectric permittivities of

the liquid crystal when the field is parallel and perpendicular to

the director, respectively. The difference εa = ε‖ − ε⊥ is the

dielectric anisotropy of the liquid crystal. For materials with

positive dielectric anisotropy, that is, εa > 0, the molecules prefer

to align parallel with the electric field; whereas for materials with

negative dielectric anisotropy, that is, εa < 0, the molecules prefer

to align perpendicular to the electric field.

It is well known that the electric field will be altered by the

director distortion, whereas the influence of the director on the

magnetic field is negligible (Deuling, 1972; Gartland, 2020). An

accurate model of electric field involves solving the Maxwell’s

equations

∇ ·D � 0, ∇× E � 0, (4)

under the assumption that there are no free charges in the cell.

The curl free condition on the electric field gives immediately

E = −∇U, where U is the electric potential. In this work, we

consider that the electric potential difference is applied parallel to

the normal of the bounding plates along the z − direction, and

assume that both the director field and electric field are functions

of z, that is

E z( ) � −dU
dz

0, 0, 1( ), (5)

and the director n(z) adopts the usual parametrization

n z( ) � sin θ z( )cos ϕ z( ), sin θ z( )sin ϕ z( ), cos θ z( )( ), (6)

where the polar angle θ is measured from z − axis, and the

azimuthal angle ϕ is measured from x − axis. Following the

similar treatment as in (Deuling, 1972), the z − component of

electric displacement D(z) is a constant, that is,

D z( ) � D � ε0 ε⊥ + εa cos
2 θ( )E, (7)

and the electric potential difference across the cell is

U0 � −∫d
0

E z( )dz � −Dε−10 ∫d
0

ε⊥ + εa cos
2 θ( )−1dz. (8)

We note that there is no singularity in the integrand since

εa/ε⊥ > −1. With Eq. 8, the electric energy (2) can be written as

FE � −A
2
U2

0ε0 ∫d
0

ε⊥ + εa cos
2 θ( )−1dz⎛⎜⎜⎝ ⎞⎟⎟⎠−1

, (9)

where A is the area of the bounding plates, and d is the gap

thickness.

We define the following dimensionless parameters,

k1 � K1 −K3

K3
, k2 � K2 − K3

K3
, �z � πz

d
, α � ε0εaU

2
0

K3π2
,

�U � U����������
K3π2/|ε0εa|√ , γ � εaε

−1
⊥ , (10)

where k1, k2, γ ∈ (−1, ∞), the cell thickness is rescaled to π, and

the parameter α, which is proportional toU2
0, has the same sign as

that of εa and γ. Then the total bulk free energy, which is the sum

of the Oseen-Frank elastic energy and the electric energy, can be

expressed as,

Ftot � K3Aπ

2d
∫π
0

f θ( )θ′2 + g θ( )ϕ′2d�z − απ2 ∫π
0

γ−1 + cos2 θ( )−1d�z⎛⎜⎜⎝ ⎞⎟⎟⎠−1⎛⎜⎜⎝ ⎞⎟⎟⎠,

(11)

where ()′ � d()/d�z and

f θ( ) � 1 + k1 sin
2 θ, (12)

g θ( ) � 1 + k2 sin
2 θ( )sin2 θ. (13)

The electric field, �E(�z) � − �U′, can be solved from

γ−1 + cos2 θ( ) �U′( )′ � 0, (14)
�U 0( ) � 0, �U π( ) � ���|α|√

. (15)

It is also useful to define the dimensionless parameter

δ � D2d2

ε0εaK3π2
. With it, Eq. 7 becomes

δ � sign εa( )π2 γ−1 + cos2θ( )2 �U′2
, (16)

and α and δ are related, via Eq. 8, as

απ2 � δ ∫π
0

γ−1 + cos2 θ( )−1d�z⎛⎜⎜⎝ ⎞⎟⎟⎠2

. (17)

Using Eq. 17, the total free energy in (11) can be written as

Frontiers in Soft Matter frontiersin.org03

Allen and Zheng 10.3389/frsfm.2022.984400

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2022.984400


Ftot � K3Aπ

2d
∫π
0

f θ( )θ′2 + g θ( )ϕ′2d�z − δ∫π
0

γ−1 + cos2 θ( )−1d�z⎛⎜⎜⎝ ⎞⎟⎟⎠.

(18)
We will use this equation for subsequent calculations for the

energies of the equilibrium configurations. For convenience, we

drop the bar from the variable �z, such that in the subsequent

sections, z is the nondimensionalized spatial variable ranging

from 0 to π.

2.2 Euler-Lagrange equations and first
integrals

Setting the first variations of the free energy functional in Eq.

11 with respect to θ and ϕ to zeros, and utilizing Eq. 17, we obtain

the Euler-Lagrange (EL) equations for θ and ϕ,

2θ′′f θ( ) + θ′2f′ θ( ) − ϕ′2g′ θ( ) − δ
sin 2 θ

γ−1 + cos2 θ( )2 � 0, (19)

ϕ′′g θ( ) + θ′ϕ′g′ θ( ) � 0. (20)
Eqs 19, 20, with δ replaced with Eq. 16, together with Eqs 14, 15

and boundary conditions for θ and ϕ, are readily solved by any

numerical solver for ODE boundary value problems.

Multiplying Eq. 19 by θ′, Eq. 20 by ϕ′, adding them together,

and integrating the result with respect to z, we obtain a first

integral

f θ( )θ′2 + g θ( )ϕ′2 − δ

γ−1 + cos2 θ
� C. (21)

Integrating Eq. 20 with respect to z yields another first

integral

g θ( )ϕ′ � k. (22)

Here C and k are constants of integration. We note that from

Eqs 18, 21, the free energy density is invariant in space and is

proportional to the integration constant C.

