
TYPE Original Research
PUBLISHED 31 January 2024
DOI 10.3389/frsgr.2024.1338774

OPEN ACCESS

EDITED BY

Nikos Hatziargyriou,
National Technical University of
Athens, Greece

REVIEWED BY

Youcef Belkhier,
École Navale, France
Sourav Diwania,
KIET Group of Institutions, India
Wei Qiu,
Hunan University, China

*CORRESPONDENCE

Taha Selim Ustun
selim.ustun@aist.go.jp

RECEIVED 15 November 2023
ACCEPTED 04 January 2024
PUBLISHED 31 January 2024

CITATION

Joga SRK, Sinha P, Paul K, Sahoo S, Pani SR,
Dei G and Ustun TS (2024) Identification of
harmonic sources in smart grid using
systematic feature extraction from non-active
powers. Front. Smart Grids 3:1338774.
doi: 10.3389/frsgr.2024.1338774

COPYRIGHT

© 2024 Joga, Sinha, Paul, Sahoo, Pani, Dei
and Ustun. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Identification of harmonic
sources in smart grid using
systematic feature extraction
from non-active powers

S. Ramana Kumar Joga1, Pampa Sinha2, Kaushik Paul3,

Satyabrata Sahoo2, Samita Rani Pani2, Geetanjali Dei2 and

Taha Selim Ustun4*

1Department of Electrical and Electronics Engineering, Dadi Institute of Engineering and Technology,
Anakapalle, India, 2School of Electrical Engineering, Kalinga institute of Industrial Technology (KIIT)
University, Bhubaneswar, India, 3Department of Electrical Engineering, Birsa Institute of Technology
(BIT) Sindri, Dhanbad, India, 4Fukushima Renewable Energy Institute, Advanced Industrial Science and
Technology (AIST), Koriyama, Japan

The paper introduces a novel method for identifying the location of harmonic-
generating sources in smartgrids. The method utilizes a Dual-Tree Complex
Wavelet Transform (DTCWT) of voltage and current signals measured at a
specific point in the network. By applying DTCWT Transform, the signals are
decomposed, and three non-active power quantities are extracted to represent
the harmonic components within the system exclusively. These chosen non-
active power quantities serve as indicators of the presence of harmonics in
the system. Through analysis and comparison of these quantities, the method
enables determining the precise location of the dominant harmonic generating
source. This information is valuable for e�ectively addressing and mitigating
harmonic issues in the network. Leveraging DTCWT and focusing on non-
active power quantities provides a valuable tool for power system engineers and
operators to diagnose andmitigate harmonic issues, ultimately improving power
quality and system performance. This study presents a new feature extraction
method to compute Non-active power quantities based on DTCWT due to its
shift-invariant property.

KEYWORDS

Dual-Tree Complex Wavelet Transform (DTCWT), non-active powers, detail reactive
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1 Introduction

Power quality disturbances have become a significant concern for the power industry

due to their adverse impact on the power system’s reliability and stability. The detection

and classification of power quality disturbances (PQDs) is a critical issue in the power

system. Researchers have proposed different techniques to improve the accuracy and

efficiency of PQD detection and classification. By accurately identifying the source, it

becomes easier to implement targeted solutions and prevent future disruptions. Moreover,

it aids in improving the overall performance of the power system and reducing downtime.

Harmonics can degrade power quality, leading to issues such as voltage distortion and

increased losses in the power distribution system. Identifying harmonic sources helps

utilities improve power quality, ensuring a stable and reliable electricity supply for

consumers. Harmonics can negatively impact the lifespan and performance of electrical

equipment. Identifying sources allows for the implementation of protective measures
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and targeted maintenance strategies to ensure the reliability and

longevity of equipment in the smart grid. Harmonics result in

energy losses and decreased efficiency in power systems. By

identifying and mitigating harmonic sources, utilities can improve

energy efficiency, reducing unnecessary energy consumption and

operational costs. Many regions have regulations and standards in

place to limit harmonic distortions in power systems. Identifying

harmonic sources is crucial for compliance with these regulations,

avoiding penalties, and maintaining a grid that meets established

standards. In a smart grid, where advanced communication

and control technologies are integrated, identifying harmonic

sources is essential for optimizing grid performance. It enables

utilities to make informed decisions, implement efficient control

strategies, and adapt to changing conditions in real-time. The

ability to identify harmonic sources allows utilities to adopt a

proactive approach to maintenance. Predictive maintenance based

on systematic feature extraction helps prevent equipment failures,

reduce downtime, and minimize overall maintenance costs. With

the increasing integration of renewable energy sources like solar

and wind power, harmonic issues can arise due to the variable

nature of these sources. Identifying and mitigating harmonics

is essential for the smooth integration of renewable energy into

the grid. So, harmonics should be addressed as soon as possible

to increase the reliability of the smart grid. Discrete Wavelet

Transform (DWT) is a powerful tool for detecting and classifying

power quality disturbances in a power system. DWT has been

used in many research works to extract the features of various

power quality disturbances such as harmonics, transients, and

inter-harmonics. The extracted features are then fed into different

classification algorithms to identify and classify the type of power

quality disturbance. However, there exist some research gaps while

using DWT for this purpose. One such gap is that the DWT-based

approach may not be very effective in capturing the high-frequency

components of PQ disturbances. To overcome this research gap,

researchers have proposed the use of Dual-Tree Complex Wavelets

Transform (DT-CWT). DT-CWT is known for its ability to provide

better time and frequency resolution than DWT, making it a

suitable alternative for detecting and classifying PQ disturbances.

Dual-Tree Complex Wavelet Transform (DT-CWT) is

considered better than Discrete Wavelet Transform (DWT) for

detecting and classifying Power Quality (PQ) disturbances in a

power system for several reasons. DT-CWT provides better time

and frequency resolution, making it more effective in capturing

high-frequency components of PQ disturbances. It can handle

non-stationary signals more effectively, has a higher degree of shift-

invariance, and a larger number of wavelet coefficients, providing

more information about the signal. DT-CWT can also handle

complex signals with multiple modes and provide directional

information about the signal, making it useful to identify and

classify power quality disturbances in multi-phase systems.

Additionally, it provides a more interpretable representation of

the signal than DWT and can be used with other signal processing

techniques to improve accuracy. Finally, DT-CWT is a versatile

signal-processing technique with numerous applications beyond

PQ disturbance detection and classification.

Granados-Lieberman et al. (2011) provided a comprehensive

review of different methods and techniques for analyzing the power

quality events and their classification in the power systems. The

authors discussed the various signal processing techniques used

for power quality analysis, including Fourier Transform, Wavelet

Transform, and Stockwell Transform. They also reviewed different

classifiers, such as Artificial Neural Networks, Support Vector

Machines, and Fuzzy Logic Systems, for disturbance classification.

Reddy et al. (2014) proposed a versatile real-time power quality

analyzer that uses the Stockwell Transform for signal analysis.

In real time, the proposed system can detect and classify various

power quality disturbances, including harmonics, voltage sags, and

swells. Masoum et al. (2010) proposed a method for detecting and

classifying power quality disturbances using the Discrete Wavelet

Transform and Wavelet Networks. The proposed method showed

high accuracy in detecting and classifying disturbances. Khokhar

et al. (2016) proposed a mechanized pattern recognition system

for various multi-power quality events. The authors used the

Artificial Neural Network classifier for disturbance classification

and achieved an accuracy of 98.5%. Parvez et al. (2019) proposed

an online power quality disturbance detection system using

the Support Vector Machine classifier. With high accuracy, the

proposed system can detect various disturbances, including voltage

sag, swell, and interruption. Yan et al. (2019) proposed a method

for denoising and detecting transient power quality disturbances

using an improved Iterative Adaptive Kernel Regression algorithm.

The proposed method showed high accuracy in detecting and

classifying different types of disturbances. Lin et al. (2019)

proposed a method for feature selection and pattern recognition

of power quality disturbances based on image enhancement

techniques. The proposed method used the Discrete Wavelet

Transform for feature extraction and achieved high accuracy in

disturbance classification. Gong and Ruan (2020) proposed a

convolutional network structure for power quality disturbance

identification and classification in microgrids. The proposed

method accurately identified and classified various power quality

disturbances, including voltage sag, swell, and harmonics. Xu et al.

