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Data-driven techniques have been considered as an enabling technology for

reducing the computational burden of both static and dynamic power system

security analysis. Anyway, the studies reported in the literaturemainly focused on

inferring from historical data the mapping between the bus variables before and

after a certain contingencies set, while, to the best of the Author’s knowledge,

limited contributions have been devoted to try and classify the power system

security state by processing aggregated grid data. This is a relevant issue to

address for a Transmission System Operator since it could allow a sensible

decrease in the computational burden and, considering that aggregated grid data

can be reliably predicted from several hours to one day ahead, it may enable

the evolution of security assessment to security forecasting. In trying and filling

this research gap, this paper explores the role of machine learning and feature

selection algorithms. A realistic case study involving 2 years of synthetic grid data

simulated on the Italian power systemmodel against future potential operational

scenarios characterized by a high share of renewables is presented and discussed

to identify the most promising computing paradigms, analyzing the criticality of

tuning the feature selection and classifier algorithms.

KEYWORDS

dynamic security analysis, machine-learning, sensitivity analysis, classification problem,
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1 Introduction

Ensuring the secure and reliable operation of power transmission systems is becoming

increasingly challenging due to the rise of renewable power generators, the evolution

of the electricity markets, and the increasing number of grid interconnections. These

driving factors are making transmission grids more vulnerable to dynamic perturbations,

threatening their secure operation, and pushing Transmission System Operators (TSOs)

to radically revise the conventional methods and criteria adopted for power system

security assessment.

In this context, TSOs should periodically process themarket data, which are aggregated

on large grid area, in the task of estimating the corresponding bus variables and analyzing

the impacts of each “credible” contingency on power system operation (Kundur et al.,

2004). This computing process asks for a huge number of complex static/dynamic

simulations aimed at analyzing if a certain contingency could trigger severe perturbation

phenomena, which include power components overloading, over/under voltages, and

voltage/frequency instability (Alimi et al., 2020). The complexity of these iterative

Frontiers in SmartGrids 01 frontiersin.org

https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://doi.org/10.3389/frsgr.2024.1385367
http://crossmark.crossref.org/dialog/?doi=10.3389/frsgr.2024.1385367&domain=pdf&date_stamp=2024-05-20
mailto:vaccaro@unisannio.it
https://doi.org/10.3389/frsgr.2024.1385367
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsgr.2024.1385367/full
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


De Caro et al. 10.3389/frsgr.2024.1385367

analyses could require unfeasible computational times, which

violate the strict time constraints needed for identifying effective

countermeasures aimed at mitigating the effects of critical

grid contingencies.

This has stimulated the research for data-driven-based

techniques for power system security assessment, which allow

promptly classifying the system operation state following a fixed

set of contingencies by using pre-trained offline models, or by

performing knowledge discovery from high-frequency sampled

data collected by phasor-measurement units (Alimi et al., 2020).

In this context, machine learning-based techniques are

recognized as one of the most promising enabling technologies

for inferring from historical observation the evolution of the

grid variables following severe grid contingencies (Venzke and

Chatzivasileiadis, 2021; Chatzivasileiadis et al., 2022). These works

focus on methodologies for making AI models more interpretable

for the users.

Particularly, the works on this topic present two fundamental

features, a data processing pipeline to reduce the number

of features, or projecting data on a novel space, and a

machine learning model aimed at linking these input data to

a system security label, for a given contingency. Features can

include demand and generation profiles, network topology, and

contingency identification numbers.

In particular, a methodology integrating a Gini Index-based

Feature Selection and Decision Trees was proposed by Mukherjee

and De (2020) in the task of detecting if each credible contingency

could trigger power system transient instabilities from the current

grid state, which is described by a proper set of bus variables.

To enhance the prediction accuracy of machine learning

in dealing with complex and large feature space, the same

authors (Mukherjee and De, 2021) proposed a methodology

integrating a self-organizing map (SOM), which aims at both

reducing the data cardinality and enhancing the classification

accuracy. However, SOMs are unsupervised algorithms, which

require the deployment of heuristic techniques for transforming the

data clusters into classes.

To face this issue, supervised learning algorithms have been

employed in the task of classifying the system security labels in the

presence of fault transients (Wang et al., 2021). For this purpose,

a deep fuzzy-rule-based model has been proposed to build a

secure/insecure power system state classification model, improving

the accuracy of the conventional Wang-Mendel fuzzy system.