Since the director fields of splay and bend configurations

are constrained to lie in a plane orthogonal to the bounding

plates, ϕ(z) is a constant, and the EL equations reduce to a

single equation for θ(z). The boundary conditions for splay,

bend, and twist configurations differ drastically because of

the different underlying topologies. To conveniently

describe the transitions among different configurations,

we further manipulate those differential equations,

together with symmetry properties and boundary

conditions, to obtain algebraic equations which, upon

solving, give the essential quantities associated with each

configuration, e.g. integration constants C and k, the

extreme tilt angle θm, and energy F. We discuss the

details for each configuration separately in the

subsections below.

2.2.1 Splay configuration
For the splay configuration, the azimuthal angle ϕ(z) is

constant, so Eq. 22 is automatically satisfied with k = 0, and

Eq. 21 simplifies to

f θ( )θ′2 − δ

γ−1 + cos2 θ
� CS. (23)

Separating the variables, we get

dz � ±

�����������
f θ( )

CS + δ
γ−1+cos2 θ

√
dθ, (24)

where the plus sign is adopted if θ increases with z, and the minus

sign is adopted otherwise. Eq. 24 provides the implicit relation

between θ and z.

The boundary conditions specifying the pretilt angles for the

splay configuration are given by

θ 0( ) � θ0, (25)
θ π( ) � π − θ0, (26)

where 0 ≤ θ0 ≤ π/2, and are illustrated in Figure 1B, where the

pretilt angles are formed by the director n at the boundary plates

with the positive z − axis for the Hs, Hs*, and Ha configurations.

Eqs 17, 24–26 determine the solution θ(z) for the splay

configuration for given θ0 and α.

Below, we comment briefly on the monotonicity of θ(z) and

its associated symmetry property. We first show that in the

absence of electric field, the solution θ(z) for the splay

configuration is monotonic. If θ0 = π/2, then θ(z) ≡ π/2,

which is automatically monotonic. If θ0 ≠ π/2, the

monotonicity can be shown by contradiction. Since if

otherwise, θ(z) possesses a local extremum at an interior

point z = zp such that θ′(zp) = 0, then θ′(z) ≡ 0 by setting

δ = 0 in Eq. 23, and θ(z) is a constant, violating the boundary

conditions Eqs. 25, 26. As we shall show in Section 4,

monotonic splay configurations only exist if α is smaller

than a positive threshold value αcs, beyond which θ(z)

becomes nonmonotonic.

Furthermore, if θ(z) is monotonic, the plus sign is taken in

Eq. 24. Integrating Eq. 24 in (0, z), we have

z � ∫θ z( )

θ0

�����������
1 + k1 sin2 θ

CS + δ
γ−1+cos2 θ

√√
dθ �θ̂�π−θ ∫π−θ0

π−θ z( )

����������
1 + k1 sin2θ̂

CS + δ
γ−1+cos2 θ̂

√√
dθ̂, (27)

and integrating Eq. 24 in (π − z, π) gives

z � ∫π−θ0
θ π−z( )

�����������
1 + k1 sin2 θ

CS + δ
γ−1+cos2 θ

√√
dθ. (28)

Equating the right hand sides of Eqs 27, 28, we obtain the

symmetry property for monotonic θ(z), that is,

θ π − z( ) � π − θ z( ). (29)
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Further manipulations of equations are different for

monotonic and nonmonotonic splay configurations, which we

defer to Sections 3 and 4.

2.2.2 Bend configuration
The EL equation for bend configuration is the same as that

for splay configuration,

f θ( )θ′2 − δ

γ−1 + cos2 θ
� CB. (30)

So is the implicit relation between θ and z,

dz � ±

�����������
f θ( )

CB + δ
γ−1+cos2 θ

√
dθ. (31)

The boundary conditions for bend configuration are

θ 0( ) � θ0, (32)
θ π( ) � −θ0, (33)

with 0 ≤ θ0 ≤ π/2. Eqs 17, 31–33 determine the solution θ(z) for

the bend configuration for given θ0 and α.

Similar to the splay configuration, the solution θ(z) for bend

configuration is monotonic in the absence of electric field and

continues to be monotonic for α > αcb, with the threshold value

αcb < 0. For α < αcb, θ(z) becomes nonmonotonic. With the

similar argument as in the splay configuration, one can show that

if θ(z) is monotonic, it satisfies the symmetry property

θ π − z( ) � −θ z( ). (34)

2.2.3 Twist configuration

For twist configuration, one has to solve the full set of Eqs 17,

21, 22, together with boundary conditions

θ 0( ) � θ0, ϕ 0( ) � ϕ0, (35)
θ π( ) � θ0, ϕ π( ) � ϕ0 ± π, (36)

where 0 ≤ θ0 ≤ π/2, and ϕ0 is an arbitrary angle. We set ϕ0 = 0 such

that the director on the boundary lies in the xz− plane. The boundary

condition ϕ(π) = ϕ0 + π is for the right-handed twist configuration,

and ϕ(π) = ϕ0 − π is for left-handed twist: each is equally probable.

We focus on the right-handed twist for further analysis.

