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To address the degradation of grid quality and charging e�ciency associated

with the large-scale integration of electric vehicles (EVs), a multi-stage

balanced flexible load scheduling method is proposed. This approach is

designed to facilitate peak shaving and valley filling, balance intermittent energy

fluctuations, and provide auxiliary services, thereby significantly altering system

load characteristics, smoothing energy fluctuations, reducing operational costs,

and enhancing the regulatory capabilities of power grid dispatching operations.

A multi-objective optimization mathematical model is developed, focusing on

key indicators that impact the scheduling process, including network loss,

operational cost, and user satisfaction. A multi-stage flexible load scheduling

framework is introduced within the competitive swarm optimization (CSO)

algorithm, resulting in the design of an advanced CSO algorithm. This algorithm

is distinguished from traditional methods by the implementation of advanced

learning based on grouping after a random competitive learning phase, which

enhances the e�ciency of particle swarm learning while ensuring stable

population convergence throughout the optimization process. Furthermore, the

CSO framework is maintained to ensure e�ective population diversity, greatly

improving the optimization performance. Simulation results indicate that the

voltage fluctuation index of the proposed algorithm is 1.8% lower than that of the

standardCSOalgorithm,while network loss and operational costs are reduced by

2.83 and 5.81%, respectively, thereby validating the e�ectiveness and e�ciency

of the proposed approach.
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1 Introduction

With the proposal of the double carbon goal, China has begun to reform large-scale

energy production and energy consumption (Zhang et al., 2024). Electric vehicles have

the characteristics of low carbon, environmental protection, low operating cost and good

quiet performance, so the number of electric vehicles is greatly increasing. However, a

large number of electric vehicles connected to the grid will lead to instability of the grid

voltage and degradation of the grid quality, resulting in a sharp increase in network loss

and operation cost, and the operation efficiency will also decrease. In response to the above

problems, the flexible load scheduling technology of electric vehicles realizes the normal

operation of the power grid by means of peak and valley filling, balancing intermittent

energy fluctuations and providing auxiliary services (Wang et al., 2014). However, when

dealing with large-scale scheduling tasks, the existing flexible load scheduling methods of
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electric vehicles have problems such as low efficiency of the

scheduling process and poor fitness, which greatly affects the

stable operation of the power grid. Therefore, how to solve the

flexible load scheduling problem of large-scale electric vehicles is

an important problem to be solved urgently.

At present, the related research can be divided into two

aspects: improving the quality of the power grid and reducing the

operation cost. The analysis of the influence of natural charging

of large-scale electric vehicles on the variation law of power

grid load based on Monte Carlo simulation was presented in

Sun et al. (2014). A genetic algorithm was used to optimize

the charging and discharging time, and the orderly charging

and discharging management of electric vehicles was achieved

by adjusting the starting times and charging durations. The

whole-process behavior boundary model of electric vehicles was

proposed in Duan et al. (2018), where set parameters were used

to characterize the charging and driving behavior. It was shown

that orderly charging and discharging can alleviate the pressure of

grid infrastructure expansion over a long-time scale. An uncertain

set optimization method aimed at minimizing the overall cost was

introduced in Liang et al. (2017), and it was demonstrated that this

approach effectively coordinates both robustness and economy in

the scheduling plan. However, the above methods are all studied

from the generation end, without fully considering the relevant

needs of users, resulting in the optimization and transformation of

flexible load scheduling only from the perspective of the generation

end, which cannot meet the needs of users.