As an innovative aspect with respect to these methods, the

authors of Ren et al. (2022) introduced a combination of Principal

Component Analysis (PCA) and neural networks, coupled with an

adaptive synthetic sampling technique to prevent low prediction

accuracy due to imbalanced data sets, where the most critical

security labels represent a minority portion of the whole data set.

On the same thinking line (Guddanti et al., 2023) deals

with synthetic data generation and proposes a methodology that

employs PCA for data dimensionality reduction and unsupervised

algorithms (e.g., based on k-means) for swift scanning.

However, despite the differences in the input data processing

pipeline and system state prediction model, all the mentioned

works aim at linking the system security labels to a specific

contingency given a fixed pre-contingency power system state,

which is described by a proper set of bus variables. Furthermore,

the selection of the optimal decision threshold, which is a critical

issue to address in the task of enhancing the classification accuracy

and reliability, is frequently based on heuristic approaches, with

limited algorithm sensitivity analyses. Hence, the challenging idea

of promptly processing aggregated power system data by data-

driven techniques in the task of (i) classifying the power system

security state, (ii) reliably tuning the classification parameters,

(iii) identifying the most promising computing paradigm, and

(iv) selecting the most relevant input variables are still open

problems to address in this application context. In this context,

the Italian Transmission SystemOperator (TSO) is currently trying

to infer the hidden relationships between aggregated grid data

describing the electricity market clearing and the corresponding

alarms generated by the Dynamic Security Assessment (DSA) tool

currently installed in the Italian control center. This knowledge

discovery process, which mainly requires solving a data-driven

classification problem, could allow TSO to promptly identify

critical operation states requiring proper corrective/mitigation

actions, and, more importantly, to predict the security state

corresponding to future system states, hence enabling the

development of pro-active security tools. In particular, the idea

of using aggregated data as input to this classification problem is

motivated by the fact that, as opposed to nodal variables, aggregated

grid data can be accurately predicted on several time horizons, and

these predictions are currently available to Terna. On the other

hand, the choice of using aggregated grid data as input makes the

classification problem extremely challenging compared to nodal

variables-based classification. This problem has not been explored

in the literature, to the best of our knowledge.

In trying and filling these research gaps, this paper explores

the role of machine learning and feature selection algorithms in

the task of developing a reliable framework for assessing power

system security from a set of aggregated grid data. For this

purpose, heuristic and automated feature selection algorithms,

which include the Minimum Redundancy Maximum Relevancy

algorithm, and advanced learning techniques, which include

Random Forest, Support Vector Machine, k-nearest Neighbor,

Naive-Bayes, and Feedforward Neural networks, have been applied

for processing historical aggregated grid data in the task of

selecting themost relevant input variables, and inferring the hidden

relationships with the discrete output variable describing the grid

security state.

The notable advantage of deploying this data-driven computing

framework lies in its ability to promptly support TSOs in the

task of identifying potential hazardous operating states, which

require further detailed investigations, hence sensibly reducing the

computational burden of power system security analysis. Moreover,

it could avoid the need for storing and processing large and

complex data sets of historical bus variables, which could exhibit

a large number of very similar features for each contingency set,

deteriorating the model generalization capability, and requiring

complex training processes. Finally, considering that power system

aggregated data can be reliably predicted from several hours to one

day ahead, it may enable the evolution of security assessment to

security forecasting, which could be a relevant benefit for TSOs in

the context of decarbonized power systems.
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A realistic case study involving two years of synthetic grid

data of the Italian transmission system, which have been generated

by using real security tools against potential future operational

scenarios with a high share of renewables, is presented and

discussed to identify themost promising data-driven technique and

to analyze the criticality of feature selection and algorithm tuning

process in achieving reliable classification accuracy. In particular,

rather than proposing a specific methodology, this first application

paper analyzes the potential role of conventional machine learning

techniques in solving a new and complex classification problem.

The final goal is to identify the most promising computational

intelligence technique that can be deployed for surrogate modeling

of the real DSA currently used by the Italian TSO.