We seek the solution θ(z) in twist configuration which is

unimodal, that is, θ(z) possesses only one local extreme for

z ∈ (0, π). Generally speaking, if θ(z) possesses multiple local

extremum points, the corresponding configuration often has

high energy due to the rapid variations in θ(z), so we do not

consider those solutions. Following the similar line of argument

as for the splay configuration, we can show that if θ(z) is a

unimodal function, then θ(z) is symmetric with respect to the

midplane, that is

θ π/2( ) � θm, θ′ π/2( ) � 0, θ z( ) � θ π − z( ), 0≤ z≤
π

2
. (37)

Meanwhile, one can also establish the symmetric relation for

ϕ(z), using Eq. 22,

ϕ π − z( ) � π − ϕ z( ), 0≤ z≤ π

2
. (38)

Combining Eqs 21, 22, 37, we get

CT � − δ

γ−1 + cos2θm
+ k2

g θm( ). (39)

Separating the variables in Eq. 21, via Eqs 22, 39, yields

dz � ±

�����������������������������
f θ( )

δ
γ−1+cos2 θ − δ

γ−1+cos2θm + k2 1
g θm( ) − 1

g θ( )( )
√√

dθ. (40)

Integrating Eq. 40 from z = 0 to z = π/2 leads to

π

2
� ∫π/2

0

dz � ± ∫θm
θ0

f θ( )
δ

γ−1+cos2 θ − δ
γ−1+cos2θm + k2 1

g θm( ) − 1
g θ( )( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦1/2 dθ.

(41)
Similarly, by Eqs 22, 38, 40, we obtain

π

2
� ∫π/2

0

k

g θ( )dz

� ± ∫θm
θ0

f θ( )
δ

γ−1+cos2 θ − δ
γ−1+cos2θm + k2 1

g θm( ) − 1
g θ( )( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦1/2 k

g θ( ) dθ. (42)

In Eqs 41, 42, the positive signs are taken for increasing θ(z)

or θm > θ0, which we refer to as a large tilt twist, and the negative

signs are taken for decreasing θ(z) or θm < θ0, which we refer to as

a small tilt twist.

Eqs 41, 42 relate θ0, θm, δ, and k. Given any two quantities,

we can solve for the other two. It is important to point out that

there might be zero, one, or two values of θm corresponding to

a given θ0, as shown in Figures 2–4 in Section 3. The direct

method which solves θm in terms of α and θ0 is an involved

procedure, especially when the number of solutions is not

known a priori (Scheffer, 1978). However, there is always a

unique value θ0 for each given θm ∈ [0, π/2]. With this, our

strategy is to solve for θ0 for a given θm. First, for a given set of

δ/k2 and θm, the pretilt angle at the boundary θ0 is numerically

solved from Eq. 42. In this work, we used the FindRoot

function in Wolfram Mathematica 10 as our numerical

solver. Knowing the values of θ0, k can be evaluated by

multiplying Eq. 41 by k throughout. Next, α can be

obtained by Eq. 17, which can be written, upon substituting

Eq. 40 and rearranging, as
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FIGURE 2
Results for k2 = 0 in the absence of electric field. Left axes show θm vs. θ0 for the twist configuration, and right axes show the scaled energies for
splay (F0H), bend (F0V ), and twist (F0T ) configurations vs. θ0. For (A) k1 = 2, there is a second order transition from bend to twist. For (B) k1 = 1, there is a
second order transition at a larger θ0. For (C) k1 = 0, there is no twist solution.

FIGURE 3
Results for k2 = −0.5 in the absence of electric field. Left axes show solutions θm vs. θ0 for the twist configuration, and right axes show the scaled
energies for splay (F0H), bend (F0V ), and twist (F0T ) configurations vs. θ0. For (A) k1 = −0.1, there is a second order transition from bend to twist. For (B)
k = −0.75, there is a first order transition from bend to twist. For (C) k1 = −0.85, there is a first order transition from bend to twist, but the bifurcation
point for θm moves out of physical range. We note that the first order transition occurs when the bend and twist energy curves intersect.

FIGURE 4
Results for k2 = −0.75 in the absence of electric field. Left axes show solutions θm vs. θ0 for the twist configuration, and right axes show the scaled
energies for splay (F0H), bend (F0V ), and twist (F0T ) configurations vs. θ0. For (A) k1 = 1, there is a second order transition from bend to twist. For (B)
k1 = −0.75, there is a first order transition from bend to twist. For (C) k1 = −0.85, the bistable region of θ0 gets larger than that of k1 = −0.75.
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α � 4δ
π2

∫θm
θ0

k

γ−1 + cos2 θ
f θ( )

δ/k2
γ−1+cos2 θ − δ/k2

γ−1+cos2θm + 1
g θm( ) − 1

g θ( )( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦1/2 dθ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠2

.

(43)

This enables us to relate the tilt angle θm at the midplane with

θ0 and α. Furthermore, the energy for the resulting configuration

can be expressed as

FT � K3Aπ2

2d
CT � K3Aπ2

2d
1

g θm( ) −
δ/k2

γ−1 + cos2θm
( )k2. (44)

Special cares have to be taken in the above procedure, since in

both Eqs 41, 42, the radicand cannot be negative, and proper

signs need to be chosen based on the monotonicity of θ(z). Since

f(θ) > 0, the denominator of the radicand has to be positive,

that is,

h θ( ) � δ/k2
γ−1 + cos2 θ

− δ/k2
γ−1 + cos2θm

+ 1
g θm( ) −

1
g θ( )( )> 0,

(45)
for θ in between θ0 and θm. We note that since h(θm) = 0, the

sign of h′(θm) alone determines the monotonicity of θ(z) such

that the nonnegative requirement of the radicand is satisfied.

Specifically, if h′(θm) > 0, then θ is necessarily greater than θm to

ensure h(θ) > 0. This gives θ0 > θm, hence θ′ < 0, and the minus

signs are adopted in Eqs. 41, 42. If h′(θm) < 0, θ is necessarily less

than θm to satisfy h(θ) > 0, thus θ0 < θm, which gives θ′ > 0, and

the positive signs are adopted. If h′(θm) = 0, then θ0 = θm. In this

special case, the twist configuration has a constant tilt angle and a

uniform twist with ϕ′ = 1. From Eqs 22, 17, we obtain k = g(θ0)

and α � δ/(γ−1 + cos2θ0)2. Subsequently, the energy can be

evaluated by Eq. 44.