In response to the above problems, a large number of

scholars have proposed improvements. A time-of-use peak-valley

charging pricing method for orderly charging control within

charging stations was proposed in Xu et al. (2014), where users

autonomously respond. This method effectively smooths the

charging load of electric vehicles within the station, reduces the

electricity purchase cost for the charging station, and lowers

the average charging cost for users. A multi-criteria evaluation

model, incorporating load peaks, peak-valley differences, and user

overall satisfaction, was introduced in Wang et al. (2019) based

on traditional time-of-use pricing. It was demonstrated that the

use of peak-flat-valley time-of-use pricing not only reduces load

fluctuations more effectively and achieves peak shaving and valley

filling but also enhances overall user satisfaction. A method was

proposed in Wang et al. (2018) to increase the number of electric

vehicles capable of reactive charging to the grid based on user

preferences. In Mastoi et al. (2022), schedulable space constraints

are proposed, and an improved optimal scheduling model is

established by referring to the schedulable space constraints. A

hybrid particle swarm algorithm is formed by combining the

standard particle swarm algorithm to avoid the particle swarm

algorithm falling into the local optimal solution defect and improve

the solving accuracy of the model. In Literature (Zhou et al.,

2021) in view of the lag of manual scheduling and the poor

dispersion power of traditional Alternating Direction Method of

Multipliers (ADMM) control, this paper adopted the predicted

power generation and power consumption as the decomposition

function and expansion function of SADMM, and the predicted

power at each period was taken as the fixed value of the calculation

value of the next iteration, effectively improving the efficiency

of power scheduling. Jiao (2022) proposes a new energy power

system unit combination decision-making method, which can

effectively extract deep features of unit combination data, reduce

unit output prediction errors, and improve solution efficiency

while ensuring solution accuracy. Sun et al. (2023) proposes a

data-driven optimization method based on the bluebar, which is

more reliable and less conservative than the simple scenario-based

stochastic optimization method when applied to multi-period

economic scheduling problems. These vehicles are selected using

an optimization model and controlled by operators to manage

charging and discharging, thus achieving peak load transfer and

ensuring grid stability. However, the above methods do not take

into account the impact on load power and total operating cost, and

the quality of the solution algorithm is low, resulting in the whole

flexible load scheduling process is partially out of control.

Because of the above requirements and problems, this paper

proposes a multi-stage balanced scheduling method for a flexible

load of large-scale electric vehicles. The innovation points are

as follows:

1) The mathematical model constructed is more suitable for the

background of flexible load scheduling of large-scale electric

vehicles. Compared with Wang et al. (2019) and Wang et al.

(2018), the operating cost index and user evaluation index are

added, and load balancing constraints are considered.

2) In a single stage, the respective settings are used to ensure

that the voltage is basically stable and the loss is moderately

reduced. In different stages, the optimization algorithm is

used to comprehensively coordinate each objective, so that the

optimization results are further optimized.

3) The scheduling effect is greatly improved compared with

other algorithms, and the improvement of each index is

balanced, and the overall improvement effect is significant.

2 Multi-stage flexible load scheduling
optimization model for large-scale
electric vehicles

In this paper, the flexible load scheduling problem of electric

vehicle charging stations is analyzed in a residential area of a certain

city. It is assumed that there is a total of z centralized charging

stations in the area, each equipped withm charging piles, with each

pile able to serve two electric vehicles. Each charging station is also

fitted with k energy storage devices, and there are approximately

n electric vehicles in the area, where n ≫ 2m. It is assumed that

all charging piles and electric vehicles have identical parameters.

This study focuses on the scheduling of all centralized charging

stations in the area, setting the rated charging time for electric

vehicles as T. If there are n1 vehicles being charged at the station,

and if n1 ≤ 2m, the various coefficients and summation terms in

subsequent calculations are recorded as n1. If n1 ≥ 2m, they are

recorded as 2m.

In the problem scenario mentioned, electric vehicles exhibit

characteristics of large-scale integration and significant scheduling

delays. Based on the practical experience of engineering and

reference Sun et al. (2020) and Xu et al. (2018), four indicators of
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network loss, operation cost, stable operation and user satisfaction

are set as the core optimization indicators.

1) Grid loss model: In the process of transmission and

distribution from the grid to the electric vehicle, the loss of

the control grid has an important impact on the feasibility of

the dispatch process, and the loss of the grid also determines

whether the dispatch largely is successful. According to the

statistical principle, the loss is estimated, assuming that there

is an electric vehicle charging currently, and the calculation

expression of the loss is:

Wloss =

n1
∑

i=1

(Lω
i × xω

i + (1− ζ
n1
sto)

k
∑

j=1

L
p
j × x

p
j ) (1)

where Lω
i represents the charging loss of the charging pile, L

p
j

denotes the loss of the energy storage device, ζ
n1
sto is the loss

coefficient when the number of charging electric vehicles is n1, with

a value ranging between [0, 1], xω
i and x

p
j are the loss coefficients for

the charging pile and energy storage device, respectively.