2 Problem formulation

Modern de-carbonized power grids are increasing vulnerable to

dynamic perturbations, which could seriously affect power system

operation, requiring detailed security analyses aimed at assessing

and mitigating the impacts of multiple contingencies. For this

purpose, Terna enhanced its security analysis tools with an online

Dynamic Security Assessment (DSA) function, which periodically

performs both static and dynamic simulations in order to analyze

the system security. This DSA function automatically processes

aggregated grid data generating a system snapshot every 5 min,

and performing more than 250 dynamic simulations for the most

critical N-1 and N-k contingencies. The obtained simulation results

are automatically analyzed in order to detect critical operation

states, promptly notifying the control room operators about

potential alarms, and suggesting the corresponding mitigation

actions. Surrogate models are here proposed to mimic the behavior

of this complex computational process, which processes the grid

data aggregated on the 7 system areas of the Italian electricity

market to: (i) estimate the corresponding nodal variables of the

Italian transmission system (which is composed by about 2,000

electrical buses); (ii) assess the static and dynamic system security

of the Italian transmission system according to N-1 and N-k

criteria; (iii) notify the TSO about potential contingencies that

could compromise the correct system operation (i.e., by a binary

variable: 0: secure–1: alarm); and (iv) identify control actions

aimed at mitigating the impacts of critical contingencies. In this

paper, we consider the DSA function as a black box module,

and we explore the role of machine learning-based techniques in

surrogating this tool by processing the same input variables and

estimating the corresponding binary output variable. Particularly,

one of the main advantages of the proposed methodology is

that High-Performance Computing (HPC) architectures with high

parallelism levels are required to solve physical-basedmodels under

the above-mentioned TSO time constraints. The HPC architectures

are characterized by high installation and operational costs. Hence,

surrogate models reduce the number of necessary cores for these

architectures. Indeed, the computational burden linked to the

surrogate models during real-time operation is null since the

model is already trained and thousands of predictions can be

performed in a few seconds. For this reason, it is possible to use

precious computational resources only if necessary (and vice versa,

increasing the detail or time resolution of each simulation since

the number of cases to consider in the model-based DSA tool is

reduced). Hence, according to surrogate modeling-based theory,

we do not assume any physical knowledge about the computational

process adopted by the target system (i.e., the DSA tool) to generate

the output variable.

3 Data-processing pipeline

The data processing pipeline that should be designed for

classifying the grid security state from a set of aggregated grid

variables comprises the following steps: data splitting, heuristic and

automatized feature selection, model training, and validation.

The historical input/output information is organized in a

matrix X, having N samples and F features, along with a vector

y with N samples. The F features within X are the input

variables, which represent the aggregated variables describing the

grid operation, encompassing both real and integer variables (e.g.,

the active power generated/demanded in each power system area

and the corresponding exchanged power flows). Meanwhile, the

elements within y are binary variables that convey information

regarding the corresponding grid secure state, which are computed

by the grid security assessment tool. In particular, the grid

security state is one in case the security tool detects at least

one critical contingency inducing system instability phenomena

or grid constraint violations. This computing process requires a

large number of static and dynamic simulations, which demand a

very large computational burden, and motivate the application of

data-driven techniques.

Thereafter, matrix X, and vector y are split into training and

validation input/output data sets. The input training matrix is

processed to select a subset of features using user experience or

feature selection algorithms.

3.1 Feature selection process

In this paper, several heuristic feature selections have been

considered. Additionally, an automated algorithm such as the

Minimum Redundancy Maximum Relevancy (mRMR) has been

included for comparison, given its widespread application in

solving complex classification problems. Specifically, this algorithm

iteratively identifies a subset of M < F features that

maximize the correlation with the output variable “y” and

simultaneously minimize the correlation among the selected

variables themselves (Peng et al., 2005).

3.2 Learning models

The objective of the learning model is to infer from historical

data the hidden relationship (Equation 1):

y← f (X) (1)

from the observed aggregated grid data (X) and the corresponding

system security state (y). To solve this issue, in this paper, the

following machine learning algorithms have been deployed in
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the task of assessing the most effective solution for the problem

under study: Random Forest, Support Vector Machine, k-nearest

Neighbor, Naive-Bayes, and Feedforward Neural Network.

A random forest (RF) is generated by combining multiple

individual models known as a decision tree. The concept behind

the random forest algorithm is rooted in the notion that an

assembly of weak predictors, devoid of correlation and bias, can

collectively enhance prediction accuracy when juxtaposed against

the utilization of a solitary predictor (Liaw and Wiener, 2002).