It is important to note that in the limiting case of θm → 0,

ϕ(z) approaches a step function with ϕ = 0 at the lower half and

ϕ = π at the upper half of the cell, with ϕ not uniquely defined at

the midplane. This is illustrated by the dotted curves in

Figure 11 in Section 4. Due to the head-to-tail symmetry of

n, that is, n and − n refer to the same orientation, we recognize

that twist configuration becomes bend as θm → 0. Since twist

configuration can be transformed to a bend configuration

through a continuous mapping, and vice versa, those two

configurations are topologically equivalent.

3 Solutions in the absence of electric
field

Let’s first consider the equilibrium configurations in a pi-cell

without the electric field. We first obtain the energies for splay,

bend, and twist equilibrium configurations in Sections

3.1, 3.2 and 3.3, and the results are shown in Section 3.4.

3.1 Splay configuration

We showed earlier in Section 2.2.1 that in the absence of

electric field, θ(z) for splay configuration is monotonic, hence

satisfies the symmetry relation Eq. 29, which gives θ(π/2) = π/2.

Setting δ = 0 in Eq. 23, we obtain CS = (1 + k1)θ′(π/2)2. Since θ(z)
is increasing, the plus sign is taken in Eq. 24. Integrating Eq. 24

from z = 0 to z = π/2 and rearranging gives

θ′ π/2( ) � 2
π
∫π/2
θ0

�����
f θ( )
1 + k1

√
dθ. (46)

Together with Eqs 18, 23, the energy for the splay

configuration can be written as

F0
H � K3Aπ2

2d
CS � K3A

2d
∫π−θ0
θ0

����
f θ( )

√
dθ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (47)

It can be readily shown that the energy for the splay

configuration increases with k1 and decreases with θ0.

3.2 Bend configuration

Similarly, for bend configuration, the symmetry relation

Eq. 34 implies θ(π/2) = 0. Setting δ = 0 in Eq. 30, we have

CB = θ′(π/2)2. Since θ(z) is monotonically decreasing, the

negative sign is taken in Eq. 31. Integrating Eq. 31 from z = 0

to z = π/2 and rearranging gives

θ′ π/2( ) � 2
π
∫0
θ0

����
f θ( )

√
dθ. (48)

The energy for the bend configuration, using Eqs 18, 30, can

be written as

F0
V � K3Aπ2

2d
CB � K3A

2d
∫−θ0
θ0

����
f θ( )

√
dθ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (49)

It follows that the energy for the bend configuration increases

with both k1 and θ0.

3.3 Twist configuration

If δ = 0, Eq. 45 simplifies to

h θ( ) � 1
g θm( ) −

1
g θ( ), (50)

and the sign of h′(θm) follows that of g′(θm). Given θm, θ0 is solved
from Eq. 42, which by setting δ = 0, becomes
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π

2
� ±

�����
g θm( )

√ ∫θm
θ0

f θ( )
g θ( ) g θ( ) − g θm( )( )[ ]1/2

dθ, (51)

where the plus sign is taken if g′(θm) < 0, and the minus sign is

taken otherwise. Once θ0 and θm are known, k can be evaluated

by setting δ = 0 in Eq. 41 and rearranging, that is,

k � 2
π
∫θm
θ0

f θ( )g θ( )g θm( )
g θ( ) − g θm( )[ ]1/2

dθ. (52)

Together with Eqs 21, 22, one obtains CT = k2/g(θm), and the

corresponding energy for the twist configuration can be

evaluated as

F0
T � K3Aπ2

2d
CT � K3A

2d
2 ∫θm

θ0

f θ( )g θ( )
g θ( ) − g θm( )[ ]1/2

dθ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (53)

3.4 Results

In this section, we show the results of equilibrium

configurations in a pi-cell in the absence of electric field with

three representative values of k2 = 0, −0.5, −0.75, and k1 is allowed

to vary continuously from −1 to ∞.

3.4.1 k2 = 0
For k2 = 0, since g′(θm) = sin 2θm > 0 for θm ∈ (0, π/2), the

minus sign was adopted when solving Eq. 51, and θm < θ0.

Therefore all twist solutions, if they exist, have small tilt angles in

the midplane, as shown in Figure 2 where the solid curves for θm
lie below the diagonal. Figure 2 also shows energies of

equilibrium splay, bend, and twist solutions as functions of θ0,

calculated from Eqs 47, 49, 53, respectively.

For higher values of k1, as θ0 increases, there is a twist

solution branching from the bend solution as a supercritical

bifurcation, indicating a second order transition, as shown in

Figures 2A,B. Beyond the bifurcation point, the twist solution

corresponds to a local minimum energy state, and bend

solution corresponds to a saddle point in the energy

landscape. The bifurcation point moves towards π/2 as k1
decreases and becomes larger than π/2 and nonphysical at

k1 = 0, as shown in Figure 2C, where there is no twist

solution for any θ0 ∈ (0, π/2). We note that the case of

k1 = k2 = 0 corresponds to the situation usually referred to

as the one constant approximation.

On the other hand, the splay solution always corresponds to a

local minimum energy state. The energy curves of splay and bend

intersect at a θ0c, which increases with k1. In particular, the two

energies are the same when θ0c = π/6 for k1 → −1, θ0c = π/4 if

k1 = 0, and θ0c = π/3 as k1 → ∞.