(2020) proposed a method for detecting and classifying power

quality disturbances in distribution networks using Variational

Mode Decomposition and DFA. The proposed method showed

high accuracy in detecting and classifying disturbances, even

in noisy environments. Chawda et al. (2020) comprehensively

reviewed different techniques and methodologies for detecting

and classifying power quality disturbances in utility grids with

renewable energy penetration. The authors discussed various

signal processing techniques and classifiers used for disturbance

classification, including Artificial Neural Networks, Support Vector

Machines, and Decision Trees. Meena et al. (2022) proposed a

power quality disturbance classification method using DWT-based

feature extraction. The proposed method achieved high accuracy in

disturbance classification. Zhong et al. (2019) proposed a PQEvents

identification system based on S-Transform in combination with a

Decision Tree classifier. The proposedmethod accurately identified

and classified various power quality disturbances, including

harmonics and voltage sags. Özmen and Biricik (2019) proposed

a PQD detection technique based on the dual-tree complex

wavelet transform (DTCWT). The proposed method improves

the sensitivity and selectivity of PQD detection in the presence

of harmonics. The experimental results show that the proposed
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method outperforms the conventional discrete wavelet transform

(DWT) technique in terms of accuracy. Deng et al. (2021)

proposed a PQD detection and classification technique based on

the variational mode decomposition (VMD) and convolutional

neural networks (CNN). The VMD decomposes the PQD signal

into different modes, and the CNN is used to classify themodes into

different PQDs. The proposed method achieves a high accuracy

rate for PQD detection and classification. Ra et al. (2018) proposed

a PQD detection technique based on the DTCWT. The proposed

method improves the sensitivity and selectivity of PQD detection

in the presence of noise. The experimental results show that the

proposed method outperforms the conventional DWT technique

in terms of accuracy. Mahela et al. (2020) proposed a PQD

recognition technique based on the S-transform and ruled decision

tree (RDT). The S-transform decomposes the PQD signal into

different frequency components, and the RDT is used to classify the

frequency components into different PQDs. The proposed method

achieves a high accuracy rate for PQD recognition. Liu et al. (2021)

proposed a PQD classification technique based on time-dependent

spectral features and a three-step classification approach. The

proposed method employs a time-frequency analysis to extract

time-dependent spectral features, which are then used to classify

PQDs into different categories. The proposed method achieves

a high accuracy rate for PQD classification. Shaik et al. (2022)

proposed a PQD identification technique based on the DTCWT

and support vector machine (SVM). The proposed method

identifies single and multiple PQDs using the DTCWT to extract

the features and the SVM to classify the PQDs. The experimental

results show that the proposed method achieves a high accuracy

rate for PQD identification. Finally, Khoa and Dai (2020) proposed

a PQD detection and classification technique based on an improved

combination of the S-transform with a decision tree classifier. The

proposed method employs the Stockwell transform to extract time-

frequency features and the decision tree method to classify the

PQDs. The experimental results show that the proposed method

achieves a high PQD detection and classification accuracy rate.

This research introduces a novel approach for fault identification

in power networks by making use of deep learning approach It

is possible to estimate the type, classification and the distance to

the site of the defect (Roy et al., 2023). Latif (2020) suggest using

a price based demand response approach to incorporate more

renewables into the grid, in order to solve the issue outlined before.

Firstly, the parameters of the control systems being presented are

optimized using the salp swarm optimization (SSO) approach.

Mahafzah et al. (2022) introduce a novel protection mechanism

that utilizes artificial intelligence to identify faults under various

operating settings. The suggested approach has many benefits

over existing methods, such as its fast protective functioning and

offering a fault recovery method. Ye et al. (2024) presents novel

and tailored approaches to handle the issue of time synchronization

loss in D-PMUs, H-PMUs, and WMUs, taking into account the

specific constraints associated with each of these cases. We are

primarily dedicated to resolving the issue of identifying the location

of events, both steady-state and transient, across many categories.

Yin et al. (2024) proposed a method to identify multiple harmonic

sources using a collaborative approach including cloud, edge,

and end devices. Firstly, based on the study of the functional

requirements harmonic sources assessment at many voltage levels,

a new framework of cloud-edge-end collaboration is provided. The

suggested technique is the cloud-edge-end collaborative harmonic

sources assessment method. It operates distinct service strategies

dependent on voltage levels and grid operation. This is achieved

via the multi-level interaction of edge computing. The proposed

GAC (Xu et al., 2024) seeks to identify the primary source

of harmonics at the point of common coupling (PCC) from

both the utility and consumer perspectives. The new approach

requires simply the root mean square (RMS) values of the PCC

voltage, current, and phase angle difference, in contrast to the

standard method. Hence, the need for synchronized phasor data

of voltage and current is eliminated. Simultaneously, a criterion

for identifying the primary harmonic source is constructed by

comparing the equivalent admittance ratio on both sides of the

point of common coupling (PCC). By applying sophisticated

control methodologies, the interface inverters perform several

auxiliary services which include suppression of harmonics, power

factor as well as voltage correction. This research introduces a

new approach called Adaptive Neuro Fuzzy Inference System

based Hybrid Aquila Arithmetic Optimization (ANFIS-HA2O)

to improve power quality and reduce harmonics in distributed

generation (DG) systems (Zahariah, 2024). Chauhan et al. (2022)

presents a model for reducing emissions by implementing a carbon

capture system that includes a small-scale carbon capture unit

(CCU) integrated with a fossil fuel-based unit. Carbon emissions

are subject to a fractional penalty based on the efficiency of the

CCU system. Safiullah et al. (2022) employs a control strategy to

achieve stable power supply in the presence of electric vehicles

(EVs) and renewable energy sources. An AI-based disturbance

rejection controller is employed.

This article shows that Dual-Tree Complex Wavelet Transform

(DTCWT) is superior to the traditional Discrete Wavelet

Transform (DWT) for detecting harmonic sources in power

systems. This is mainly due to the fact that DTCWT provides

a better time-frequency resolution and can capture the subtle

changes in the signal that DWT fails to identify. The main

attributes of the wavelet transform cause major dependencies in

the wavelet coefficients of natural images: It has been found that

(1) large/small wavelet coefficients tend to propagate across scales

(Sendur and Selesnick, 2002), and (2) neighboring large/small

wavelet coefficients tend to be large/small as well. For denoising the

signals, Borran and Nowak (2001) proposes a wavelet-based hidden

Markov tree (HMT) model that takes use of sign and magnitude

correlations on adjacent scales. This paper employs the bivariate

Cauchy PDF to represent the scaling behavior of the coefficients

in the dual-tree complex wavelet transform (DTCWT) (Achim

and Kuruoglu, 2005). Compared to the conventional discrete

wavelet transform (Kingsbury, 2001), DTCWT excels due to its

near-perfect shift invariance, excellent directional selectivity in

two dimensions, and flawless reconstruction. The studies reviewed

in this literature review have demonstrated that DTCWT-based

methods can accurately detect and classify various power quality

disturbances, including complex harmonic sources, using machine

learning techniques such as decision trees, SVM, and convolutional

neural networks. Moreover, the studies have shown that the

DTCWT-based methods can perform well even under noisy
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conditions and achieve high detection accuracy with relatively low

computational complexity. Therefore, DTCWT-basedmethods can

greatly improve the performance of power systems and enhance

the reliability of power quality monitoring systems. Systematic

feature extraction involves the use of advanced data analytics

techniques to process large sets of data efficiently. This innovation

allows for the identification of patterns and trends related to non-

active powers, providing insights into harmonic sources in a more

sophisticated manner than traditional methods. Integration of

machine learning and artificial intelligence algorithms enables the

smart grid system to learn and adapt over time. These algorithms

can automatically identify and classify harmonic sources based on

historical and real-time data, improving the accuracy of source

identification. The innovation involves implementing real-time

monitoring capabilities, allowing for immediate detection and

response to harmonic issues as they arise. This dynamic response

contributes to the stability of the smart grid and minimizes the

impact of harmonic distortions on power quality. Utilization of

smart sensors with advanced measurement capabilities enhances

the accuracy of data collection. These sensors can provide detailed

information about non-active powers, facilitating more precise

feature extraction and harmonic source identification. Innovations

in control strategies enable the smart grid to adapt dynamically

to changing conditions. By understanding the characteristics

of harmonic sources through systematic feature extraction, the

system can adjust control parameters to mitigate harmonic issues

effectively. The application of predictive maintenance techniques

based on systematic feature extraction allows for the anticipation

of potential harmonic-related equipment failures. This innovation

helps utilities implement timely maintenance actions, reducing

downtime and improving overall system reliability. Innovative

visualization tools and reportingmechanisms provide clear insights

into harmonic sources. This enables utility operators and engineers

to make informed decisions for harmonic mitigation and overall

grid optimization.

1.1 Main novelty

In this paper, the author presents a new method for identifying

the dominant harmonic source smart grid. The relative phase angle

between the sources influences the conventional approach of using

active power direction for locating harmonic sources. Additionally,

the metering point and source/customer impedance can impact the

accuracy of the active power direction method.