Support Vector Machine (SVM) for Classification is an

algorithm primarily focused on discovering the hyperplane that

effectively distinguishes data points of distinct classes (Suthaharan

and Suthaharan, 2016). Specifically, this hyperplane delineates

various areas within the feature space. The algorithm aims

to identify a hyperplane that maximizes the gap between the

classes, signifying the amplification of the separation between the

hyperplane and the nearest points.

On the other hand, the k-nearest neighbors (kNN) algorithm is

a simple yet powerful approach that does not require training since

the data itself serves as the model (Taunk et al., 2019). When given

a query vector, kNN makes predictions by considering the outputs

associated with the most similar neighbors in the input dataset. The

degree of similarity is determined using a distance metric between

the query vector and all instances in the input dataset.

Another computationally effective approach is the Naive Bayes,

a probabilistic machine learning algorithm used for classification

tasks. It is built upon Bayes’ theorem, a formula that calculates the

probability of an event occurring based on related probabilities. In

classification, Naive Bayes calculates the probability of a given input

belonging to a specific class based on its features. The term “Naive”

comes from the assumption of feature independence, simplifying

probability calculations and enhancing computational efficiency.

Despite this simplification, Naive Bayes has shown remarkable

effectiveness in tackling real-world problems.

When the previous algorithm falls due to excessive problem

complexity, Artificial Neural Networks (ANNs) can be deployed.

Particularly, the rise of ANNs in recent decades depends on their

capacity to grasp intricate nonlinear connections within data by

fine-tuning parameters using observed information. ANNs draw

inspiration from the human brain’s mechanics, comprising layers

of interconnected nodes. Each node takes input, processes it,

and generates output. Weights within nodes are calibrated using

input-output data, enabling the network to tailor itself to specific

tasks. ANNs can be designed with numerous layers, creating

models that fall under the category of deep learning. The term

“deep” alludes to the incorporation of multiple layers in the

model’s architecture. Multiple Layers all augmented computing

capabilities for extensive computations and the accessibility of

extensive datasets.

A Multi-layer Feedforward Network is a widely used

architecture for several purposes including classification

problems (Huang et al., 2000). Multi-layer feedforward

networks are called Deep learning networks (DNN) due to

the presence of several layers. In a network of this type,

the information flow propagates in the same direction

through several layers, where each of them applies a

transformation to the inputs using activation functions like

logistic functions.

TABLE 1 Confusion matrix for binary classification problems.

Observed class

y = 1 y = 0

Predicted class
ŷ = 1 TP FP

ŷ = 0 FN TN

FIGURE 1

The 9-bus system adopted to settle the Italian electricity market.

TABLE 2 Feature list.

Type Number
(Index)

List

Aggregate power

demand (Pd)

7 (1–7) Area A, B, C, D, E, F, G

Wind active power

generation (Pw)

7 (8–14) Area A, B, C, D, E, F, G

Inter-area active

power flows (P)

7 (15–21) Areas B-A, D-B, E-D,

F-E, F-G, D-C, B-C

Nr. of generators

providing

6 (22–27) Reported for sub-areas

Other features 2 (28–29) Total wind power

generation and demand

3.3 Performance evaluation

To assess the performance of the machine-learning models in

the task of classifying the grid security state from aggregated grid

data, the conventional metrics derived from the analysis of the

confusion matrix have been adopted. In particular, in the context of

a binary classification problem, where a positive event is designated

as y = 1 and a negative event as y = 0, the confusionmatrix follows

this typical configuration.

Within the confusion matrix shown in Table 1, TP indicates

the number of accurate positive event predictions (y = 1), FP

indicates instances where the negative event (y = 0) is inaccurately

predicted as positive (ŷ = 1), TN denotes the accurate negative

event predictions (y = 0), and FN corresponds to the positive

event (y = 1) being overlooked (ŷ = 0). In the context of power
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FIGURE 2

Correlation matrix heat map. The index of features is reported in Table 2.

system security assessment, the positive event indicates an insecure

grid security state. By analyzing the elements of the confusion

matrix, many fundamental metrics can be computed to evaluate

the learning model’s accuracy and reliability, TPR (True Positive

Rate or Sensitivity) (Equation 2), TNR (True Negative Rate or

Specificity) (Equation 3), FPR (False Positive Rate) (Equation 4),

and FNR (False Negative Rate) (Equation 5):

TPR = TP/(TP + FN) ∈ [0, 1] (2)

TNR = TN/(TN + FP) ∈ [0, 1] (3)