2) Total operating cost: total operating cost reflects the

effectiveness and operability of the scheduling process, and the

total operating cost of the scheduling process is considered to

be calculated, and its expression is:

Call = n1 · (Ct · ξ
n1
t + Ce · ξ

n1
e + Cl · ξ

n1
l

+ Cω · ξn1ω )+ Cti (2)

where Ct denotes the transformer operation cost, Ce denotes the

operating cost of energy storage, Cl denotes he line operation cost,

Cω denotes the loss cost, Cti denotes the time cost, ξn1t , ξn1e , ξn1
l
, ξn1ω

denote the cost coefficient of charging an EV is between [0,1].

3) The minimization of load standard deviation: the

minimization of load standard deviation reflects the

stability of distribution in the dispatching process and reflects

the stable state of power supply. The calculation formula is

based on the load of electric vehicles, and the calculation

formula of its standard deviation is given below:

STload = min

√

√

√

√

1

n1 − 1

n1
∑

k=1

(Lk − L)
2

(3)

where Lk denotes the load of distribution network, L denotes the

arithmetic average value of loads everywhere at this time.

4) The largest user satisfaction: considering that users in

different regions and different time periods have different

demand for electric vehicle charging, the user experience

brought by charging in different regions and different times

is scored, and its expression is:

SAusers =
1

n12

n1
∑

i=1

n1
∑

j=1

Mij × Aj × Ti (4)

whereMij denotes the score of customers, the subscript i represents

the time period of electricity consumption evaluated by the

customer, and the subscript j represents the area of electricity

consumption evaluated by the user. Aj denotes the regional

weighting coefficient, Ti denotes the time-weighted coefficient.

To meet the actual engineering needs, the scheduling process

needs to combine the charging parameters of electric vehicles, their

own restrictions, grid balancing and other related requirements

to complete the scheduling process. According to the above

requirements, this paper selects the most important constraints,

which are voltage, charging time, electric vehicle energy storage

capacity, load balance, power balance and other constraints.

1) Node voltage constraint: in the process of charging the

electric vehicle, the voltage of each node cannot exceed

the specified maximum voltage and minimum voltage. The

constraint is expressed as follows.

Umin ≤ Uk ≤ Umax (5)

where Umin and Umax indicate the minimum and maximum

allowable node voltage, respectively,Uk represents the voltage value

of node k.

2) Charging time: in the whole scheduling process, the charging

time of the scheduled electric vehicle cannot exceed its

charging limit, otherwise the user experience will decline

sharply. The constraint is expressed as follows:

T ≤ Tmax (6)

where Tmax represents the maximum charging time allowed and T

represents the charging time of the EV.

3) Battery charging capacity: as electric vehicles are energy

storage devices, their reserve capacity is limited, so they should

be constrained as follows:

Qmin ≤ Q ≤ Qmax (7)

where Qmin and Qmax represent the minimum and maximum

allowable capacity of EV, and Q denotes the EV capacity.

4) Load balance: for the charging station, its load should not

exceed its limit, otherwise it may be dangerous, and in the

scheduling process, in order to make the load of each charging

pile relatively balanced, a minimum load is specified, and the

constraint is expressed as:

PLmin ≤ PLk ≤ PLmax (8)

where PLmin is the minimum load. Minimum load refers to

the minimum charging capacity required by the charging pile,

rather than each charging pile must send power to the outside at

every moment.
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5) Power balance: in the process of electric energy flow, the

generated power should be balanced with the charging power

and loss power of electric vehicles. The constraint is expressed

as follows:

PG = Pin + PL (9)

where PG is the generated power, Pin is the EV charging power, and

PL is the loss power.

Combining the above decision variables, optimization index

functions and constraints, the mathematical model of scheduling

optimization is as follows

J = min{c3 × f3(S
T
load

)+ c4 × f4(S
A
users)

−c1 × f1(Wloss)− c2 × f2(Call)}

s.t.



























