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Due to aging and deformation of the through-flow path and systemmodifications,

the flow characteristics of the turbine inlet valve often deviate from the design

value, which a�ects the unit load control accuracy and operational stability. In

order to obtain the actual valve flow characteristics of the turbine and thus

improve the FM performance, an FCMLSSVM model is proposed in this paper to

identify the valve flow characteristics. First, FCM clustering is proposed to classify

the historical operating data of the plant and obtain a wide range of variable

operating conditions. Then, using least squares support vector machine (LSSVM),

the relationship between turbine input and output variables was modeled in each

condition cluster, with integrated valve position command, speed, and real power

generated as input variables and actual steam inlet flow as output variables. Using a

330MW turbine unit as an application example, the established FCM-LSSVMmodel

was validated for the valve flow characteristics of the turbine. The results show

that the model can obtain accurate valve flow characteristics without conducting

tests on the turbine. The method can save a lot of labor and material resources

in doing the characteristic test, and after comparison, the proposed method

can identify the flow characteristics more accurately among the existing neural

network identification methods, which can provide technical support to improve

the unit frequency regulation characteristics and improve the accuracy of valve

operation.

KEYWORDS

steam turbine, valve flow characteristics, fuzzy c-means, least-squares support vector

machines, model identification

1. Introduction

As China government puts forward the strategy of carbon peaking and carbon neutrality,

an increasing number of new energy units join the power grid, thereby bringing the huge

pressure of frequency modulation to the power grid. At present, conventional thermal

power units are still the main frequency modulation resources, and improving the frequency

modulation performance of thermal power units is vital for the safe and stable operation of

the power system (Kotowicz et al., 2019; Jinshan et al., 2021; Chen and Cheng, 2023). The

frequency modulation performance of the steam turbine unit is closely related to the flow

characteristics of the steam turbine valve. During the long-term use of the steam turbine, the

switching of the regulating valve group shows violent jitter because of equipment installation

deviation, steam impact, equipment aging, and other reasons. This phenomenon leads to

dramatic fluctuation in the main steam flow and real power before and after switching under

the same load command. The overlap degree between the actual flow characteristics and

the preset values deviates, thereby affecting the frequency modulation capability of the unit

(Wang et al., 2018; Tan et al., 2022). Therefore, valve function correction is conducive to
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improving the frequency modulation capability of thermal power

units after the unit has been modified and installed or operated for

a long time (Zhu et al., 2019; Xu et al., 2020).

At present, the research on improving the flow characteristic

of steam turbine valves mainly focuses on the method of flow

characteristic test. Wallat et al. (2018) study the lateral and axial

movement of the valve plug to design a flow characteristic test

model. Xiao et al. (2016) used CFD numerical simulation to find

the flow coefficient of the buffer structure for the valve flow

test. Zanazzi et al. (2012) test the operation of turbine valves

based on aerodynamic principles to improve valve regulation.

Wang and Hai (2010) regulate the load by studying the stress

characteristics of the blades under different control methods to

ensure stable valve operation. Characteristic tests can improve

control stability. However, they require considerable manpower

and material resources to obtain the test data, and the process may

affect the normal operation of a unit.

Some studies use operating data to identify the valve

flow characteristics and overcome the limitation of the valve

characteristic test. Salahshoor et al. (2010) obtained the valve flow

characteristic curve by using the SVM data mining algorithm

and comprehensively considering the characteristics of the

characteristic flow area. In reference Li et al. (2019), based on

DEH historical data, corrected the valve flow characteristic curve

by calculating the actual equivalent flow calculation in single valve

mode. However, the solution process of the above algorithms is

cumbersome, and the objective data relationship is easily ignored.

Least-squares support vector machine (LSSVM) is one of the

commonly used methods for modeling power station operation

data. The LSSVM method transforms the traditional quadratic

programming problem into the solution of linear equations,

thereby reducing the difficulty of the solution process and making

the modeling process convenient (Lv et al., 2013, 2020; Zhao

and Zhang, 2022). In reference Chen (2022), the actual running

data of steam turbines were collected. Moreover, LSSVM theory

was used to establish models for steam turbine valve position

instruction, main steam pressure, and actual inlet steam flow and

simulate characteristic tests. Compared with working condition

tests, the workload was greatly reduced, and themodeling efficiency

improved considerably.