3.4.2 k2 = −0.5
The parameter k2 = −0.5 is a typical value for MBBA

(Haller, 1972; Leger, 1972). Similar to the case of k2 = 0,

since g′(θm) = cos2θm sin 2θm > 0 for θm ∈ (0, π/2), all twist

solutions for k2 = −0.5 have a small tilt angle in the midplane

with θm < θ0. The main difference from the results of k2 = 0 is

that the supercritical bifurcation from bend to twist for larger

values of k1, as shown in Figure 3A, becomes subcritical as k1
decreases, as shown in Figures 3B,C, signifying a first order

transition. In Figure 3C, the bifurcation point is larger than π/2,

and the part of the curve for θ0 > π/2 was cut off from the plot

since it is not physical.

In the case that there are two twist configurations for a given

θ0, the one with the larger θm corresponds to a local minimum

energy state, the other, with smaller θm, is a local maximum

energy state, and the bend state is a local minimum state. If the

system is excited to a high energy configuration and then

allowed to relax, the resulting configuration depends

sensitively on which attraction basin that high energy

configuration resides in.

3.4.3 k2 = −0.75
If k2 = −0.75, g′(θm) = (1–1.5 sin2θm) sin 2θm is positive if

θm ≲ 0.955, and negative otherwise. It follows that the twist

configurations are with large tilt angle when θm ≳ 0.955, as shown

in Figure 4 where the curve of θm is above the diagonal. Figures

4B,C clearly show the first order transition between bend and

twist as θ0 varies at small values of k1, and the bifurcation point

shifts to smaller values of θ0, compared with the results from

k2 = −0.5.

As can be seen from Figures 2–4, the splay (H) is always a

locally stable configuration and has lower energy than those of

the bend (V) and twist (T) at large pretilt angles. However, the

system will not automatically be in the global minimum energy

state. In fact, the configuration the system adopts depends

sensitively on the initial condition. If an electric field is

applied to align the directors in the interior to be parallel to

the plates, then after the field is removed, the system will relax to

the splay (H) configuration. On the other hand, if the field is to

align the directors parallel to the normal direction, then after the

field is turned off, the system will relax to either bend (V) or twist

(T) configuration, depending on which attraction basin that

initial high energy configuration resides in.

Figure 5 shows the phase diagrams for the stable bend (V)

and twist (T) configurations in terms of k1 and θ0 for those three

values of k2. As noted above, the bend (V) or twist (T)

configuration can only be observed if the system is relaxed

from an excited state with the director field in proximity of

homeotropic configuration, where the directors in the interior of

the cell are perpendicular to the plates. Dashed curves indicate

the spontaneous second order transitions as θ0 varies, and thick

solid curves indicate spinodal lines where the bend (V)
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configuration loses its local stability at the upper solid curve,

and the twist (T) configuration loses its local stability at the

lower solid curve. The regions enclosed by these solid curves

contain one locally stable bend (V) and one locally stable twist

(T) configuration. The thin curves in the bistable region mark

the first order transitions where the free energies of the bend

(V) and twist (T) are the same. Specifically, for k2 = 0,

containing the one constant approximation case, if k1 > 0,

there is a second order transition from bend to twist as θ0
increases, whereas equilibrium twist configuration does not

exist if k1 < 0, as shown in Figure 5A. For k2 = −0.5, the

transition from bend to twist is second order for larger k1 and

becomes first order for smaller k1, as shown in Figure 5B. The

transition for k2 = −0.75 is similar to that of k2 = −0.5, except

that the bistable region becomes much larger and shifts to

smaller values of θ0. Those results are consistent with the fact

that the twist distortion is energetically cheap for small k2, and

the bend distortion is expensive for large k1 and θ0.

Porte and Jadot (Porte and Jadot, 1978) have considered the

transition between twist and bend configurations of a twisted

nematic liquid crystal cell induced by the pretilt angle at

bounding surfaces. When the overall twist is π, it is

equivalent to the pi-cell. The authors concluded that the

order of transition between bend and twist depends only on

the value of k2. In particular, they claimed that the second order

transition occurs for k2 ≤ −0.5 and first order transition occurs

for k2 > − 0.5. As we just showed, our results are in contrast with

those in (Porte and Jadot, 1978); the order of transition between

the bend and twist indeed depends on both values of k1 and k2.

Specifically, second order transition occurs for larger values of

k1 for all values of k2, and first order transition occurs for

smaller values of k1 for k2 = −0.5, −0.75.

4 Solutions under an electric field

In this section, we study the configuration transitions for

a nematic pi-cell under an electric field. As we shall show

in Section 4.1, the symmetric splay configuration becomes

asymmetric splay as α increases, and in Section 4.2, the

bend configuration becomes twist as α decreases, and vice

versa.

4.1 Splay configurations

When an electric field is applied perpendicular to the pi-cell

with εa < 0 and initial splay configuration, the splay

configuration is reinforced as the field tends to align the

director parallel with the bounding plates, hence θ(z)

approaches π/2 everywhere in the cell and remains

monotonic, as illustrated by the dashed curve in Figure 6A.

However, if εa > 0, the field tends to align the director parallel

with the cell normal, and θ(z) tends to either 0 or π everywhere

in the cell. Beyond a threshold voltage αcs, θ(z) loses its

monotonicity and two nonmonotonic splay configurations

are found: a symmetric splay (Hs*) and an asymmetric splay

(Ha), illustrated by the dotted and solid curves in Figure 6A,

respectively. We remark that the symmetric configuration Hs*

is unstable to Ha under an asymmetric perturbation of the

solution. Figure 6B shows the corresponding electric field

variations in the cell for each configuration in A. We note

that the relation between the magnitude of the electric field and

tilt angle is given in Eq. 16.