To overcome these limitations, the author focuses on nonactive

power components that represent the harmonic components in

the power system network. Three different nonactive powers

are utilized: detail reactive power, Czarneck’s reactive power,

and a newly introduced nonactive power, N/. These powers are

formulated in the wavelet domain.

The proposed method relies on comparing these nonactive

power quantities to detect the harmonic sources in the power

system network. By analyzing the characteristics of these powers,

the dominant harmonic source can be identified more effectively.

Previous studies have also proposed various techniques for

harmonic source detection and power quality monitoring. These

include a current decomposition technique for measuring power

resolutions defined by different authors, a single-point strategy for

detecting harmonic sources in polluted power systems, and an

innovative technique for identifying disturbing loads in distorted

power systems. These methods often involve comparing nonactive

power quantities measured at the same metering section.

The effectiveness of the proposed method is evaluated by

incorporating simple decision-making rules and considering

the influence of measurement transducers. The proposed

method offers a promising approach for identifying and locating

dominant harmonic sources in power system networks by utilizing

the nonactive power quantities and formulating them in the

wavelet domain.

1.2 Advantages

1. Systematic feature extraction involves analyzing large datasets

to identify patterns and trends related to harmonic sources.

This data-driven approach enables utilities to make informed

decisions and optimize their strategies for harmonic mitigation.

2. As the share of renewable energy sources like solar and

wind power increases, so does the complexity of the power

grid. Harmonic issues can arise due to the variable nature of

these energy sources. Systematic feature extraction helps in

understanding and addressing harmonic challenges associated

with the integration of renewable energy into the grid.

3. By understanding the characteristics of harmonic sources,

utilities can implement better monitoring and control strategies.

This allows for real-time adjustments and responses to changing

conditions, maintaining optimal system performance.

4. Systematic feature extraction from non-active powers can

provide insights into the behavior of harmonic sources over

time. This information can be used for predictive and

preventive maintenance, reducing downtime and minimizing

the likelihood of equipment failures.

5. Harmonics can result in energy losses and reduced efficiency in

power systems. Identifying andmitigating harmonic sources can

lead to improved energy efficiency, reducing unnecessary energy

consumption and associated costs.

2 The evaluation of the proposed
approach

The proposed approach of detecting the harmonic generating

source is based on comparing three nonactive power components

defined in the context of non-sinusoidal electrical systems. Several

power components have been defined during the past years to

analyze, understand, and measure power quantities in power

systems in the presence of nonlinear components (Balci and

Hocaoglu, 2010). Especially the reactive powers can be used as

indicators for detecting the location of harmonic sources. Some

of these reactive power quantities are Budeanu (QB), Fryze (QF),

Shepherd and Zkikhani (Sx), Sharon (Sq), Kuster andMoore (Qkus),

and Czarnecki (Qcz). For the detection of dominating harmonic

sources, the authors have considered the following nonactive

power quantities:
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(a) Detail reactive power, Qdet

(b) Czarneck’s reactive power, Qcz

(c) Another nonactive power, N/, derived from the nonactive

power N defined in IEEE Std. 1459-2000 (Yin et al., 2024).

Some definitions for the power components in non-sinusoidal

conditions can be found in IEEE Standard 1459-2000. The

standard’s newly-introduced definitions are grounded on the

Fourier transform’s frequency domain (FT).

2.1 Fast Fourier transform based power
component definition

This section redefines power components definitions in IEEE

Standard 1459-2000 (Morsi and El-Hawary, 2007) for single-phase

systems under non-sinusoidal situations. Consider the following

sinusoidal and non-sinusoidal voltage and current waveforms in

(Equations 1–3):

v1 =
√
2 V1sin(ωt − α1), i1 =

√
2 I1sin(ωt − α1), (1)

vH =
√
2
∑

h6=1

Vh sin(hωt − αh) (2)

iH =
√
2
∑

h6=1

Ih sin(hωt − βh) (3)

Power system frequency components (=2f=100 rad/s) are

represented by v1, i1; vH, iH represent overall harmonic voltage

and current components; fundamental voltage and current phase

angle are represented by 1; and individual harmonic voltage and

current phase angle are represented by αh, βh.

V =
T

∫

0

v2dt V2 = V2
1 + V2

HV
2
H =

∑

h6=1

V2
h (4)

I =
T

∫

0

i2dtI2 = I21 + I2HI
2
H =

∑

h6=1

I2h (5)

T is the time frame in question. Nonsinusoidal voltage and

current are defined in terms of their root-mean-square (RMS)

values in Equations (4) and (5).

The fundamental active power P1 is defined as in Equation (6)

P1 = V1I1 cos θ1 (6)

where θ1 = β1 − α1

PH is the total harmonic active power given by Equation (7)

PH =
∑

h6=1

VhIh cos θh (7)

The total active power P is defined as in Equation (8)

P = P1 + PH (8)

Total harmonic reactive power is defined as1 in Equation (9)

QH =
∑

j≥j0

Qj

=
∑

h6=1

VhIh sin θh (9)

Czarneck’s reactive power Qcz is defined as in Equations (10)

and (11) (see text footnote 1)

Qcz = VIR (10)

where

IR =
√

I2Hsin
2θH (11)

The distortion power, is expressed in Equation (12)

DH =
√

S2H − P2H , (12)

where SH is the harmonic apparent power is as in Equation (13)

SH =VHIH (13)

The current distortion power DI , and voltage distortion power

Dv are defined as in Equation (14)

DI = V1IH and Dv = VHI1 (14)

The fundamental apparent power is defined as in Equation (15)

S1 = V1I1 (15)

Total apparent power is defined as in Equation Equation (16)

S2 = S21 + D2
I + D2

V + S2H (16)

The total non fundamental apparent power in Equation

Equation (17)

S2N = D2
I + D2

V + S2H (17)

The Nonactive power N is defined in IEEE Std. 1459-2000

(Cataliotti et al., 2011) as in Equation (18)

N =
√

S2 − P2 (18)

From Equations (7), (19) can be written as

Q2
cz = (V2

1 + V2
H)I

2
Hsin

2θH

= V2
1 I

2
HI

2
Hsin

2θH + V2
HI

2
Hsin

2θH

= V2
1 I

2
Hsin

2θH + Q2
H

= V2
1 I

2
H(1− cos2θH)+ Q2

H

= V2
1 I

2
H(1−

P2H
V2
HI

2
H

)+ Q2
H

= V2
1
D2
H

V2
H

+Q2
H (19)

1 http://www.powerqualityworld.com/2011/04/interruptions-power-

quality-basics.html
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Subtracting the fundamental reactive power Q1 from the non-

active power N, a new nonactive power containing the harmonic

quantities may be defined as in Equation (20)

N/2 = S2 − P2 − Q2
1

=
(

S21 + S2N
)

−
(

P21 + P2H
)

− Q2
1 [from Equations (8) and (16)]

=
(

S21 − P21
)

+ S2N − P2H − Q2
1

= S2N − P2H

= D2
I + D2

V +
(

S2H − P2H
)

[from Equation (17)]

= D2
I + D2

V +
(

V2
HI

2
H − V2

HI
2
Hcos

2θH
)

= D2
I + D2

V + V2
HI

2
H(1− cos2θH)

= D2
I + D2

V + V2
HI

2
H(sin

2θH)

= D2
I + D2

V + Q2
H

= V2
1 I

2
H(sin

2θH + cos2θH)+ D2
V + Q2

H [from Equation (14)]

= V2
1 I

2
H(sin

2θH)+ V2
1 I

2
H(cos

2θH)+ D2
V + Q2

H

= V2
1 I

2
H(1− cos2θH)+ V2

1 I
2
H(cos

2θH)+ D2
V + Q2

H

= V2
1 I

2
H(cos

2θH)+ V2
1 I

2
H(1− cos2θH)+ D2

V + Q2
H

= V2
1 I

2
H(cos

2θH)+ V2
1 I

2
H(1−

P2H
V2
HI

2
H

)+ Q2
H + D2

V

= Q2
cz+D2

V + V2
1 I

2
H(cos

2θH) [from Equation (19)]

= Q2
cz+D2

V + V2
1
P2H
V2
H

(20)

The harmonic pollution is defined as in Equation (21)

HP =
SN

S1
(21)

2.2 The definition of a power component
using a dual-tree complex wavelet
transform

Signals for voltage [v(t)] and current [i(t)] are notated

respectively (t). Time Period consideration is a crucial aim

of the dual-tree complex wavelet transform-based signal

decomposition strategy. As the number of signal samples to

be decomposed grows, so does the number of decomposition

levels. When performing calculations, the values of the complex

coefficients are used as though they were whole numbers. This

will drastically improve the calculation’s performance while

simultaneously lowering output error to zero. The coefficients of

the voltage signal, both exact and approximate, are considered. The

current coefficients for approximation and detail are also taken

into account.