Although the LSSVMmodel can accurately describe the turbine

system, a single model can adapt only to a certain local working

condition, and the fitting effect of the valve flow characteristics of

the turbine unit with a wide range of variable working conditions

is not ideal (Liao et al., 2018). Thus, the identification accuracy

of valve flow characteristics is affected. In reference Han et al.

(2020), the clustering algorithm was used in the operation process

of a steam turbine under multiple working conditions to establish

models for the valve flow characteristics under different working

conditions for analysis. Compared with a single model, the models

established exhibited considerably improved fitting effects. The

clustering algorithm can effectively improve the fitting accuracy by

dividing the working conditions (Zhang et al., 2021).

The main contribution of this paper is to establish an FCM-

LSSVM model to identify the flow characteristics of turbine

valves, which can effectively solve the time-consuming and tedious

problem of valve flow characteristics testing. Nowadays, turbines

often operate under a wide range of variable conditions, and it is

TABLE 1 Flow characteristics of control valves.

Serial number Parameter name Unit

1 Main steam pressure P MPa

2 Main steam temperature T ◦C

3 Main steam flow G0 t/h

4 High-pressure cylinder exhaust pressure Pg MPa

5 Regulated temperature of the stage T0
◦C

6 Adjusted stage pressure Pa MPa

7 Integrated valve position command Rf %

8 Generator output power N0 kW

9 Correction factor C /

10 Rotation speed n r/min

11 Actual powerW MW

FIGURE 1

FCM clustering flowchart.

difficult to fit all the conditions using one mathematical model.

To address the problem of insufficient accuracy of valve flow

characteristics identification by the currently usedmodel, this paper

proposes a clustering plus modeling method to identify the valve

flow characteristics of turbines, which first clusters the operating

conditions of different units and then models them separately

to identify them, and can fit all turbine operating conditions to

the maximum extent. The unit data were first screened, and the

FCM algorithm was used to classify the working conditions. Then,

the LSSVM sub model was trained to obtain the mathematical

relationship between the comprehensive valve position command,

real power, speed, and the actual inlet steam flow under different
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FIGURE 2

FCM-LSSVM model structure.

working conditions. The main parameter variables were changed

to simulate the test condition. Moreover, the trained model was

used to predict the actual inlet steam flow, obtain the relationship

between the integrated valve position command and the actual

inlet steam flow, identify the valve flow characteristics, and

provide support for improving the frequency modulation ability of

the turbine.

The rest of this work is structured as follows: Section 2

describes the theoretical basis of the FCM-LSSVM model. The

system modeling process is explained in Section 3, the application

instance and results are presented and discussed in Section 4, while

Section 5 summarizes the main conclusions of the present work.

2. Turbine valve flow characteristics
identification process

2.1. Selection of input variables

The selection of input variables considerably impacts the

prediction results. Thus, reasonable input parameters must be

determined to ensure the prediction accuracy of valve flow

characteristics. The parameters with high influence on valve flow

characteristics are selected, as shown in Table 1. A high correlation

coefficient between variables indicates a strong correlation between

variables, and the Pearson correlation coefficient method was used

to analyze the data in the table. Pearson’s correlation coefficient is

defined as:

K =

∑m
i=1 (Xi − X)(Yi − Y)

√

∑m
i=1 (Xi − X)

2
√

(Yi − Y)
2

(1)

Where, X and Y are the two groups of data whose correlation

degree is to be determined, respectively having m elements;

And X are Y the average values of the two groups of data

respectively; Kis Pearson correlation coefficient, whose value is

[−1, 1]. The correlation degree between data is reflected by the

K absolute value, the larger the absolute value is, the higher

the correlation degree between data. Generally, the condition for

determining a strong correlation is that the correlation coefficient

is >0.65.

FIGURE 3

Data distribution of training set and test set.