Umin ≤ Uk ≤ Umax

T ≤ Tmax

Qmin ≤ Q ≤ Qmax

PLmin ≤ PLk ≤ PLmax

PG = Pin + PL

(10)

where c1, c2, c3 and c4 are the weight coefficients of each objective

function. In the whole optimization calculation process, the above

multiple objectives are comprehensively calculated to obtain the

result, which is the comprehensive calculation of loss, cost, load

stability and user experience under the conditions of voltage, time,

energy storage capacity, load balance and power balance. A smaller

result indicates that the scheduling process is more as expected.

3 EVs charge and discharge
optimization scheduling model

3.1 Proposed ACSO algorithm

In the above optimization mathematical model, the

optimization objective is associated with f2, f1 and the optimization

objective is associated with f1, f2 and f3, which leads to multiple

peaks in the function and a large number of local optimal solutions.

Secondly, the existence of a large number of discrete constraints

makes the solution space discontinuous, which makes it impossible

to quickly optimize with the help of gradient information (Liu,

2023). Therefore, optimization algorithms are introduced to solve

the problem. The Competitive Swarm Optimizer (CSO) (Ran and

Jin, 2014; Lan et al., 2020) is one of the most efficient algorithms

for large-scale intelligent swarm optimization. It is widely used

in large-scale scheduling problems, but it always adopts the basic

evolutionary unit composed of two particles. This results in the

decrease of particle swarm diversity in the late optimization period.

According to this feature, an Advanced Competitive Swarm

Optimizer (ACSO) based on dynamic group structure is proposed

in this paper, as shown in Figure 1.

First, we generate a swarm containing n particles, each with a

single-line encoding [a1, a2, ...ak], where k = 3m. Each encoded

value is within the range [0, 1]. The first m encoded values,

multiplied by 1,000, represent the maximum voltage ofm charging

stations. The middle m encoded values, also multiplied by 1,000,

FIGURE 1

Schematic of the ACSO algorithm.

denote the maximum allowed charging time for these m charging

stations. Finally, the last m encoded values, multiplied by 1,000,

indicate the capacity of the m charging stations. Each encoding

represents a flexible scheduling scheme pi, and each scheme is

mapped to a particle’s fitness value based on Equation 10. The

fitness function is expressed as:

f = c3 × f3(S
T
load

)+ c4 × f4(S
A
users)

−c1 × f1(Wloss)− c2 × f2(Call)+ 10×

4
∑

i=1

flagi (11)

where flagi represents the logical value corresponding to the

constraint. If the scheduling scheme satisfies the constraints, it is set

to 0; otherwise, it is set to 1. The value of 10 serves as the penalty.

Considering that the first four terms are normalized, the sum ranges

from [−4, 4]. Thus, the penalty is relatively on the same scale but

maintains a certain gap, providing both optimization space and the

effect of penalty terms.

In each subpopulation, we iterate through the particles,

randomly pairing them for competition. The particle with the lower

fitness value is designated as the winner ω, while the particle with

the higher fitness value is labeled as the loser l. The winner passes

its fitness value to the next generation of the population, while the

loser learns from the winner, updating its velocity and position. The

evolution equation is expressed as:

{

vl(t + 1) = r0vl(t)+ r1(xω(t)− xl(t))

xl(t + 1) = xl(t)+ vl(t + 1)
(12)

where −→xw(t) denotes the position of the winning particle, while −→vl
and −→xl represent the velocity and position of the losing particle,

respectively. r0 and r1 are random values uniformly distributed

between [0, 1]. After reaching the maximum number of iterations,

the optimization results are output. It is important to note that the

public learning phase encompasses the entire process of the basic

CSO algorithm (Qin et al., 2019).
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FIGURE 2

Multi-stage scheduling process.

Advanced learning stage:When all particles undergo a round of

updates, some high-quality particles with low fitness value will be

generated, which have not undergone any update, but have spent

a certain amount of computing resources when they are screened

out, so if the next iteration is carried out directly, the evolutionary

efficiency of the whole particle swarm will be too low. To improve

the learning efficiency, the winning and failing particles in the mass

stage are gathered together respectively, and the free competition

process is repeated. The evolution principle is also referred to

formula, and finally, four groups of small-scale winning particles

and failing particles are obtained, among which the particle with

the lowest fitness is the optimal solution in this complete iteration.