FPR = FP/(FP + TN) ∈ [0, 1] (4)

FNR = FN/(TP + FN) ∈ [0, 1] (5)

A further metric considered in this paper is

the phi-score or Matthews Correlation Coefficient

(De Caro et al., 2022) (Equation 6):

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

∈ [−1, 1]
(6)

where the MCC scores, gathering all the starting scores composing

the confusion matrix, can assess the overall classification model

quality. If the MCC score is equal to 1 the trained model perfectly

predicts the classes, if the score is −1 the model predicts all the

positive classes as negative and vice-versa. The MCC range can be

scaled in [0, 1] as follows (Equation 7):

nMCC = (MCC + 1)/2 ∈ [0, 1] (7)

TABLE 3 Models’ settings.

SVM Radial basis as kernel function

RF Number of DT: 300

kNN Number of nearest neighbors: 5

FNN Fully connected layers by 64, 32, 16, 8 hidden

neurons and softmax layer

where nMCC is the normalized MCC score. It is essential

to highlight that the scores in the confusion matrix and the

corresponding accuracy metrics are associated with a specific

decision threshold. Many classification methods provide a

probability score indicating the likelihood of a given input x

belonging to a particular class. The conversion from the predicted

score to the predicted label is determined by applying a decision

threshold β ∈ [0, 1]. For binary problems, this can be expressed

as follows (Equation 8):

ŷ =
{

1 if P(ŷ = 1|x) ≥ β

0 otherwise
(8)

Hence, changing the decision threshold requires re-computing

the previously computed metrics. This effect can be appreciated

by observing the Receiving Operating Characteristic curve, which

shows the curve FPR vs. TPR at a changing of β . Particularly, the

Area Under the Curve (AUC) is a metric that provides insight into

the comprehensive performance of a classification method across

the entire range of optimal decision thresholds, where a perfect

classifier attains an AUC of 1.
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A B C D

E F G H

FIGURE 3

ROC curves for each class of considered data. (A) Power demand. (B) Power flows. (C) Wind power generation. (D) Power flows and wind power

generation. (E) Power demand, wind power generation and power flows. (F) All features. (G) Best 5 selected features. (H) Best 10 selected features.

TABLE 4 TP, TN, FP, and FN values for several decision threshold values (β).

β = 0.50 β = 0.60 β = 0.65

Actual Actual Actual

y = 1 y = 0 y = 1 y = 0 y = 1 y = 0

kNN Predicted ŷ = 1 83 4,313 kNN Predicted ŷ = 1 20 262 kNN Predicted ŷ = 1 20 232

ŷ = 0 0 0 ŷ = 0 63 4051 ŷ = 0 63 4081

RF Predicted ŷ = 1 83 4,313 RF Predicted ŷ = 1 0 28 RF Predicted ŷ = 1 0 0

ŷ = 0 0 0 ŷ = 0 83 4285 ŷ = 0 83 4313

SVM Predicted ŷ = 1 0 14 SVM Predicted ŷ = 1 0 12 SVM Predicted ŷ = 1 0 12

ŷ = 0 83 4299 ŷ = 0 83 4301 ŷ = 0 83 4301

NB Predicted ŷ = 1 83 4,313 NB Predicted ŷ = 1 82 1,448 NB Predicted ŷ = 1 82 1,319

ŷ = 0 0 0 ŷ = 0 1 2,865 ŷ = 0 1 2,994

ANN Predicted ŷ = 1 70 1,165 ANN Predicted ŷ = 1 60 907 ANN Predicted ŷ = 1 56 808

ŷ = 0 13 3,148 ŷ = 0 23 3,406 ŷ = 0 27 3,505

4 Case study

4.1 Data description

The case study discussed in this paper is based on a realistic data

set composed of 21,983 synthetic operating states of the aggregated

seven-area Italian power system depicted in Figure 1. The 7 area

power system considered in our experiments is the real power

system considered in clearing the Italian electricity market, and the

corresponding aggregated data are the input of the DSA tool of the

Italian TSO. These aggregated data are processed by the DSA tool

to estimate the nodal variables of the Italian transmission system,

which is composed of about 2,000 electrical buses, and to assess the

corresponding static and dynamic security according to N-1 and

N-k criteria.