After calculation, the actual power, comprehensive valve

position instruction and speed were finally selected as the set of

input variables. The correlation coefficients between them and the

actual main steam flow were 0.96, 0.91, and 0.84, respectively,

and the actual main steam flow was set as the output variable of

the model.

The actual main steam flow of the steam turbine cannot be

directly measured; thus, based on the historical data of the unit,

the improved Furuger formula is adopted for calculation (Li et al.,

2022), as follows:

G1 =
Pa

P
·
Pe

Pa,e
× 100% (2)

Where G1 is the equivalent value of the actual main steam flow.

Here, the pressure ratio is used to represent the equivalent steam

flow, that is, the ratio of the equivalent value to the actual value.

Pa is the regulating stage pressure, P is the main steam pressure,

Pe is the rated main steam pressure, and Pa,e is the rated regulating

stage pressure.
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FIGURE 4

Distribution of data after FCM clustering.

FIGURE 5

FCM-LSSVM model identification results.

FIGURE 6

FCM-LSSVM model identification error.

2.2. Theoretical basis of model

The main distribution range of the power generation load is

150–300 MW. A single model cannot accurately express the valve

flow characteristics under different working conditions. Thus, sub

models under different working conditions are established.

FIGURE 7

BP model identification results.

FIGURE 8

BP model identification error.

2.2.1. FCM clustering algorithm
Given the complexity of variable power in turbine working

conditions, the comprehensive valve position command, speed, and

power were considered characteristic variables. The FCM clustering

algorithm was used to partition the unit’s historical operating data
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by introducing membership degrees. FCM clustering combines

with fuzzy theory and determines the similarity relationship

according to the distance between the sample and the clustering

center; it can also provide flexible clustering results according to

the degree of membership in a certain category (Chang-Chien

et al., 2020). Let the sample data set use X = {x1, x2, . . . , xn}.

The membership matrix is represented by U = [uij]c×n
. The

fuzzy clustering center is represented by V = [v1, v2, . . . , vc]
T . The

objective function of the FCM algorithm can be written as

f =

c
∑

i=1

n
∑

j=1

umij
∥

∥xj − vi
∥

∥

2
(3)

where c is the number of cluster categories, m (m > 1) is fuzzy

index, uij represents the membership degree of sample j belonging

to class i, vi is the clustering center of class i, and
∥

∥xj − vi
∥

∥ is the

Euclidean distance from sample xj to sample vi. Equation (1) can

be solved through the following iterative process:

vi =

∑n
j=1 u

m
ij xj

∑n
j=1 u

m
ij

(4)

uij =
1

∑c
k=1

(

‖xj−vi‖
‖xj−vk‖

)
2

m−1

(5)

Among them, i = 1, 2, · · · , c, and j = 1, 2, · · · , n.

Figure 1 shows the steps of the FCM algorithm to determine

the clustering center and membership matrix. The stop iteration

threshold and the maximum number of iterations are set, and

the minimization of objective function (1) is achieved through

continuous iteration of the membership matrix.

2.2.2. LSSVM identification principle
LSSVM solves linear equations to improve the computational

complexity of traditional support vector machines. Given a set of

training samples D,

D =
{(

xj, yj
)

, xj ∈ Rp, yj ∈ R
}

,

j = 1, 2, . . . , n (6)

Where xj is the input for sample j, yj is the output of sample j, p

is the dimension of the input vector, and n is the number of training

samples. The optimization problem of LSSVM can be transformed

into the following by mapping the non-linear estimation function:

min J (w, ξ) =
1

2
‖w‖2 +

1

2
γ

n
∑

j=1

ξ 2j (7)

Where w is the weight vector, γ is the penalty factor, and ξj is

the relaxation variable.

The above formula and its Lagrange function can be

expressed as

FIGURE 9

Fitting curves for valve flow characteristics.

L
(

w, b,α, ξ
)

= J (w, ξ) −

n
∑

j=1

αj[w
Tϕ

(

xj
)

+ b+ ξj − yj] (8)

Where ϕ represents the nonlinear mapping function, b is the

bias quantity, αj is the introduced Lagrangian multiplier, and

j = 1, 2, . . . , n.