In Vatansever (2010), discusses his method for determining the

rms value of power using the dual-tree complex wavelet transform.

For the wavelet transform of a signal to be consistent with the dual-

tree complex wavelet transform, Fahri Vatansever modified the

exact and approximation coefficients. The following is the formula

developed by Fahri Vatansever for the one-sided decomposition

signal: The root-mean-square (RMS) values of a voltage or current

waveform are defined as in (Equations 22–28)

V1 =

√

√

√

√

√

N

2S
∑

k=1

⌈

as
[

k
]

+ jab,s[k]
⌉2

(22)

Vc,d =

√

√

√

√

√

N

2S
∑

k=1

⌈

dm
[

k
]

+ jdh,m[k]
⌉2 = VH (23)

I1 =

√

√

√

√

√

N

2S
∑

k=1

⌈

fs
[

k
]

+ jfb,s[k]
⌉2

(24)

Ic,d =

√

√

√

√

√

N

2S
∑

k=1

⌈

bm
[

k
]

+ jbh,m[k]
⌉2 = IH (25)

P =
1

T

∑

k

cvjo,k. c
i
jo,k +

1

T

∑

j≥j0

∑

k

dvj,kd
i
j,k (26)

Pdet =
1

T

∑

j≥j0

∑

k

dvj,kd
i
j,k = PH (27)

Qdet = −2
s

∑

m=1

1

N

N
2 s

∑

k=1

Im
{

dvm
[

k
]

+ jdvm,m

}

.

Im
{

dIm(H(i))
m

[

k
]

+ jdIm(H(i))
m,m

}

(28)

The detail distortion power is as in Equation (29)

Ddet =
√

S2det − P2det, (29)

where Sdet is the detail apparent power (Zahariah, 2024) and

expressed as in Equation (30)

Sdet = VHIH (30)

The current distortion power DI and voltage distortion power

Dv are defined as in Equation (31)

DI = VjoIj, and

Dv = VjIjo (31)

The approximation apparent power is defined as

Sapp = VjoIjo

Total apparent power is defined as in Equation (32)

S2 = S21 + D2
I + D2

V + S2det (32)

The total non-fundamental apparent power is as in

Equation (33)

S2N = D2
I + D2

V + S2det (33)

The Nonactive power N as defined in IEEE Std. 1459-2000 (see

text footnote1) is as in Equation (34)

N =
√

S2 − P2 (34)
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The proposed nonactive power N/is given as in Equation (35)

N/ = Q2
cz + D2

V+V2
1

P2det
V2
j

(35)

The detail pollution is as in Equation (36)

DP =
SN

Sapp
(36)

In case of nonlinear load, the amount of current distortion

is low (Locci et al., 2007). Hence from Equations (28), (37), and

(38), it can be concluded that, when value of Qcz is closer to Qdet ,

i.e., |Qcz − Qdet|<
∣

∣N/ − Qcz

∣

∣, which means only non-linear load is

present in the network.

In presence of nonlinear load, the amount of current distortion

will be much higher than the previous case (Sendur and

Selesnick, 2002). Hence the value of Qcz will be closer to N/i.e.,

|Qcz − Qdet|>
∣

∣N/ − Qcz

∣

∣.This indicates that the EV load is present

along with the non-linear residential load.

In presence of only EV load Qcz lies in between to Qdet and N/,

then we can propose |Qcz − Qdet|=
∣

∣N/ − Qcz

∣

∣.

Feature Extraction is a method for creating new features

from existing ones in a dataset in order to reduce the size of

the original dataset (and then discarding the original features).

Statistical feature selection and feature elimination (DTCWT) has

been proved to be an efficient method for identifying suggested

events by reducing the number of signal features. It also details

how to select a level of decomposition that will both hasten the

procedure and improve its accuracy.

3 Verification of the proposed method

3.1 Optimal placement of smart meters
using Slime Mold Algorithm (SMA)

To identify the problem in the distribution line, smart meters

will need to be installed, and the fault will need to be located. By

installing fewer smart meters, it will be possible to cut down on the

cost of the installation. To lessen the number of smart meters and

zero in on the spot that would be most suitable for one of these

devices, an essential optimization strategy has to be implemented.

In this article, an optimization strategy that is based on the Slime

Mold Algorithm (SMA) optimizer is used to determine the optimal

placement of the smart meter. It is commonly acknowledged that

the objective function of the Optimal Placement Problem (OPP)

should be as in Equation (37)

Minimize
n
∑

k=1
Zk

Subjected to [C] ∗ [Z] ≥ b

(37)

Where C is a connectivity matrix, and n is the number of buses.

The Matrix C is represented in the form of

Matrix Ci,j =











1, if i = j

1, if i and j are connected

0, if other wise











Whereas B is a column matrix and it is represented as

[

b
]

= [1111111...1]T1XN

3.1.1 Slime Mold Algorithm (SMA)
Premkumar et al. proposed the SMA which has been inspired

by the behavioral aspect of slime mold (Premkumar et al., 2021).

In nature, the slime mold detects the food and thereafter encircles

it and eventually digests it by releasing enzymes. The properties

of slime mold may be mathematically expressed into three steps:

seeking food, encapsulating food, and oscillating, which can be

represented as follows:

3.1.1.1. Approach food

The slime mold tracks the food based upon the smell dissipated

in the air which can be represented as in Equation (38):

Z(k+ 1) =

{

Zb(k)+ vb.(H.ZA(t)− ZB(t)), r < p

vc.Z(t), r ≥ p
(38)

Here Equation (2), Z represents the position of the slime mold,

Zb denotes the latest location with the most intensified smell

(food location), ZA and ZB are randomly selected candidate from

the slime mold, r is a random value between [0,1],k denotes

the iterations, H signifies the slime mold adaptive weight, vb is

the randomly generated value in the range [-a, a],vc represented

random value in the range [-b, b] where b resembles a value that

decreases linearly from 1 to 0 based upon the iteration (b =
1 − k/Itermax). The probability index p of Equation (39) can be

represented as in Equation (3):

p = tanh |J (i) − EG| (39)

Here Equation (3), J(k) represents the fitness value

corresponding to Z and EG resembles the best candidate

solution achieved so far. The parameter a can be represented as in

Equation (40):

a = arctan h

(

−
(

k

Itermax

)

+ 1

)

(40)

The adaptive weight H of the slime mold can be represented as

in Equations (41), (42):

H(SmellIndex(i)) =























1+ r. log
(

bG−J(i)
bG−wG

+ 1
)

;

first half of population

1− r. log
(

bG−J(i)
bG−wG

+ 1
)

;

other half of population

(41)

Smell Index = sort (J) (42)

Here Equations (5) and (6), bG resembles the best fitness

solution achieved in the current position and the worst fitness

resembles wG the latest position. Smell Index represents the sorted

values of the fitness maintained sequentially.

3.1.1.2 Wrap food

The slime mold modifies the search procedure based on

the concentration of food as it approaches the feeding process.

Situation when the food concentration is low, the area’s weight

decreases; when the food concentration is high, the area’s weight

increases. However, to enhance the SMA’s exploration ability, the

Equation (43) may be used to update the position of the slimemold.

Z∗ =











Rand.(ub− lb)+ lb; r < x

Zb(k)+ vb.(H.ZA(k)− ZB(k)); r < p

vc.Z(k); r ≥ p

(43)

Frontiers in SmartGrids 07 frontiersin.org

https://doi.org/10.3389/frsgr.2024.1338774
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Joga et al. 10.3389/frsgr.2024.1338774

FIGURE 1

Flow chart for smart meters optimal placement using slime mold algorithm.

Here in Equation (7), the lower and the upper bounds of the

decision variables are represented by lb and ub, Rand resembles the

randomly generated value [0,1], and x is set to 0.03 as the best value

based upon trial runs.

3.1.1.3 Oscillations

The oscillation phase imitates the propagation wave created.

A biological oscillator that generates a propagation wave modifies

the cytoplasmic flow in veins. This created wave is utilized to

imitate varying venous widths and is mostly utilized by slime

mold to locate a food source with a higher concentration. In the

presence of a higher concentration of food, slime mold can access a

spot more promptly; yet, it advances more slowly in the presence

of lower food concentrations. Thus, the effectiveness of picking

the appropriate food source is increased. The selective behavior

is imitated by the synergistic interaction between vb and vc. Some

biological matter is separated by slimemold for the aim of exploring

TABLE 1 Smart meters optimal placement.