The data set was generated by using the grid security tool

currently used by the Italian Transmission SystemOperator, which,

starting from the aggregated grid data, estimates the corresponding

bus variables of the Italian power transmission system, and

performs a static and dynamic security analysis for each credible

contingency. The outputs of the grid security tool were processed

to associate each aggregated system state with the corresponding

security label, which is a binary variable whose value is 1 if the tool

detected at least one critical contingency, 0 otherwise.

The data set is composed of 29 input features, which include,

for each area, the power demand, the wind power generation, the
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TABLE 5 Feature ranking.

Rank Feature Rank Feature

1st Total wind power

generation

6th Wind power generation

D

2nd Generator number zone

B

7th Generator number zone

D1

3rd Generator number zone

E2

8th Wind power generator

zone E

4th Generator number zone

D

9th Generator number zone

E3

5th Generator number zone

E1

10th Power flow zone B-A

number of available generators, the active power exchanged with

each interconnected area, and 1 output variable, which represents

the corresponding system security label. The detailed input feature

list is presented in Table 2. By analyzing the produced data

representing a potential future operation of the power system 417

(1,9%) unsecure states are identified following transient simulation

against 21,566 (98,1%). In this scenario, some countermeasures are

applied by the TSO to restore system security. Identify in advance

that states, the most effective countermeasures (from security

and economic points of view) are selected and applied to solve

completely the violations.

Hence, the data set is split into training and validation sets by

considering a ratio of 80%–20%. Data are randomly split preserving

the 0.019/0.981 ratio between secure/insecure states in both sets,

then an oversampling technique is applied to the training data set

in the task of equally distributing the class occurrences. The latter

process allows obtaining a balanced training set, which is expected

to improve the model generalization (Gosain and Sardana, 2017).

The analyzed data, since related to the real behavior of the

Italian power system even if against some theoretical future

potential scenarios, reflects the complexity of the classification

problem, which is non-linear and highly unbalanced. These

features can be also confirmed by analyzing Figure 2, which

reports the Pearson correlation between the available features for

the entire data set, where the 30th feature corresponds to the

security system label. The analysis of these data confirms the

weak linear correlations between the input features and the system

security label.

Moreover, it is worth inferring the following patterns

characterizing the observed variables: the power demand exhibits

a strong positive correlation with the area power flows, while the

area wind power generation exhibits a relatively weaker positive

correlation with the area power flows. Additionally, noteworthy

positive correlations are observed in the power flow data between

specific areas, namely the exchange between areas B and A, D and

B, and E and D.

4.2 Experimental settings

As reported in Table 3, the following machine learning

algorithms have been deployed in the task of inferring the

hidden relationship between the aggregated grid data and the

system security label: Random Forest, Naive-Bayes, Support Vector

Machine, kNN, and a feed-forward multi-layer neural network.

As far as the input feature selection is concerned, for cases A-E

an heuristic approach has been deployed in the task of selecting

the most relevant input variables based on the TSO experience,

while for cases F-G the same problem has been solved by using an

mRMR-based feature selection algorithm:

• Case A: Power Demand Data;

• Case B: Wind Power Generation;

• Case C: Inter-area Power Flows;

• Case D: Wind Power Generation and Inter-area Power Flows;

• Case E: Power Demand, Wind Power Generation, Inter-area

Power Flows, and total Demand;

• Case F and G: Features Selection using the top 5 and 10 best

features selected by mRMR.

It is important to remark that both the machine learning

and the feature selection algorithms deployed in this experimental

analysis are based on conventional techniques frequently adopted

in the computational intelligence literature to solve complex

classification problems, and they have been considered only

in the task of identifying the most promising computational

paradigms aimed at reliably solving the challenging problem under

study. Hence, these experimental studies should be considered

as a prerequisite for effectively designing novel data-driven-based

classification architectures.

4.3 Experimental results

The obtained experimental results have been summarized

in Figure 3, which reports the Receiver Operating Characteristic

(ROC) curves for each considered case. The analysis of these

curves allows defining proper decision thresholds aimed at properly

balancing the accuracy/reliability of the classification models.

The complexity of this identification process can be assessed by

analyzing Table 4, which reports the classification performances of

each model for different values of the decision threshold.