The above three stages are repeated, and when the maximum

number of iterations is reached, the optimal particle, minimum

fitness value, and corresponding flexible coincidence scheduling

scheme are output. According to the ACSO algorithm, each

optimization target should have its flexible load scheduling

scheme defined during the optimization process. In this process,

charging stations exhibiting abnormally high voltage, loss, and

operational costs are prioritized for intervention. The charging of

electric vehicles belonging to users who voluntarily participate in

scheduling within the supply area is suspended first, allowing for

the redistribution of excess electric energy. Simultaneously, the

electric energy from users participating in scheduling is utilized

as an energy storage source to supply electric energy to vehicles

in the abnormal area, as dictated by the algorithm. Following the

optimization of various objectives within the area, the charging

behavior for electric vehicles belonging to users who voluntarily

participate in scheduling is gradually resumed.

3.2 Multi-phase trigger scheduling
mechanism

The above solution method can only be scheduled according to

the overall situation in a short period at a certain time. Considering

that flexible load scheduling is a long period and highly dynamic

process, the adaptability of the short-term scheduling scheme is

poor, and it is easy to reduce the overall scheduling benefit due to

the sudden change of voltage peak caused by weather and man-

made accidents in the later period of regulation. Therefore, it is

necessary to design an emergency trigger mechanism to turn on

the energy storage device in real-time to deal with sudden power

imbalances (Hu et al., 2017).

In this paper, a multi-stage trigger schedulingmechanism based

on three levels is designed to realize the effect of peak load valley

load, and voltage stability. The specific process of ACSO is shown

in Figure 2.

Time level trigger scheduling is to predict the charging power

in multiple time periods and adjust the power supply of charging

station according to the prediction results. Regional level trigger

scheduling divides the whole charging station into independent

stations, and all the electricity in the stations is uniformly allocated.

When the charging location of electric vehicles is unbalanced,

the power is transmitted from the loose power stations to the

high-power frequency stations (Feng et al., 2022; Bertineti et al.,

2020). The user participation level triggers the scheduling, and the

charging time of the participants is appropriately adjusted to meet

the scheduling effect through the voluntary participation of users in

the scheduling, and the time price is set to guide users to take the

initiative to participate in the scheduling and avoid the peak (Ding

et al., 2023).

4 Simulation experiment and analysis

The actual historical electrical data of electric vehicle charging

stations in a regional charging station of Hainan Power Grid

were used for simulation experiments. The hardware condition is

Intel(R) Core (TM) i5-7300HQ CPU; the software environment is

MATLAB R2019a and the operating system is Windows 10. Monte

Carlo simulation is used in each condition to ensure reliability,

and the number of shots is 1,000 times. There are 76 centralized

charging stations in the user area, with a total of 23,000 electric

vehicle users. The weight coefficients are set as c1 = c2 = 0.4, c3 =

c4 = 0.6. The loss coefficient is ζ
n1
sto = 0.75. The cost coefficients are

set as follows: ξn1t = 0.8, ξn1e = 0.7, ξn1
l

= 0.7, ξn1ω = 0.6.
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TABLE 1 Time-weighted coe�cient table.

Time Time weighted coe�cient

00:01–07:00 0.8

7:01–17:00 0.9

17:01–19:00 1.2

19:01–22:00 1.3

22:01–00:00 1.2

TABLE 2 Daily hourly voltage (standard unit).