The threshold voltage can be found by recognizing that at αcs,

θ′(0) = θ′(π) = 0. Then from Eqs. 17, 23, 24, we obtain

FIGURE 5
Phase diagrams for locally stable bend and twist configurations in the absence of electric field in terms of k1 and θ0 for (A) k2 = 0, (B) k2 = −0.5,
and (C) k2 = −0.75. The second order transitions between bend and twist configurations are represented by dashed curves. The thick solid curves are
spinodal lines where the bend (V) configuration loses its local stability at the upper solid curve, and the twist (T) configuration loses its local stability at
the lower solid curve. The thin curves in betweenmark the first order transitions where the free energy of the bend (V) is the same as that of the
twist (T). These phases are observable when the LC director field is relaxed from the homeotropic configuration where interior directors are aligned
perpendicular to the plates.We note that splay is always a locally stable configuration, not shown in the phase diagrams, and can be realizedwhen the
system is relaxed from the homogeneous configuration where the interior directors are aligned parallel to the plates.
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αcs � 1
π

∫π−θ0
θ0

1
γ−1 + cos2 θ

��������������
f θ( )

1
γ−1+cos2 θ − 1

γ−1+cos2θ0

√
dθ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (54)

The singularity in the integrand at θ0 in Eq. 54 can be

removed by the change of variables, sin λ cos θ0 = cos θ, which

gives

αcs � 2
π

����������
γ−1 + cos2θ0

√ ∫π/2
0

��������������������
1 + k1 1 − sin2 λ cos2θ0( )√�����������������

γ−1 + sin2 λ cos2θ0( )√ �������������
1 − sin2 λ cos2θ0

√ dλ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠2

.

(55)

The threshold values αcs in terms of θ0 are plotted in Figure 7 for

three values of k1. The critical voltage decreases with θ0 and

increases with k1. As θ0 → π/2, αcs → 1 + k1, which is consistent

with the result of U0c � π
��������
K1/(ε0εa)

√
for the classic splay

Freedericksz transition.

To study the nature of the transitions among Hs, Hs*, and

Ha, we show necessary steps leading to energy calculation for

each of them in detail below.

4.1.1 Monotonic splay configuration (Hs) (α < αcs)
For small voltages α < αcs, the splay configuration remains

monotonic. Substituting Eq. 24 into Eq. 17, we have

π
��
α

√ � ∫π−θ0
θ0

����
f θ( )√

γ−1 + cos2 θ( ) ����������
CS
δ + 1

γ−1+cos2 θ
√ dθ, if 0< α< αcs, (56)

π
���−α√ � − ∫π−θ0

θ0

����
f θ( )√

γ−1 + cos2 θ( ) �����������
−CS

δ − 1
γ−1+cos2 θ

√ dθ, if α< 0. (57)

For a given θ0 and α, we first solve Cs/δ from Eq. 56 or Eq. 57.

Once Cs/δ is known, δ can be evaluated by integrating Eq. 24

from z = 0 to z = π/2 and rearranging, which gives

|δ| � 2
π
∫π/2
θ0

����
f θ( )√�����������

CS
δ + 1

γ−1+cos2 θ
∣∣∣∣∣ ∣∣∣∣∣√ dθ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

. (58)

Now that Cs is known, the energy for the monotonic splay

configuration is then FHs � K3Aπ2

2d Cs.

4.1.2 Symmetric splay configuration (Hs*)
(α > αcs)

For voltages above the critical value α > αcs, θ(z) is no

longer monotonic. Assuming the solution continues to have

the mirror symmetry, θ(π − z) = π − θ(z), then we only need to

focus on the bottom half. In this half of the cell, θ(z) first

FIGURE 6
Representative solutions for splay configurations in a pi-cell under an electric field, obtained with Matlab numerical package BVP5c. The (A) tilt
angle θ and (B) corresponding nondimensionalized electric field are shown. The dashed curve for Hs represents the solution for α = 2.5, and the
dotted and solid curves represent the symmetric (Hs*) and asymmetric splay (Ha) configurations when α = 4, respectively. Parameters used are
k1 = k2 = 0, θ0 = π/10, γ = 0.2, αcs ≈ 2.9.

FIGURE 7
Threshold value αcs vs. θ0 at which splay configuration loses
its monotonicity.
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decreases in (0, ẑ) and reaches its local minimum θm at z � ẑ,

that is,

θ ẑ( ) � θm, θ′ ẑ( ) � 0, (59)

and increases back in (ẑ, π/2). With Eqs 59, 23, one gets

Cs � − δ
γ−1+cos2θm, and Eq. 24 becomes

dz � ±

���������������
f θ( )

δ
γ−1+cos2 θ − δ

γ−1+cos2θm

√
dθ, (60)

where the plus sign is taken for z ∈ (ẑ, π/2), and the minus sign is

taken for z ∈ (0, ẑ). Substituting Eq. 60 into Eq. 17 and using the
transformation sin λ cos θm = cos θ, we get

π
��
α

√ � 2
����������
γ−1 + cos2θm

√
× ∫π/2

λ0

+ ∫π/2
0

��������������������
1 + k1 1 − sin2 λ cos2θm( )√�����������������

γ−1 + sin2 λ cos2θm( )√ ��������������
1 − sin2 λ cos2θm

√ dλ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(61)

where sin λ0 cos θm = cos θ0. In Eq. 61 and similar ones

hereinafter, both integrals on the right hand sides share the

same integrand. The integrand in the first integral is omitted to

make the presentation compact.

For given θ0 and α, θm is determined from Eq. 61. We note

the right hand side of Eq. 61 is a continuous decreasing function

of θm in (0, θ0). This guarantees the existence of the solution θm
for each α > αcs. Once θm is known, δ can be calculated by

integrating Eq. 60 from z = 0 to z = π/2 and rearranging to get

δ � 4 γ−1 + cos2θm( )
π2

× ∫π/2
λ0

+ ∫π/2
0

��������������������
1 + k1 1 − sin2 λ cos2θm( )√ �����������������

γ−1 + sin2 λ cos2θm( )√��������������
1 − sin2 λ cos2θm

√ dλ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

.