Set number Bus numbers

1 4, 10, 13, 22, 25

2 3, 5, 6, 22, 25

3 3, 10, 12, 16, 21

other regions. This behavior aids in the exploration of a higher-

quality food source, even if an acceptable food source has already

been discovered. This scenario also inhibits the slime mold from

investigating a single source. In addition, the oscillationmechanism

vc simulates the decision of whether to approach a food source

or search for an alternative. Without becoming trapped in a local
optimum, the likelihood of locating a foodstuff of greater quality

increases although there may be a few conditions, such as a dry
atmosphere and bright light, which prevent the spread of slime
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mold. The flow chart for optimal placement of smart meters
through the Slime Mold Algorithm (SMA) is shown in Figure 1 to

solve the optimum placement issue, the IEEE 33 radial distribution

bus is being considered. It has been determined that the optimal

solution for the objective function has been achieved, and cases of

these optimal solutions can be found in Table 1.

‘

4 System modeling of Korean smart
distribution management system
(KSDMS)

The system architecture of the KSDMS servers is shown

in Figure 2, along with the connections made via middleware

between the various parts. Data Communication Processor (DCP)

is used to connect to the server and exchange data with field

devices (Song et al., 2013). HCIs (human computer interfaces),

engineering stations for DB and schematic editing, and middleware

that connects the application server and DBMS server to each

component are other system components. A single distribution

branch center, which normally has 200 distribution feeders, is

covered by the KSDMS. A topological characteristic matrix’s size

(such as the Y, H, or Jacobean matrices) may exceed the size of

the whole transmission system. As a result, a reduction technique

is required to reduce the size of the network. Hence in the research

paper also same branch reduction technique has been applied based

on Song et al. (2013) and this is shown in Figure 3.

It is demonstrated that the proposed method is still effective

at locating the origin of harmonics with respect to a measurement

FIGURE 2

Architecture of server system (Achim and Kuruoglu, 2005).

FIGURE 3

Architecture of KSDMS (Achim and Kuruoglu, 2005).
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FIGURE 4

Block diagram of source separation using non-negative matrices (SSNMF) algorithm.

FIGURE 5

External noise signal.

FIGURE 6

Current signal during short circuit fault after denoising and applied SSNMF.

site even when these conditions apply. Here, a current source

with a third, fifth, 7th and 11th order harmonic component is

used to simulate a nonlinear load. When all the loads are linear,

the approximation power flow and detail power flows up to

fifth level of decomposition are shown in Figure 5 considering

6 kHz sampling frequency. Figure 6 shows the detail power

flow in the lines for level 1, 4 and 5 when the nonlinear

load connected at bus 4 is supplying third harmonic current

and then fifth harmonic current. The corresponding powers

at different buses are shown in Figure 8. From the bus data

of Figure 8 it is observed that bus 4 is delivering harmonic

power and all other buses are absorbing harmonic power. When

Frontiers in SmartGrids 10 frontiersin.org

https://doi.org/10.3389/frsgr.2024.1338774
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Joga et al. 10.3389/frsgr.2024.1338774

FIGURE 7

(A) WES for 2,048 sampling frequency. (B) WES for 1,024 sampling frequency.

TABLE 2 Extracted harmonics by di�erent level in DTCWT.

Harmonic level Extracted power
frequency (Hz)

Sampling frequency
(Hz) is 1,024 Hz

Frequency captured by
specific levels

3rd 300 3rd and 4th level

5th 500 3rd level

7th 700 2nd level

9th 900 1st level

11th 1,100 1st level

13th 1,300 Level 1

TABLE 3 Various frequency bands extracted by DTCWT at various levels of decomposition when sampling frequency is 1,024Hz.

Level of the
harmonic

Fs = 60Hz
4th level

Fs =128Hz
3rd level

Fs = 256Hz
2nd level

Fs = 512 Hz
1st level

Normal sinewave 100 95 90 50

3rd order 80 80 100 75

5th order - 30 90 100

7th order - - 85 85

9th order - - - 70

11th order - - - 60

bus 4 is delivering 3rd harmonic power the detail power at

fifth decomposition level i.e., Pdet5 increases. Similarly, when

nonlinear load connected at bus 4 is delivering fifth harmonic

power then the detail powers at fourth decomposition level

increases and bus 4 is polluting the system by injecting harmonics.
Figures 11–13 shows the voltage, current and harmonic active

power flow respectively. Figure 14 shows the captured harmonics
by using DTCWT.

5 Reduction of noise

Source separation with non-negative matrices (SSNMF) is an

effective technique, as demonstrated in Ulinuha et al. (2011).

Visually, the SSNMF technique is depicted as a sweep sequence

of amplitude spectra. Thanks to the SSNMF decomposition,
the frequency-following response (FFR) is more clearly visible,
and background noise has been reduced or eliminated in all

recordings. A model is developed by analyzing the trends in
FFR improvement and noise reduction with increasing numbers

of sweeps, and fitting this data with an exponential curve. It
has been suggested that the SSNMF algorithm be applied to

the FFR signal in order to assess the ability of neuroplasticity
devices and pitch processing and in the electrical signal in the

face of perturbations (Vatansever, 2010). In this notation, k

represents the kth of n bases, it represents data in the initial

dimension of a matrix (a smooth vector of frequency time),

and j represents elements along the second dimension of a
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matrix (a sequence of amplitude spectrograms) and it is shown

in Figure 4.

Due to the fact that matrices V and H were not negative,

NMF applications demonstrated that they were able to learn

TABLE 4 Choice of mother wavelet and decomposition level.

DTCWT Decomposition level MDL

Db4 3 −32.62

5 −35.6

7 −78.2

Db6 3 −21.34

5 −22.76

7 −35.67

Db8 3 −19.05

5 −45.67

7 −87.8

Db9 3 −18.18

5 −76.54

7 −32.8

Db10 3 −100.19

5 −97.38∗

7 −98.7

Coif 1 3 −12.62

5 −11.56

7 −34.24

Coif 2 3 −18.23

5 −56.87

7 −65.4

Coif 3 3 −23.19

5 −67.8

7 −65.4

the part-based representation required to reconstruct the data.

This constraint, which assumed that the given initial data was

a linear sum of various sources, reflected the additive nature of

electrical signals.

H and W are the matrices which are initialized with random

values before being subjected to the standard NMF multiplicative

updating procedure. The effectiveness of the SSNMF algorithm is

demonstrated by a sweep series of amplitude spectrograms derived

from recordings of adults and newborns (Ulinuha et al., 2011). As

such, this tactic is incorporated into the proposed solution.

An approach for machine learning that takes as input a non-

negative matrix A and utilizes it to learn and factorize two smaller

matrices, S (the spectral basis) and T (the information coding) as

shown in Equation (44).

Aij ≈ (ST)ij =
∑n

k=1
SikTkj (44)

In the given context, the symbols “I” and “j” represent the

elements along the first dimension of a matrix, which corresponds

to a flattened vector of frequency time. Similarly, the symbol “k”

represents the k-th basis out of a total of n bases, while the

symbol “j” represents the elements along the second dimension

of the matrix, which corresponds to a sequence of amplitude

spectrograms. The matrix possessed a total of n dimensions. In

each iteration, the initial basis of the information-coding matrix T,

namely TFFR, was rendered invariant across the amplitude spectra

produced under the 11 n Sweep conditions. This was achieved

by calculating the average of the HFFR vector. This was carried

out so that comparisons could be made between the amplitude

spectra obtained under the 11 n Sweep settings. This limitation

necessitated that the two bases of the spectral-basis matrix S acquire

the knowledge to differentiate between the spectral features of the

FFR and noise. As can be seen in Figure 1, this method was used

to rebuild both the FFR and the noise separately by multiplying

the matrix T of input data by the corresponding S-T ratios and

then dividing the result by T as shown in Equations (45) and (46),

respectively.

FFR = A◦ (SFFRTFFR)/ST (45)

Noise = A◦ (SnoiseTnoise)/ST (46)

TABLE 5 Magnitude of nonactive power quantities for case I.

Bus Qdet1 Qcz N/ DP

Sinusoidal supply and nonlinear load at C 4 13.77 2.013× 103 2.68× 103 0.41

10 22.13 3.25× 103 5.01× 103 0.418

13 85.065 43.4× 103 48.2× 103 0.55

20 3.23 234.2 1.7× 103 0.0201

25 1.63 50.6 865.84 0.0205

Sinusoidal supply and nonlinear load at
D

4 3.21 4.09× 104 4.83× 104 0.4

10 4.33 4.12× 104 4.81× 104 0.4

13 162.07 4.19× 104 4.81× 104 0.54

20 283.56 4.51× 104 4.81× 104 0.82

25 0.98 156.16 1.5× 103 0.018
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FIGURE 8

Data clustering and MDL. (A) Raw Data distribution. (B) Cluster vs. Length. (C) Cluster where K = 2.