Time Voltage Time Voltage

00:00 1.013 01:00 1.018

02:00 1.023 03:00 1.029

04:00 1.034 05:00 1.038

06:00 1.041 07:00 1.035

08:00 1.021 09:00 1.008

10:00 0.985 11:00 0.977

12:00 0.962 13:00 0.959

14:00 0.953 15:00 1.004

16:00 1.041 17:00 1.050

18:00 0.992 19:00 0.996

20:00 0.989 21:00 0.985

22:00 0.983 23:00 0.981

The constraint conditions are set as follows: the charging

station’s voltage level is selected to be 380V, with Umin = 353.4V,

Umax = 406.6V The charging time for electric vehicles at rated

power is T = 0.42h, and the maximum charging duration is

Tmax = 0.6h; The electric vehicle battery capacity is calculated

based on the battery pack capacity, with a maximum charging

capacity Qev = 75kWh and a minimum charging capacity Qmin =

65kWh. The maximum and minimum load power of the charging

station are PLmax = 3000kW and PLmin = 1200kWh. The ACSO

optimization algorithm is used to solve the results, with a particle

swarm size set to 300. The comparative algorithms include PSO

(Pan et al., 2018), A-PSO (Wang, 2022), and CSO (Sun et al.,

2023). The particle swarm size for the PSO algorithm is also

300, with an inertia weight that decreases from 0.9 to 0.4, and

both acceleration coefficients set to 1.8. The particle swarm size

for the A-PSO algorithm is 300, with a constant inertia weight

of 0.5 and both acceleration coefficients set to 1.3. In the CSO

algorithm, the inertia weight is defined as ω = 2 − 1.8r1 − 1.8r2,

where are random numbers in the range [0, 1], and the learning

rate φ = 0.2.

4.1 Data preprocessing

Firstly, the time weighting coefficient and area weighting

coefficient are clarified. The larger the weighting coefficient is,

FIGURE 3

Comparison of algorithm convergence performance.

FIGURE 4

Voltage comparison.

the larger and more concentrated the number of charging users

in the area or time period, so their evaluation has a more

significant impact on the overall effect. These 76 charging stations

are divided into four, and the regional weighting coefficients are:

1.3, 1.1, 0.95, 0.8, respectively, and the time weighting coefficients

of the four regions in the same period are the same, as shown

in Table 1. Since the user satisfaction score cannot be given

directly, this paper simulates the user satisfaction at different

times and different regions according to the charging time and

charging convenience, to simulate the influence of the real score

on the flexible load scheduling. The day with the most complex

voltage variation before and after a certain legal holiday was

selected and its whole-hour voltage was recorded, as shown

in Table 2.
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FIGURE 5

Loss comparison chart.

TABLE 3 Loss comparison (unit: MWh).

Month Loss before
optimization

Loss of
ACSO

Loss of
CSO

1 601.32 580.12 596.74

2 584.24 570.45 579.21

3 543.78 535.89 533.71

4 516.24 507.67 514.32

5 604.26 591.23 600.16

6 586.17 574.12 585.31

7 613.37 601.76 612.01

8 644.16 632.78 642.31

9 587.64 578.43 584.21

10 659.21 652.09 657.34

11 637.85 531.78 592.54

12 612.71 605.32 609.87

4.2 Simulation results

The total number of electric vehicles in this region is about

23,000. According to charging every 2–3 days, an average of 11,000

electric vehicles needs to be charged in a day. The experiment

is carried out according to the historical data of the whole year

2023, and compared with PSO, A-PSO and CSO algorithms. All

algorithms are terminated by 5,000 iterations, and the optimization

process is shown in Figure 3. It can be seen from Figure 3 that

FIGURE 6

Load power comparison chart.

ACSO algorithm has enhanced the global search ability compared

with other algorithms, and its adaptability and rapidity have been

greatly improved. In the same way, its search results are more

accurate, and the optimal solution can be found more quickly.

The charging station nodes are selected to compare the voltage

before and after the optimization within a day compared with the

CSO algorithm. The unit voltage system is selected for comparison,

as shown in Figure 4. It can be seen from Figure 4 that the

maximum voltage of the node in a day is 1.050 pu, the minimum
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voltage is 0.953 pu, and the maximum voltage variation is 5%.

After optimization, the maximum voltage variation is 1.030 pu, the

minimum voltage is 0.968 pu, and the maximum voltage variation

is 3.2%, which is 1.8% lower than the maximum voltage variation

before optimization. After optimization by the ACSO algorithm,

the variation range of node voltage is reduced, and the maximum

and minimum values of voltage are close to the reference voltage,

to meet the role of maintaining stable voltage in the scheduling

process, which has a very large role in reducing the impact of

electric vehicles connected to the grid.

