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The large-scale access of distributed sources to the grid has brought great

challenges to the safe and stable operation of the grid. At the same time,

energy storage equipment is of great importance to e�ectively enhance the

consumption of renewable energy and ensure the safe and stable operation

of the grid. This paper proposes a method for optimal allocation of grid-

side energy storage considering static security, which is based on stochastic

power flow analysis under semi-invariant method. Firstly,according to the

load, wind power and photovoltaic probability model, a system stochastic

power flow model is constructed. Furthermore, the fault probability and fault

severity indicators are established from two dimensions of branch power flow

and node voltage. And combine the fault probability and severity indicators

to establish a static security assessment indicators system. Then, a grid-side

energy storage planning model is constructed from the perspective of energy

storage operators. Finally, an improved genetic algorithm is used to solve

the two-stage planning and operation problem proposed in this paper, and

simulation analysis is conducted based on the IEEE-30 node system. The

results show that the energy storage configuration considering static security

constraints can e�ectively reduce the fault probability and the severity of

fault overlimit. The simulation and case study verify that the proposed energy

storage allocation method can e�ectively improve the static security of the

system.

KEYWORDS

grid-side energy storage configuration, static security of power system, stochastic,

semi-invariant stochastic power flowmethod, Benders’ algorithm
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1. Introduction

With the goal of “Double-Carbon” by 2020, the country

is fully developing renewable energy generation technology.

The renewable energy output has the characteristics of weak

controllability and strong randomness, and its large-scale access

will definitely bring great challenges to the safe operation of the

power grid (Bagheri et al., 2019). Energy storage technology has

the advantages of balancing the load, maintaining the frequency

and voltage stability of the grid, providing energy buffer for

the grid, etc. The large-scale access of energy storage system

is an inevitable trend for the future development of the grid

(Dowling et al., 2020). Therefore, it is important to study

the configuration of energy storage capacity considering static

security to effectively enhance the consumption of renewable

energy, ensure the safe and stable operation and reduce the

investment cost of the grid (Albertus et al., 2020).

At present, domestic, and international research has focused

on three aspects of energy storage equipment to improve the

flexibility (Zhou et al., 2021; Zhang et al., 2022), operational

stability (Mahmoud et al., 2022b), and security of power

systems. Among them, the role of energy storage for power

system security enhancement is discussed in three dimensions:

topological vulnerability (Martinez-Rico et al., 2021), grid

security power supply capacity (Li et al., 2022; Mahmoud et al.,

2022a), and transient security (Wang et al., 2021), respectively.

An integrated planning and operation method is proposed in

(Martinez-Rico et al., 2021), which is for optimal allocation of

energy storage based on the active network loss and voltage offset

indicators. This effectively improves the structural strength of

the grid topology and ensures grid voltage stability. In literature

(Mahmoud et al., 2022a), based on Robust and optimized DVR

controller, Harris Hawks optimization algorithm is used to

enhance the voltage quality of low-voltage smart distribution.

The literature (Li et al., 2022) proposes a new grid-connected

wind power generation system based on an improved topology

and controller, which considers both state-of-charge and energy

storage configurations. And can effectively improve the overall

efficiency of the power generation system and extend the

lifespan of the energy storage batteries, improving the safe

operation and power supply reliability of the grid system. In

the context of distributed energy storage, a preventive control

strategy is proposed in Wang et al. (2021). The strategy is for

grid current overload and transient instability based on the

barrier function and energy function. And achieve a guarantee

of transient security using a unified power flow controller.

Although the numerous utilities played by energy storage in

power systems are considered in current research on energy

storage configurations, the mechanism of interaction between

system energy storage configurations and static security is

rarely clarified, which ignoring the potential of energy storage

configurations to enhance system static security.