FIGURE 9

Bar chart of nonactive powers under sinusoidal supply and nonlinear load at 13.

An Equation (6), which is presented below, is used in order

to outline the improvement of efficiency in FFR signal (i.e.,

performance of the SSNMF method). This Equation (47) is

as follows:

B(n) = BBSe
(− n

τ ) + BDC (47)

In this context, the symbol “B” represents the performance

index known as FFR Enhancement. “BBS” denotes the asymptotic

amplitude of the fitted curve, excluding the direct current

component. The symbol “n” signifies the number of sweeps present

in each signal. “e” represents Euler’s mathematical constant, which

has a value of ∼2.7182 and is used to determine the time constant

of the fitted curve. The time constant refers to the number of

sweeps required to reach 63% of the asymptotic amplitude. Lastly,

“BDC” denotes the direct current component of the fitted curve,

which corresponds to the overall elevation of the fitted curve. In

the context of noise reduction, an alternative model was employed,

resulting in progressively enhanced outcomes as the number of

iterations increased as shown in Equations (48) and (49).

B(n) = BBSe
(− n

τ ) + BDC

FFREnhancement = 0.254 ∗ (e(−
n
555 ))+ 0.005 (48)

Noise Reduction form signal = 20.653 ∗ (1− e(−
n
290 ))− 20.991

(49)

6 Feature extraction by DTCWT

Given that the Dual-Tree Complex Wavelet Transform

(DTCWT) belongs to the Wavelet family, it is possible to

successfully and effectively express its frequency content through
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FIGURE 10

Bar chart of nonactive powers under sinusoidal supply and nonlinear load at D.

the use of the Wavelet Energy Spectrum (WES). The WES

may also be interpreted as an estimation of the suitable

sampling rate (Locci et al., 2007). Considering the aforementioned

limitations, it can be concluded that the Dual-Tree Complex

Wavelet Transform (DTCWT) is a very effective instrument

for the estimation of normalized energy within individual

frequency bands. The wavelet decomposition for the wavelet

energy spectrum (WES) involves determining the scale band

frequency, which is derived from a dyadic scaling of the

sampling rate.

According to reference Locci et al. (2007), the bell-shaped

WES is centered around the same frequency ranges. The data

align well with theoretical predictions, owing to the consistent

stability of the waveform. Figures 7A, B provide a comparative

analysis of the estimated wave energy spectra (WES) for a given

data series at different sampling rates. Specifically, the comparison

focuses on horizontal displacements at a time index close to

1 s. Based on the analysis of two wavelet spectra obtained at an

initial sampling rate of 2,048Hz, it is seen that the predominant

energy of the signal is concentrated in the higher frequency

bands. This observation suggests the presence of withheld data

inside the signal. Given that the original signal is under sampled

and our objective is to see the whole frequency spectrum,

it is possible for both sampling rates to be inaccurate, albeit

the second rate is comparatively less erroneous. However, a

comprehensive understanding of the horizontal deviation may be

obtained by analyzing the data collected at a frequency of 1,024Hz.

Hence, a sample rate of around 1,024Hz is deemed suitable

as an initial value. The decision to refrain from oversampling

is based on the understanding that augmenting the sampling

rate will not provide any further insights into the frequencies

under examination.

Continuing the discussion on the selection of an appropriate

sample frequency for extracting harmonic features from a known

signal using the Dual-Tree ComplexWavelet Transform (DTCWT)

is 2,048Hz. The signal that is now under consideration has been

subjected to a decomposition process, namely up to the fourth level.

The present study demonstrates that the accurate acquisition of

harmonic-related information is not feasible. Based on the WES

principle, it has been shown that a frequency of 2,048Hz is not

the optimal frequency for extracting harmonic-related information

from a distribution system. The accompanying power spectrum

graphic is also provided, although it fails to accurately represent the

harmonic characteristics of the signal when sampled at a frequency

of 2,048 Hz.

The selection of a sample frequency of 1,024Hz has been

made in accordance with the WES idea in order to extract the

characteristics of harmonics. It is demonstrated that the known

signal comprises the fundamental frequency as well as the 3rd,

5th, and 7th harmonics. Therefore, by collecting data with a

sample frequency of 1,024Hz, it is possible to extract accurate

information. The Discrete Dual-Tree Complex Wavelet Transform

(DTCWT) is a member of the wavelet family, known for its ability

to extract frequency bands at various levels. The power spectrum

method enables the precise identification of individual frequency

components. The tables presented, namely Tables 2, 3, illustrate the

diverse ranges of frequencies acquired by the Dual-Tree Complex

Wavelet Transform (DTCWT). The purpose of this explanation is

to elucidate the percentage of frequency bands effectively caught by

the DTCWT.

7 Selection of decomposition level

MDL criteria is a crucial criterion for determining the optimal

wavelet filter and “optimal” number of wavelet coefficients to be

kept for signal reconstruction as in Equations (50) and (51).

L(X) = −
∑

x∈X
log p(x)+

1

2
P log |X| (50)

L(X) = −
∑

x∈X
log p(‖x− cx‖)+

1

2
P log |X| + K log |X| (51)

Various ways exist among the community for detecting

a sufficient number of clusters within a data collection.
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FIGURE 11

Single non-linear load at 7. (A) Signal of non-active power N/. (B) Power spectrum. (C) Signal of non-active power Qcz. (D) Power spectrum. (E)
Signal of non-active power Qdet. (F) Power spectrum at level 3.

This research focused on a strategy on Minimum Length

of Description.

The total length of a model may be determined by adding

the encoding length of specific data, given the model, to the

amount of information required to encode the model itself. A

desirable model under the Minimum Description Length (MDL)

framework is characterized by its ability to effectively encode data

and possess an efficient description. This observation implies a

potential relationship between MDL and the concept of learning as

ameans of data compression. In conclusion, it is essential to adopt a

formal representation of the notion that the augmentation of model

complexity should only be pursued if it leads to a commensurate

enhancement in the descriptive capacity of our data, as per the

Minimum Description Length (MDL) framework. In the above

equation, X represents a vector including a set of data values.

The function p(x) represents the density of the Gaussian mixture
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FIGURE 12

Nonlinear load at bus 7 and considered sample frequency is 1,024Hz. (A) Captured frequency by DTCWT for Qdet. (B) Power spectrum for Qdet. (C)
Signal of non-active power for Qcz. (D) Power spectrum for Qcz. (E) Captured frequency by DTCWT for N/. (F) Power spectrum for N/.

model (GMM) at a given location x. The first term in the equation

corresponds to the negative log-likelihood of the data under this

model, assuming K independent Gaussians. The expense associated

with encoding the data, using Gaussian Mixture Models (GMM).

The encoding cost of the generalized linear model is the second

factor to consider. In the context of Gaussian Mixture Models

(GMMs), the symbol P represents the total count of parameters

that are accessible or assignable inside the model. Given a data

dimension denoted as D, the equation P = K[D + D(D+1)/2]

may be derived. In this equation, P represents the total number

of parameters, K represents a constant, D represents the number

of values for each mean vector, and D(D+1)/2 represents the

number of values for each covariance matrix. Our objective was to

use the identical Minimum Description Length (MDL) approach

in order to get an optimal value for K inside the framework of

a K-Medoids model. The challenge of MDL’s application to K-

Medoids is in determining its optimal form of adaptation. With K-

Medoids, a distancemetric is used to only organize the information.

Unfortunately, the ability to characterize the data as a Gaussian

mixture is not possible because there is no established vector

algebra on data items.

However, depending on how the data is clustered, the distances

between each data point and the nearest medoid are distributed

differently. In this investigation, an MDL was determined

using these distance data. If increasing the number of clusters

(represented by K) has no effect on tightening this distribution,
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TABLE 6 Magnitude of non-active power quantities for case III.

Bus Qdet1 Qcz N/ DP

Nonlinear load at 7 and 9 with node 9
as the dominant source of harmonic

4 156.1 3.21× 104 4.21× 104 0.53

10 211.98 4.45× 104 5.7× 104 0.61

13 150.6 3.22× 104 4.44× 104 0.58

20 279.39 4.2× 104 4.23× 104 0.81

25 98.5 660.5 3.21× 104 0.44

Nonlinear load at 7 and 9 with node 7
as the dominant source of harmonic

4 187.5 4.66× 104 4.8× 104 0.55

10 256.1 4.78× 104 4.9× 104 0.64

13 165.2 888.9 3.1× 104 0.12

20 171.5 765.5 2.23× 104 0.05

25 68.4 579.7 1.21× 104 0.041

FIGURE 13

Bar chart of nonactive powers when nonlinear load is connected at 7 and 9 with node 9 as the dominant source of harmonic.