(62)

The energy is then given by

FHsp � K3Aπ2

2d
CS � −K3Aπ2

2d
δ

γ−1 + cos2θm
. (63)

4.1.3 Asymmetric splay configuration (Ha)
(α > αcs)

Since the asymmetric splay configuration is nonmonotonic,

the corresponding θ(z) necessarily possesses an interior local

extremum. In fact, there is one such configuration where θ1(z)

possesses a local minimum, and another where θ2(z) possesses a

local maximum. We focus on the first configuration as the other

is related by θ1(π − z) = π − θ2(z).

Now since θ(z) has a localminimum, it follows that θ(z) decreases

from z = 0 and reaches its local minimum θm at z � ~z, that is

θ ~z( ) � θm, θ′ ~z( ) � 0, (64)

and increases back for z ∈ (~z, π). With Eqs 64, 23, one gets

Cs � − δ
γ−1+cos2θm, and Eq. 24 becomes

dz � ±

���������������
f θ( )

δ
γ−1+cos2 θ − δ

γ−1+cos2θm

√
dθ, (65)

where the plus sign is taken for z ∈ (~z, π), and the minus sign is

taken for z ∈ (0, ~z). Substituting Eq. 65 into Eq. 17 and using the
transformation sin λ cos θm = cos θ gives

π
��
α

√ �
����������
γ−1 + cos2θm

√
× ∫π/2

λ0

+ ∫π/2
−λ0

��������������������
1 + k1 1 − sin2 λ cos2θm( )√�����������������

γ−1 + sin2 λ cos2θm( )√ ��������������
1 − sin2 λ cos2θm

√ dλ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(66)
where sin λ0 cos θm = cos θ0.

Given θ0 and α, we first solve θm from Eq. 66. Similar to the

case of the nonmonotonic symmetric Hs*, the right hand side of

Eq. 66 is a continuous decreasing function of θm in (0, θ0), which

guarantees the existence of the solution θm for any α > αcs. Once

θm is known, δ can be evaluated by integrating Eq. 65 from z = 0

to z = π and rearranging for

δ � γ−1 + cos2θm
π2

× ∫π/2
λ0

+ ∫π/2
−λ0

��������������������
1 + k1 1 − sin2 λ cos2θm( )√ �����������������

γ−1 + sin2 λ cos2θm( )√��������������
1 − sin2 λ cos2θm

√ dλ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2

,

(67)

and the energy for the asymmetric splay configuration can be

evaluated by the same equation as Eq. 63.

The results in Sections 4.1.1, 4.1.2, and 4.1.3 are exemplified

in Figure 8, which shows the representative minimum tilt angles

θm and associated energies for Hs, Hs*, and Ha for one specific set

of parameters. It clearly shows that the Ha state branches off from

the Hs state as a second order transition at αcs and possesses

lower energy than that of the Hs* configuration. We note that the

results are independent of values of k2.

4.2 Bend and twist configurations

We have shown in Section 3 that bend and twist

configurations can be transitioned into one another by

varying the boundary pretilt angles, and the transitions can be

either first order or second order depending on the material

parameters. In this section, we show how the electric field affects

both configurations and the transitions between them.

When an electric field is applied across the pi-cell with initial

bend configuration and the nematic has εa > 0, the bend

configuration is reinforced, since the field tends to align the

director parallel to the field direction, and θ(z) remains

monotonic, as illustrated by the dashed curve in Figure 9A.

However, if εa < 0, the field tends to align the director parallel

with the bounding plates, and θ(z) increases in its magnitude as

voltage increases. Here, we consider two scenarios: first, we confine
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the directors lying in the xz − plane; second, the directors are

allowed to have nonvanishing out-of-plane components.

In the first scenario, the bend configuration loses its

monotonicity beyond a threshold voltage. Similar to the

case of splay configuration, we found a symmetric (Vs*)

and an asymmetric (Va) nonmonotonic equilibrium bend

configuration, as shown as the dotted and solid curves in

Figure 9A. Further calculations show the asymmetric one

having less energy than that of the symmetric. We omit the

detailed calculations here as the analyses are identical to the

case of splay configurations aside from the different

boundary conditions and the nonmonotonic solution

existing for εa < 0.

The threshold αcb can be found by recognizing that at

α = αcb, θ′(0) = θ′(π) = 0. Using Eqs 17, 30 and 31, and the

transformation cos λ sin θ0 = sin θ, the threshold value αcb is

given by

αcb � − 2
π

�����������
−γ−1 − cos2θ0

√ ∫π/2
0

���������������
1 + k1 cos2 λ sin2θ0

√�������������������
−γ−1 − 1 + cos2 λ sin2θ0

√ �������������
1 − cos2 λ sin2θ0

√ dλ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠2

.

(68)

The threshold values αcb in terms of θ0 are plotted in

Figure 10 for three values of k1. The critical voltage increases

with θ0 and with k1. As θ0→ 0, αcb→ −1, which is independent of

k1. This is consistent with the critical voltage U0c � π
��������
K3/|ε0εa|√

for classic bend Freederickz transition.

In the second scenario, the bend configuration is subject to

out-of-plane perturbation. For sufficiently high voltages, the

bend becomes twist. To study the configuration transition

between bend and twist as α varies, we carry out the

FIGURE 8
The (A) minimum values θm and (B) associated energies of symmetric monotonic (Hs), symmetric nonmonotonic (Hs*), and asymmetric (Ha)
splay configurations as functions of α. Parameters used are k1 = 0, θ0 = π/3, γ = 0.2.