The basic idea of traditional security assessment methods

is to establish a set of expected accidents to check system

security (Kundur et al., 1994), which is difficult to adapt to

the security analysis of power grids after a high proportion

of renewable energy is connected, so static security analysis

considering uncertainty has received extensive attention from

scholars in practical research and application. The static security

assessment methods considering uncertainty can be divided

into Monte Carlo simulation method (Song et al., 2003; Hajian

et al., 2013; Zhang et al., 2015; Dashtdar et al., 2022) and

analytical method (Su, 2010; Bu et al., 2012; Amraee and

Ranjbar, 2013; Zhang et al., 2020). The Monte Carlo simulation

method is used to obtain statistical characteristics of parameters

by observing the model or process through sampling, and

its computational effort is not affected by the size of the

power system, which in turn is used in some complex power

systems (Hajian et al., 2013). In Dashtdar et al. (2022), a

combination of genetic algorithm and artificial bee colony

algorithm is adopted to solve the optimization problem of

power grid under demand-side management. The literature

(Zhang et al., 2015) used a Monte Carlo method to extract

the fault states of the system and establish static security

assessment metrics to analyze the static security of the power

system. However, the final value obtained by the Monte Carlo

method is only an estimated value, and there is a certain

contradiction between its calculation accuracy and calculation

speed, while the analytical method based on probability theory

can obtain the distribution of parameters through a smaller

number of calculations, thus becoming a research hotspot in

static security analysis research (Song et al., 2003). Among

them, the analytical method includes network method, fault

tree method, event tree method, and state space method. In the

literature (Su, 2010), the security assessment is carried out by

building an event tree to determine the optimal maintenance

plan to mitigate the system security risk from an economic

point of view. Besides, in the literature (Bu et al., 2012), the

dynamic Bayesian network method is applied to assess the

reliability of intelligent substation monitoring system. Since

the uncertainty method considers the probability of occurrence

of each operating state, the analytical method is difficult to

be practically applied for large-scale power grids due to the

complexity of the steps, so there are few methods to efficiently

achieve the security assessment of power grids under uncertainty

in the current research.

In view of the above shortcomings, the following two

problems of system static security remain unsolved: (1) the

potential of energy storage configuration in improving system

static security is not fully considered; (2) Currently solving

algorithms based on Monte Carlo simulation method and

analytical method are difficult to realize efficient evaluation

and solution of power grid security under uncertainty. In

this paper, an optimal allocation method of grid-side energy
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storage is proposed, which examines the static security

assessment of power system. Under the expected accident

set, the static security analysis of the system is carried out

based on the semi-invariant stochastic power flow method.

This method applies energy storage configuration to improve

the static security of power system reasonably, and has

the characteristics of general probability distribution and

time series. At the same time, considering the influence

of uncertainty on the static security of the system, it can

effectively improve the solution speed and reduce the system

investment cost. The main contributions of this paper including

the following:

1) A grid-side energy storage configuration method

considering the static security of power system is

developed, which is implemented through a planning and

operation two-stage optimization framework constructed

in this paper.

2) Combining the stochastic power flow with static safety

assessment, the uncertainty of renewable energy and load

are considered in the probability assessment process. In

addition, the fault probability and fault severity indexes

are built from the perspective of branch power flow and

nodal voltage.

3) To decoupled the two-stage interactive problem, a

heuristic genetic algorithm is applied, where an adaptive

crossover and mutation probability is proposed to

adjust the probability of crossover and mutation with

chromosome fitness. Besides, the stochastic power

flow is solved through the semi-invariant stochastic

power flow method, which inserted into the heuristic

genetic algorithm.

The remainder of this paper is structured as follows: The

modeling of stochastic power flow and static safety assessment

indexes are established in Section II. The configuration of

energy storage model is presented in Section III. The heuristic

genetic algorithm combined with the semi-invariant method is

introduced in Section IV. The case studies and the conclusions

are provided in Sections V and VI, respectively.

2. Static security assessment method
based on stochastic currents

2.1. Stochastic power flow model

2.1.1. Load probability model

Load uncertainty is assumed to obey a normal distribution in

most stochastic power flow studies, and the nodes are considered

to be either mutually independent or linearly correlated in terms

of injected power. In this paper, a stochastic model of the active

and reactive power of the system load that conforms to a normal

distribution is developed as follows (Yang et al., 2022):

f (P) =
1

√
2πσp

· exp

[

−
(P − µp)

2

2σ 2
p

]

(1)

f (Q) =
1

√
2πσQ

· exp

[

−
(Q− µQ)

2

2σ 2
Q

]

(2)

where σP, σQ are the standard variance of the active and

reactive power of the random load, respectively; µP, µQ are the

mean values of the active and reactive power of the random

load, respectively.