The final model output function can be obtained from the

Karush–Kuhn–Tucker condition:

f (x) =

n
∑

j=1

αj K
(

x, xj
)

+ b (9)

K
(

x, xj
)

is a commonly used radial basis function, which can

obtain smooth model estimation (Hong and Wen, 2021).

The membership degree aggregation strategy is introduced

to integrate the sub models. The final FCM-LSSVM model is

established, as follows:

h(x) =

c
∑

i=1

fi(x)uij (10)

Where h(x) is the output value of all model predicted values,

fi(x) is the output obtained by Formula (7), and uij is the

membership value.

2.3. Establishment of the valve flow
characteristic model

After the unit’s historical operating data are prepossessed within

the load distribution range, the FCM algorithm is adopted, and

the membership principle is introduced. The three parameters of

integrated valve position instruction Rf , speed n, and real powerW

are selected as the characteristic variables. According to Equations

(1–3), c cluster data are obtained, and the output is set as the actual

inlet steam flow of the turbine. According to Formulas (5–7), the
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FIGURE 10

Curves for valve flow characteristic test.

sub model of turbine valve flow characteristic identification based

on LSSVM can be obtained. Finally, all the models are integrated

into one FCM-LSSVM model according to Formula (8), which is

used to predict the actual inlet steam flow. The final model structure

is shown in Figure 2.

3. Application instance

A typical 330 MW domestic subcritical unit is taken as an

application case. The steam turbine has two high-pressure main

valves and six high-pressure regulating valves, which are controlled

by the CIS valve. The operating conditions are distributed between

150 and 300 MW.

The distributed control system collects the historical operation

data of the unit, including the parameters shown in Table 1. The

sampling interval is 10 s, and a total of 17,567 groups of operation

data are collected. After eliminating the operation fault data and

downtime data, 16,343 pieces of historical operation data of the unit

are obtained. It includes the data of the stable operation period of

the unit and the operation data of the lifting load period, and then

calculates the actual intake flow according to Equation (9). The first

11,284 pieces of historical unit operation data were taken as training

set data, and the last 5,059 pieces of unit operation data were taken

as test set data. The data distribution is shown in Figure 3.

• score standardization was used for processing the unit

operation data, making these data conform to the standard

normal distribution; that is, the mean value is 0, the standard

deviation is 1, and the data processing function is

x′ =
(x− µ)

σ
(11)

Where x′ is the normalized data, µ is the sample mean, and σ

is the sample standard deviation.

FCM clustering was performed on the normalized historical

operation data of the unit. The data of the final cluster classification

is shown in Figure 4. The results show that all the data samples were

divided into five subsets after clustering. Moreover, the working

conditions in each subset were similar and concentrated in the

power of 165, 209, 240, 275, and 300 MW. The data similarity

reached the maximum, ensuring the accuracy of the subsequent

training LSSVMmodel.

The input vector X = [Rf , n,W] and the output variable

Y = [G1] were used to train the LSSVM model for each data

subset. Finally, the five models were integrated into one LSSVM

model, which could simulate the test conditions of the turbine valve

flow characteristics.

This FCM-LSSVM model was used to predict the actual

inlet steam flow of the test set data. The results are shown in

Figure 5. The data curves of the actual calculated value and the

model identification value were nearly identical, indicating a high

prediction accuracy. Figure 6 shows the model identification error.

The difference between the actual and predicted inlet flow of

the turbine was <0.08%. This finding proves that the model can

accurately predict the actual inlet flow.

The BP neural network model is trained to predict the actual

intake flow of the turbine, and the results are shown in Figure 7.

The identification error of the BP model is shown in Figure 8.

The discrimination error of BP neural network is around 20%.

By comparison, the prediction accuracy of the FCM-LSSVM

model is significantly higher than that of the BP neural network,

which is more suitable for the identification of turbine valve

flow characteristics.