FIGURE 9
Representative solutions for bend configurations in a pi cell for LCs with εa < 0. The (A) tilt angle θ(z) and (B) corresponding nondimensionalized
electric field are shown. The dashed curve for symmetric bend configuration (Vs) is obtained when α = −1.5, and the dotted and solid curves for the
symmetric (Vs*) and asymmetric (Va) bend configurations are obtained when α = −4. Parameters used are k1 = k2 = 0, θ0 = π/3, γ = −0.2, αcb ≈ − 2.
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calculations for the twist configurations under an electric field as

described in Section 2.2.3 and find the critical voltage when θm
becomes zero, an indicator for the transition from twist to bend.

Figure 11 shows three representative solutions of (A) θ(z),

(B) ϕ(z), and (C) the magnitude of the electric field of twist

configurations in a pi-cell for the cases α = 0, α > 0, and α < 0. If

εa < 0, the tilt angle increases with α, and the configuration

remains as twist, shown as dashed curves. However if εa > 0, the

tilt angle decreases with α. At a threshold voltage, depicted by the

dotted curve, the tilt angle at the midplane θm goes to 0, and ϕ

approaches a step function with ϕ = 0 at lower half and ϕ = π at

the upper half of the cell. It follows that the twist configuration

becomes bend.

Figure 12 shows the phase diagrams for stable bend and twist

configurations in terms of θ0 and α with three representative sets

of material parameters. Figure 12A with k1 = k2 = 0, Figure 12B

with k1 = −0.1, k2 = −0.5, and Figure 12C with k1 = k2 = −0.75,

separately represent the parameter sets where there is no

transition, a second order transition, and a first order

FIGURE 10
Threshold value αcb vs. θ0 at which bend configuration loses
its monotonicity.

FIGURE 11
Representative solutions for twist configurations in a pi-cell with α = 0, 0.32, and − 4. The (A) tilt angle θ(z), (B) corresponding azimuthal angle
ϕ(z), and (C) corresponding nondimensionalized electric field are shown. Parameters used are k1 = 1, k2 = 0, θ0 = 1.2, |γ| = 0.2.

FIGURE 12
Phase diagrams for locally stable bend and twist configurations in terms of θ0 and α for (A) k1 = k2 = 0, (B) k1 = −0.1, k2 = −0.5, and (C) k1 = −0.75,
k2 = −0.75. Dashed curves indicate that the transition between bend (V) and twist (T) configurations is second order. Solid curves indicate the spinodal
lines where the bend and twist lose their local stabilities at the lower and upper solid curves, respectively, and in between the two solid curves are two
locally stable states Vs, and T.
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transition from bend to twist configurations as θ0 varies in the

absence of an electric field. In Figure 12C, there are two critical

boundary pretilt angles at α = 0 (also shown in Figure 4B), with

the smaller one corresponding to the critical θ0 below which the

twist solution loses its local stability, and the larger one

corresponding to the critical θ0 beyond which the bend

solution loses its local stability. In between these two angles,

both bend and twist are locally stable. The bistable region shrinks

as α decreases and second order transition takes over. In all three

cases, the threshold voltage for the transition from bend to twist

decreases with θ0, whereas the threshold voltage for the transition

from twist to bend increases with θ0.

We remark that the transitions frommonotonic bend to twist

always occur at an αct ≥ −1, as shown in Figure 12, whereas the

transitions from monotonic bend to nonmonotonic bend always

occur at αcb ≤ −1, as shown in Figure 10. Therefore, the transition

from bend to twist occurs at a lower voltage, thus the latter

transition is preempted and typically not observable.

5 Summary

In this work, we have conducted a detailed parameter study

of equilibrium states in a nematic pi-cell under an electric field

applied perpendicular to the bounding plates. The distortion of

liquid crystals is modeled with the one-dimensional Oseen-Frank

director model, and the effect of director distortion on the electric

field has been incorporated.

In the absence of electric field, the equilibrium splay, bend,

and twist configurations all possess certain symmetries with

respect to the midplane. The splay configuration is always

locally stable. Bend is always stable for small θ0, the pretilt

angle at the boundary. As θ0 increases, bend is likely to lose

its stability to twist if k2 is small, where twist configuration is

energetically cheap, or if k1 is large, where the energy cost for the

bend configuration is large. A range of θ0 where both bend and

twist are locally stable is found for small k1 and k2 ≤ −0.5. Our

results are in contrast with those in (Porte and Jadot, 1978),

where the authors reported that the second order transition

between bend and twist occurs for k2 ≤ −0.5, and first order

transition occurs for k2 > − 0.5, whereas, we have shown that

second order transition occurs for larger values of k1 and for all k2
and first order transition occurs for smaller values of k1 and k2.

When a voltage difference is applied perpendicular to the pi-

cell, the configuration transitions depend on the initial

configuration and the sign of the dielectric anisotropy.

Starting from the splay configuration and εa > 0, the

symmetric splay continuously transitions to asymmetric splay

at a threshold voltage. If the initial configuration is bend (twist)

and εa < 0 (εa > 0), then bend (twist) configuration becomes twist

(bend) for sufficiently high voltages. The transition between bend

and twist is likely to be second order for large values of k1 and for

small θ0 and could be first order for small values of k1 and k2 and

large θ0.

Our results based on the one-dimensional Oseen-Frank

director model cannot describe the transitions between splay

and bend/twist configurations as the switching among those

topologically distinct configurations would require at least a

two-dimensional model or a tensor description (Amoddeo

and Barberi, 2021) of orientation field where the disclinations

are allowed. With that said, our results will help to predict the

equilibrium configurations after the voltage is removed and the

voltage required to ensure that an asymmetric splay, bend or

twist configuration is achieved given the material parameters and

the pretilt angle at the boundary.
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