FIGURE 14

Bar chart of nonactive powers when nonlinear load is connected at 7 and 9 with node 7 as the dominant source of harmonic.
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TABLE 7 Magnitude of nonactive power quantities for case IV.

Bus Qdet1 Qcz N/ DP

Nonsinusoidal supply and linear loads 4 28.96 205.94 753.76 0.2

10 29.2 205.65 754.2 0.2

13 21.81 153.93 565.5 0.2

20 14.57 102.5 376.92 0.2

25 7.29 51.29 188.43 0.2

FIGURE 15

Bar chart of nonactive powers under non-sinusoidal supply and linear loads.

TABLE 8 Magnitude of nonactive power quantities for case V.

Bus Qdet1 Qcz N/ DP

Nonsinusoidal supply and nonlinear
load at 7 (7 dominating)

4 0.11× 104 2.1× 104 2.17× 104 0.39

10 0.18× 104 3.13× 104 3.59× 104 0.42

13 123.4 316.9 0.67× 104 0.12

20 67.1 245.5 0.42× 104 0.091

25 35.7 134.6 0.31× 104 0.091

Nonsinuoidal supply and nonlinear
load (supply dominating)

4 0.149× 104 0.251× 104 8.71× 104 0.41

10 0.137× 104 0.147× 104 8.7× 104 0.39

13 363.01 458.9 6.49× 104 0.38

20 230.38 367.1 0.432× 104 0.38

25 109.98 283.4 0.216× 104 0.38

then doing so will result in an ever-rising description length for

the distribution, suggesting that increasing the number of clusters

does not lead to a better data model. The following formula for the

length of a description is obtained using the MDL formulation for

this concept: it is important to note that the first two terms are the

same as in the previous equation, but the third term, The variable

P represents the count of independent parameters associated

with the distribution p(||x-cx||). This distribution characterizes

the distances between each data element (x) and its closest

medoid cx. Further details will be provided in the subsequent

explanation. An additional term has been included to incorporate

the computational complexity associated with the encoding of

the K medoids.

Therefore, the data may be subjected to K-Medoids

clustering using various K values. The MDL measure

mentioned earlier can be applied to each model, and the
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FIGURE 16

Bar chart of nonactive powers under nonsinusoidal supply and nonlinear load at 7 (nonlinear load dominating).

model with the lowest description length L can be selected

automatically (X).

As mentioned earlier, it is necessary to choose a form (or a

collection of forms) for the distance distribution p(||x-cx||). The

distance data has beenmodeled using a gamma distribution, and we

are now using this distribution to calculate log-likelihood values. In

my current implementations, I have set the value of P to 2, since the

gamma distribution is characterized by two independent variables:

the shape parameter and the location parameter. Further details on

the rationale for selecting a gamma distribution as the preferred

statistical model can be accessed in the following sources: reference

1 and reference 2. One further justification for my inclination

is in the gamma distribution’s adaptability, since it may be used

to represent datasets exhibiting two-tailed, single-tailed, and/or

exponential-like distributions. As previously stated, the selection

of a form (or forms) is necessary for the distance distribution

p(||x-cx||). Currently, log-likelihood values are being computed

via the process of fitting a gamma distribution to the distance

data. The gamma distribution is characterized by two independent

parameters: a shape parameter and a location parameter. In current

implementations, the value of P is set to 2.

It is important to consider that the gamma distribution utilized

in this context exhibits a tendency toward cluster distributions

that resemble Gaussian clusters. Consequently, its current behavior

bears resemblance to that of the G-Means algorithm, which aims

to identify clustering’s that result in Gaussian distributions within

each cluster. Given the absence of any persuasive rationale to

priorities or presume Gaussian-like cluster distributions over all

metric spaces, it is crucial for future research to explore the broader

spectrum of potential distance distributions. However, despite the

limitations of Gaussian distributions in accurately describing our

data clusters, we are still able to get meaningful results using them.

The gamma distribution’s durability might perhaps be linked to its

ability to include a diverse range of geometries.

I will use examples from data sets well-suited to visual

representation to show how the MDL-enhanced K-Medoids work.

All the code I used to get these results is included here. Here’s a

dataset comprised of made-up 2D points to consider. Algorithms

based on MDL are displayed in Table 4 and were used to identify

the appropriate decomposition level and mother wavelet. There is a

minimum detectable level (MDL) of−100.19 dB at level 3 with dB

10 in Table 4.

7.1 Case I: sinusoidal supply and single
nonlinear load

Here the supply is assumed to be pure sinusoidal. At first

the nonlinear load at 13 is assumed to generate harmonics as

nonlinear load is connected with this bus. Nonactive powers and

detail pollution obtained from DTCWT analysis are shown in

Table 5. It may be observed that Qcz is closer to N/than Qdet , up

to node 13, which indicates that harmonic generating source is

located at downstream side of the nodes 4, 10, and 13 and beyond

node 13, Qcz is closer to Qdet i.e. harmonic generating source is

located at the upstream side of the point of measurement. The

grid is synchronized through adaptive grid forming control for

voltage source converter and it is more discussed in Al-Shetwi

et al. (2022). Control in convertors is achieved through staircase

modulation, which ensure un interrupted power supply in the grid

(Chappa et al., 2022). At node 13, themagnitude of DP is maximum

indicating that the location of the harmonic source is at 13.

A bar chart of magnitude of nonactive powers at different buses

is shown in Figure 9. It is observed that up to bus 13 difference

between theQcz andN/is lower than the difference betweenQcz and

Qdet1, i.e. up to bus 13, Qcz is closer to N/which means harmonic

generating source is located at the downstream side of the bus 13.

On the other hand, at bus 20 and 25, difference between theQcz and

Qdet1 is lower than the difference between the Qcz and N/i.e. Qcz is

closer to Qdet1 than N/, which means harmonic generating source

is located upstream side of node 20.

Now the nonlinear load is connected with node 20 which is

indicated by the highest value of DP at node 20. From Table 5
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FIGURE 17

Captured harmonics for case V. (A) Captured frequency by DTCWT for Qdet. (B) Power spectrum for Qdet. (C) Captured frequency by DTCWT for Qcz.
(D) Power spectrum for Qcz. (E) Captured frequency by DTCWT for N/. (F) Power spectrum for N/.

TABLE 9 Magnitude of nonactive power quantities for case IX.

Bus Qdet1 Qcz N/ DP

Sinusoidal supply and nonlinear load at
13 and 20 with resonance

4 371.2 0.921× 104 0.936× 104 0.42

10 398.2 8.71× 104 8.81× 104 0.55

13 456.2 9.01× 104 9.21× 104 0.64

20 501.5 3.16× 104 9.56× 104 0.68

25 36.5 650.3 0.28× 104 0.04

it is observed that 20 is the dominant harmonic generating

source, as up to 20, Qcz is closer to N/ and at node Y,

Qcz is closer to Qdet1. Figure 9 shows that up to bus 20 the

difference between the Qcz and N/is lower than the difference

between Qcz and Qdet1. But at bus 25 difference between the

Qcz and Qdet1is lower than the difference between Qcz and N/.
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FIGURE 18

Bar chart of nonactive powers under sinusoidal supply and nonlinear load at 13 with resonance.

TABLE 10 Performance analysis of proposed method with methods existed in literature.

Method Advantage Accuracy (%) Complexity (ms)

Proposed method [DTCWT based systematic
feature extraction]

Considers non-active powers
Consider noise signals
Optimal placement of smart measuring sensors
using slime mold algorithm

100% 0.00021 ms

DWT Considered only radial distribution system
No noise signal is considered

96% 0.034 ms

Empirical Fourier decomposition Considered only radial distribution system
No noise signal is considered

95.89% 0.0056 ms

Cloud-edge-end collaboration IEEE 37-bus distribution network
No noise signal is considered

99.5 % 0.00002 ms

Fuzzy logic and adjusted probabilistic neural
network

IEEE 18-bus test system
No noise signal is considered

99.2 % 0.0034 ms

Therefore, it is clear that bus 20 is the dominant source of

harmonic generation.

The Time Frequency Response is plotted for the both signals of

active power and non- active power. Time-frequency response plots

are graphical representations that provide valuable insights into the

behavior of a system in both the time and frequency domains. It

is also important to plot signal power distribution through power

spectrum curves; it gives the information of irregularity in the

signal. In this case first data has been collected at 2048Hz sampling

frequency which is shown in Figure 10. But as per the Figure 11

proper characteristics frequencies cannot be collected.When we set

sampling frequency is 1,024Hz then distinguishable characteristics

frequencies are extracted at different level of decomposition which

is shown in Figure 12.