Average relative error (ARE), root mean square error (RMSE),

and normalized RMSE (NRMSE) were considered. NRMSE is an

indicator for measuring the identification effect of the model. Each

indicator is defined as follows:

ARE =
1

n

n
∑

i=1

∣

∣

∣
Ĝi − Gi

∣

∣

∣

Gmax − Gmin
× 100% (12)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

Ĝi − Gi

)2
(13)

NRMSE =
1

G

√

√

√

√

1

n

n
∑

i=1

(

Ĝi − Gi

)2
× 100% (14)

In the formula, the actual inlet steam flow is represented by

Gi. Ĝi is the predicted value, G is the average value of the actual

flow, Gmax and Gmin represent Gi the maximum and minimum

values of the actual inlet steam flow, and n is the number of samples

in the test set.

Table 2 shows that the prediction error of the actual inlet steam

flow using the model is large. Each sub model has a good fitting

effect on the data in only one working condition. However, it

cannot accurately fit the data in the overall operating condition.

The ARE, RMSE, and NRMSE of the FCM-LSSVM model in the

training set are 0.51, 0.56, and 0.87%, respectively, whereas those in

the test set are 0.66, 0.63, and 0.93%. The LSSVM model and the

BP network model are established in the whole working condition

range for comparison, The results show that the error of the
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TABLE 2 Prediction error of the model.

Model Training set Test set

ARE (%) RMSE (%) NRMSE (%) ARE (%) RMSE (%) NRMSE (%)

Sub model 1 1.22 1.30 1.45 1.32 1.39 1.51

Sub model 2 1.19 1.32 1.46 1.34 1.38 1.52

Sub model 3 1.20 1.33 1.43 1.33 1.36 1.55

Sub model 4 1.21 1.31 1.44 1.32 1.35 1.60

Sub model 5 1.23 1.33 1.44 1.30 1.37 1.59

LSSVM 0.86 0.91 1.02 0.94 1.05 1.21

BP 2.4 2.5 2.6 3.3 3.2 3.7

FCM-LSSVM 0.51 0.56 0.87 0.66 0.63 0.93

FCM-LSSVM model is fairly lower than that of the single LSSVM

model. This finding indicates that the FCM-LSSVMmodel has high

prediction accuracy and a good prediction effect.

With the integrated valve position instruction as the horizontal

coordinate and the actual inlet steam flow percentage predicted

by the model as the vertical coordinate, the relationship diagram

between the two variables was constructed, and the curve was fitted,

as shown in Figure 9. The simulator was used to test the valve flow

characteristics of the sub critical turbine unit. The AGC of the unit

was removed, the primary frequency modulation was withdrawn,

and the CIS valve control method was adopted for the test. The

test curve of the valve flow characteristics of the turbine was finally

obtained, as shown in Figure 10. The comparison of Figures 9, 10

show that the curve of the valve flow characteristic predicted by the

FCM-LSSVMmodel is similar to the curve of the flow characteristic

test. This finding proves that the method proposed in this study can

replace the flow characteristic test and realize the identification of

valve flow characteristics accurately.

The simulation results are the real valve flow characteristics of

the turbine identified by the model, reflecting the current actual

control condition of the unit. With the use of the turbine and

the aging of the equipment, the actual valve flow characteristics

will change, and this change will also lead to inaccurate valve

operation during the primary and secondary regulation of the

unit, which will affect the frequency regulation capability. By

using the model to identify the valve flow characteristics and

replacing the valve flow characteristics curve with a model, the

valve operation can be made more accurate, thus improving the

frequency regulation performance.

4. Conclusions

In this paper, FCM-LSSVM theory was put forward to achieve

the identification model of steam turbine valve flow characteristics.

Given the characteristics of the unit operating in a wide range

of variable operating conditions, the samples were grouped into

multiple classes based on parameters such as comprehensive valve

position command, real power, and speed. Moreover, the LSSVM

model was established under different load conditions. Then,

it was integrated into the final model. The flow characteristic

identification model was established using the proposed method

and taking a 330 MW steam turbine as an example. The results

show that the difference between the identification value and the

actual value of the steam inlet flow is within 0.08%. The mean

relative error, RMSE, and NRMSE of the FCM-LSSVM model

are 0.66, 0.63, and 0.93%, respectively. The identification results

of the steam turbine valve flow characteristics are accurate and

have guiding significance for improving the frequency modulation

performance of thermal power units.
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