The monthly load of 2023 is used to compare with the

simulation experiment. For the network loss, the calculation of this

part is more complex. This paper adopts a simplified calculation

method and uses the daily root mean square. The average square

root of daily current in each month was calculated from the data of

TABLE 4 Cost ratio comparison table.

Cost item Proportion
before

optimization

Optimized
proportion

Energy storage operating costs 30% 25%

Line operating costs 25% 23%

Transformer operating costs 20% 17%

Loss costs 15% 15%

Time costs 10% 20%

f5 days selected from each month, and the monthly calculated loss

was obtained. By comparing with the loss obtained from simulation

results, Figure 5 and Table 3 show that the maximum difference of

monthly loss appeared in November, the calculated loss was 637.85

MWh, the optimized loss was 531.78 MWh, and the difference was

106.07 MWh. The calculated loss of the whole year is 7,320.42

MWh, and the optimized loss is 7,071.54 MWh, while the loss

of the CSO algorithm is 7,277.42 MWh. The optimized loss of

the proposed method is about 3.4% less than the total loss and

about 2.83% less than the optimized result of the CSO algorithm. It

reduces the loss of electric energy in the long grid so that the whole

loss is slightly reduced, so the loss control meets the requirements.

It can be seen from Figure 6 that after ACSO algorithm

optimization, the load power is reduced relative to the actual load

power, and the optimization result of the ACSO algorithm is better

than that of the CSO algorithm. For multi-objective optimization,

it is not only necessary to meet the peak load-shaving task in the

process of flexible load scheduling but also to effectively reduce

the overall operating cost. The proportions of various types of

operating costs before and after optimization are shown in Table 4.

As can be seen from Table 4, the most obvious change is the

timetable. The proportion of time cost increases from 10 to 20%,

which is due to the adjustment of charging electric vehicles in the

process of ensuring flexible load scheduling, which increases the

charging time, but decreases the total operating cost. Figure 7 shows

the operating cost diagram.

It can be seen from Figure 7 that the total operating cost has

been reduced compared with that before optimization. The annual

FIGURE 7

Comparison of total operating costs.
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FIGURE 8

Graph of the total running cost of reducing expenses.

FIGURE 9

Cost comparison of ACSO with other algorithms.
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TABLE 5 Cost comparison table.

The first
quarter

The
second
quarter

The third
quarter

The
fourth
quarter

Cost before

optimization

15.1 13.3 17.2 19.8

Cost after

optimization

14.1 12.5 15.7 18.2

CSO cost 14.5 13 16.4 19.1

ACSO cost 14.3 12.8 15.9 18.6

operating cost before optimization is about 65,400 RMB, and the

cost after optimization is about 60,500 RMB. By reducing the

charging cost per unit time involved in scheduling, users can reduce

the charging cost, so as to make up for the adverse effects caused by

the increase of time. Figure 8 shows the comparison of the total cost

after reducing the charging cost per unit time.

It can be seen from Figure 8, although the operation cost

increases after reducing the charge per unit charging time, it

is smaller than the actual total operation cost. The cost after

reducing the charge is about 61,600 RMB, which is 5.81%

lower than the actual cost. In this way, the total operation

cost is reduced, and the electric vehicle users participating in

the scheduling can also reduce the corresponding charging cost.

Then, the ACSO optimization results are compared with the

CSO optimization results, as shown in Figure 9 and Table 5.

As can be seen from Figure 9, CSO optimization cost is lower

than that before optimization, but the ACSO algorithm used in

this paper is lower than that of CSO optimization algorithm,

which verifies that the ACSO algorithm described in this paper is

more applicable to large-scale flexible conformance scheduling of

electric vehicles.

5 Conclusion

In this paper, a multi-stage balanced scheduling method

of large-scale flexible load of electric vehicles based on ACSO

algorithm is proposed. Through the particle swarm optimization

calculation of the adverse factors generated by large-scale electric

vehicle charging and the factors that need to be optimized again, the

adverse factors in the whole group are suppressed, and the factors

that need to be optimized are optimized to different degrees. The

results show that on the basis of considering user experience, multi-

stage flexible conformant scheduling can meet peak load clipping,

maintain stable voltage, reduce operating costs, reduce losses, and

reduce grid end impact.
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