7.2 Case III: sinusoidal supply and nonlinear
loads at node 7 and 9

In this case the supply is kept sinusoidal, but the loads at node 7

and node 9 are made nonlinear by connecting nonlinear load. The

nonlinear load connected at node 7 is made the dominant source of

harmonic pollution, as a result DP at node 7 is higher than DP at

node 9.

From Table 6 it is observed that when 7 is the dominant

harmonic generating source Qcz is closer to N/upto node 7 and

at node 9, Qcz is closer to Qdet1. A bar chart of magnitude of

nonactive powers at different buses is shown in Figure 13. It is

observed that up to bus 7 difference between Qcz and N/is lower

than the difference between Qcz and Qdet1, i.e. up to bus 7, Qcz is

closer to N/which means harmonic generating source is located

at the downstream side of the bus 7. On the other hand at bus

9 difference between Qcz and Qdet1 is lower than the difference

between Qcz and N/i.e. Qcz is closer to Qdet1 than N/, which

means harmonic generating source is located at the upstream side

of node 9.

Now the nonlinear node at 7 is made the dominating harmonic

generating source as indicated by the highest value of DP at node

7. From Table 6 it is observed that as 7 is the dominant harmonic

generating source, so up to 7,Qcz is closer toN/ and at other nodes,

Qcz is closer toQdet1. Figure 14 shows that up to bus 7 the difference

between Qcz and N/is lower than the difference between Qcz and

Qdet1. But from bus 8, difference betweenQcz andQdet1is lower than
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FIGURE 19

Feature extraction of PHEV Truck. (A) Captured frequency by DTCWT for Qdet. (B) Power spectrum for Qdet. (C) Signal of non-active power QCZ . (D)
Power spectrum for QCZ . (E) Captured frequency by DTCWT for N/. (F) Power spectrum for N/.

the difference between theQcz and N/. Therefore, it is clear that bus

7 is the dominant source of harmonic generation.

Table 6 provides the information regarding the magnitudes of

non-active power quantities for the case III.

7.3 Case IV: nonsinusoidal supply and linear
loads

This case deals with a nonsinusoidal supply containing higher

order harmonic component of 15% of the fundamental voltage

and linear loads. From Table 7 it can be seen that Qcz is

always closer to the value of Qdet1 indicating that the source

of harmonic is in the upstream side with respect to all the

nodes of measurement. Figure 15 shows that up to bus 25 the

difference between Qcz and Qdet1 is lower than the difference

between the Qcz and N/. Therefore, it is also clear that supply

is nonsinusoidal.

7.4 Case V: nonsinusoidal supply and
nonlinear load

Next we consider nonsinusoidal supply which contains higher

order harmonics component of 5% of fundamental voltage

and a Nonlinear load at bus 7. The magnitude of harmonic
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FIGURE 20

Comparison of nonactive power quantities for varying the magnitudes of harmonic source.

current is 20% of fundamental current. The DP values at

different nodes shown in Table 8 indicate that the nonlinear

load at bus 7 is the dominant harmonic source. Hence Qcz

is closer to N/at node 4 and node 7 which indicates that

the source of harmonics is in the downstream side of node

4 and node 7. The corresponding bar chart is shown in

Figure 17.

Now the supply contains harmonics and it is assumed to

have 7th harmonic component which is 20% of the fundamental

voltage along with nonlinear load at 7 which generates 5th

harmonic current. The magnitude of 5th harmonic current

is 5% of the fundamental current. From Table 8 it is seen

that when DP value at node 4 is maximum i.e., supply is the

dominant harmonic generating source, Qcz is closer to Qdet1

at each node which indicates the presence of dominating

harmonic source at the upstream side of all the measuring

points. Corresponding bar chart is shown in Figure 16.

Captured harmonics for nonsinusoidal supply is showing in

Figure 17.

7.5 Case VI: resonance condition at the
customer location

In this case study a resonance condition is created at node 13.

To create resonance a capacitor with a capacitance of 1.32×10−4 F

corresponding to 7th harmonic frequency has been connected with

node 13 and a nonlinear load which generates 7th harmonic current

is connected at node 20. From Table 9 it is seen that Qcz is closer to

N/up to node D indicating that the source of harmonics is in the

downstream with respect nodes 7, 10, 13 and 20. This shows that

the proposed method is also valid for resonance condition. Hence

if a customer creates resonance within his/her facility, this method

will successfully identify the location of dominant harmonic source.

Bar chart of this case study is shown in Figure 18.

7.6 Case VIII: nonlinear loads generating
equal amount of harmonics

If the nonlinear loads connected at two different nodes generate

same number of harmonics, then |Qcz − Qdet 1|=
∣

∣N/ − Qcz

∣

∣ as

discussed in article 2. Here nonlinear loads are connected at nodes

4 and 7. Both are generating 5th and 7th harmonic current in

the system. The harmonic current contributed by each source is

varied. The values of Qdet, Qcz and N/ at the measuring point C

are shown in Table 10. When 4 is acting as the dominant source

of harmonic i.e., DP at node 4 is higher than DP at node D, then

it is observed that |Qcz − Qdet 1|<
∣

∣N/ − Qcz

∣

∣ at node C. When 13

is acting as the dominant source of harmonic then it is observed

that |Qcz − Qdet 1|>
∣

∣N/ − Qcz

∣

∣ at node 13. When both node 7 and

node 13 generate equal amount of harmonics, DP at 7 and 13 are

equal and |Qcz − Qdet 1|=
∣

∣N/ − Qcz

∣

∣ at node 13. Figure 19 shows

the pattern of captured harmonics.

Figure 20 shows the graphical representation of
∣

∣N/ − Qcz

∣

∣

vs. |Qcz − Qdet 1| at the measuring point 13. When nonlinear

loads present on both the upstream and downstream sides of the

measuring point 13 generate equal amount of harmonics, then the

points are on the same straight line. When node 7 acts as dominant

harmonic source then the points lie on the upper side of the straight

line as the dominant harmonic source is in the upstream side with

respect to node 13. On the other hand when dominant source is

Frontiers in SmartGrids 23 frontiersin.org

https://doi.org/10.3389/frsgr.2024.1338774
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Joga et al. 10.3389/frsgr.2024.1338774

connected with the downstream side i.e., at node D then the points

lie on the lower part of the straight line.

The Proposed method is compared with methods that are

existed in literature is given in Table 10.

8 Conclusions

The proposed single point strategy for harmonic

source identification is designed to identify the dominant

harmonic generating source in a network. It operates on

both sides of the metering point, allowing for detection

of the source’s location. The method relies on comparing

various non active power quantities that specifically

represent the harmonic components present in the system

during disturbances.

1. To validate the effectiveness of the proposed method, several

case studies were conducted in a radial distribution network.

The results of these studies demonstrated that the proposed

method successfully detects the location of a harmonic source

with 100% accuracy and 0.0002ms fast in scenarios involving a

single harmonic source. Additionally, it can identify the location

of the dominant harmonic source when multiple sources

are present.

2. Furthermore, the single point strategy remains valid

even in situations involving resonance conditions

and composite harmonic generating sources. This

means that the method is robust and can accurately

identify the primary source of harmonics, even in

complex scenarios.

3. Proposed method also identifies harmonic sources location in

noise condition and makes proposed method more reliable

4. Proposedmethod is comparedwith existedmethods in literature

and it outperformed other methods in both classification

accuracy and detection speed. Therefore, proposed method is

both accurate and fast to detect and locate harmonic sources.

By employing this single point strategy for harmonic

source identification, system operators and engineers can

better understand and mitigate harmonic issues in power

distribution networks, leading to improved power quality and

more efficient operation. While the identification of harmonic

sources in smart grids using systematic feature extraction

from non-active powers offers significant advantages, there are

also potential drawbacks and challenges associated with this

approach. It’s essential to consider these limitations to develop

a comprehensive understanding of the methodology. Some

drawbacks include

1. Systematic feature extraction from non-active powers involves

dealing with complex datasets and extracting relevant features.

The process can be computationally intensive and may require

sophisticated algorithms, which can pose challenges in terms

of implementation and computational resources. But this

drawback is reduced by selecting accurate level of signal

decomposition through DTCWT.

2. The performance of the harmonic source identification system

may be sensitive to changes in the smart grid environment.

Factors such as the addition of new equipment, changes in load

profiles, or alterations to the power distribution network may

require frequent model updates and recalibration.

3. Implementing a robust harmonic source identification system

requires investment in advanced sensors, communication

infrastructure, and computational resources. Small-scale utilities

or those with limited budgets may find it challenging to

allocate resources for the deployment and maintenance of

such systems.
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