Furthermore, the analysis of ROC curves reported in Figure 3A

reveals that using only demand data (i.e., Case A) does not

allow obtaining reliable classifications, as the observed curves

are either close to or below the curve corresponding to a

random classifier. Furthermore, the AUC curve values for all

the classification models are extremely low, consistently falling

below the threshold of 0.5. The reliability of the classification

models increases when considering only the power flow exchanged

between each area (i.e., Case B), where Naive-Bayes methods reach

an AUC of 0.83, as shown in Figure 3B. However, this score is

not far from the ones returned by ANN (AUC = 0.79) and RF

(AUC= 0.78).

A recognizable improvement, with the best operating point

closer to [0, 1] (perfect classification), is obtained by only

considering wind power generation (i.e., Case C), as shown in

Figure 3C. Particularly, in this case, Naive Bayes returns an AUC=
0.89. Anyway, the combination of power flow and wind power
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FIGURE 4

Visualization of nMCC profile at changing of the decision threshold β.

generation does not lead to sensitive performance improvements

(Case D).

Furthermore, increasing the number of input features does not

lead to further enhancements, as confirmed by the AUC reduction

characterizing the curves reported in Figures 3E, F, which refers to

Cases E and F, respectively.

This performance deterioration could be caused by the

increased complexity of the classification problem, and the

higher dimensions of the input data, which could trigger the

curse of dimensionality, and/or overfitting phenomena that can

negatively affect themodel generalization ability. Thismotivates the

deployment of formal techniques for feature selection, which aim at

identifying the most informative and relevant input variables ruling

the performance of the classification models.

For this purpose, mRMR was applied to the training data

set, obtaining the input features ranking listed in Table 5.

Unexpectedly, the models trained using the top 5 and 10 most

relevant and redundant input features seem not to outperform the

model trained by using wind power generation and power flow

data alone (i.e., Case D), as depicted in Figures 3G, H. This result

could be justified by the complex correlation between the input and

the output variables that the algorithm was not able to identify, as

demonstrated in Figure 2.

Finally, it is important to observe that the analysis of the

ROC curves could not allow for obtaining a reliable assessment

of the classification performance, since they mainly emphasize the

effectiveness of the classification model in detecting the positive

class (i.e., the insecure state). Anyway, in classifying the grid

security label, it is extremely useful to assess themodel performance

in terms of missed detection of insecure states (False Negative),

which cannot be estimated by analyzing the ROC curves.

Hence, alternative metrics based on the nMCC should be

deployed by considering the correlation between the elements

of the confusion matrix. Unlike the ROC curve, which focuses

on a specific threshold, nMCC provides an overall assessment of

the relationship between the predicted and observed classes. The

nMCC for different values of the decision threshold for all the

classification models are reported in Figure 4. By analyzing this

figure it is worth noting that the observed Naive-Bayes consistently

outperforms the other models in all the classification tasks. This is

more evident by considering the highest nMCC peaks, which often

exceed a score of 0.6 for β values ranging from 0.5 to 0.7. Other

notable models include FNN and RF-based classifiers.

It is also interesting to analyze the range of β values allowing

proper classification performance, which can be used to tune

the decision thresholds. In particular, except for the ANN-based

classifier, all the models are characterized by a limited range

of feasible values for β , which allows for obtaining acceptable

classification performance.

5 Conclusion

Data-driven methods represent an enabling methodology

for inferring from historical data the hidden relationship

between aggregated grid data and the corresponding security

state, identifying potential insecure operating states that require

countermeasures application very often costly.

By using a comprehensive set of realistic future potential

operational data generated by the real grid security assessment tool

of the Italian Power System, this paper explored the role of machine

learning and feature selection algorithms in the task of solving

this challenging classification problem, which is a complex issue

currently under investigation by many TSOs.

The obtained experimental results demonstrated that the most

promising computational intelligence-based paradigms include
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ANN, RF, and Naive-Bayes-based classifiers, which allows for

obtaining a proper balance between reliability and accuracy. In

this context, the selection of the decision thresholds represented

a critical issue to address, which required detailed analysis of

several important metrics. Moreover, the feature selection problem

is exacerbated by the complexity of the classification problem,

which includes mixed-integer variables, and unbalanced data sets,

which made the application of conventional feature selection

techniques ineffective.

Finally, it is important to remark that these experimental

results should be considered as a prerequisite for effectively

designing novel data-driven-based classification aimed at further

enhancing the classification accuracy and reliability. In this

context, the ongoing research activities are currently trying to

infer also the mitigation actions identified by the DSA tool (e.g.,

renewable power curtailment) to mitigate the dynamic impacts of

critical contingencies.
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