2.1.2. Photovoltaic probability model

When considering the uncertainty of PV output, it can

be described by superimposing the predicted PV output value

PPV on the prediction error 1εPV , i.e., PV output can be

expressed as:

P∗PV = PPV + 1εPV (3)

The standard deviation of the PV prediction error1εPV can

be considered to follow a normal distribution with 0 as the mean

and σPV as the standard deviation, and its probability density

function can be expressed as Ren et al. (2014):

f (△ εPV ) =
1

√
2πσPV

· exp

[

−
△ εPV

2

2 · σPV2

]

(4)

where σPV is proportional to the predicted output, i.e.,

σPV= PPV × β%, β% is the standard deviation σPV as a

proportional factor of the predicted PV output. The analysis of

the actual data shows that the probability distribution of the PV

output error follows a normal distribution when the weather is

quite sunny.

2.1.3. Wind power probability model

The wind speed prediction error can be considered as a

normally distributed random variable with a mean of 0 and a

standard deviation of σv. If the wind speed prediction is denoted

by v̄, the probability density function for the actual wind speed v

= v̄+ 1v can be expressed as:

fv(v) =
1

√
2πσv

e
−(v−v)2

2σv2 (5)
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where the variance of the wind speed prediction deviation is

generally taken as τ% of the predicted value, i.e., σv2 = v̄× τ%.

The wind power output depends on the wind speed and the

wind power output expression can be expressed as Yang et al.

(2022):

PW = l(v) =











0, 0 ≤ v <vi, v > vo

k1 + k2v
3, vi ≤ v <vN

pN , vN ≤ v <vo

(6)

where k1 = PNvi
3/(vi

3–vN
3); k2 = PN /(vN

3–vi
3); PN is the

rated wind power; vi, v0, vN are the cut-in, cut-out and rated

wind speed, respectively; PW is the wind power; l(v) indicates

that the wind power is a function of the wind speed. The available

wind power in a wind farm is a mixed random variable and is

assumed to be Wav = nwPW , the predicted value of wind farm

output power.

2.2. Static security assessment metrics
under N−1 contemplated failure sets

2.2.1. Static security probability indicators

The set of expected accidents K0 can be represented as the

full set of all fault sets, and the probability that power flow Pj of a

branch j cross the limit in the event of an accident Kn event can

be expressed as:

Pr(Kbranch
j |Kn) = 1− prob{Pmin < Pj < Pmax}

= 1−
{

Fpq(Pmax)− Fpq(Pmin)
}

(7)

where Pmax is the maximum value of active power allowed

to be transmitted by branch j, obtained from the thermal stability

limit current, Pmin is the minimum value of active power

allowed to be transmitted by branch j; Fpq(·) is the cumulative

distribution function of active and reactive power of the branch

power flow under fault Kn.

In the case of an accidental Kn event, the probability that the

voltage viat node i cross the limit can be expressed as:

Pr(K
voltage
i |Kn) = 1− prob{vL < vi < vH}

= 1− {Fvθ (vH) − Fvθ (vL)} (8)

where vH is the maximum voltage amplitude allowed

at node i, if exceeding the maximum voltage amplitude

constraint will cause voltage collapse; vL is the minimum

voltage amplitude allowed at node i, if less than the

minimum voltage amplitude constraint will cause

system low voltage instability; Fvθ (·) is the cumulative

distribution function of node voltage amplitude and

phase angle.

2.2.2. Power flow overload severity indicator

The branch power flow overload severity represents the

power flow on each line as a percentage of the transmission

capacity limit. And the severity indicator is defined as

the degree of branch j power flow overload for all fault

conditions. The power flow overload of branch j can be

expressed as:

Sevbranchj =
∑

k∈Kbranch
j

max{
∣

∣Pj
∣

∣ − |Pmax|
|Pmax|

,

∣

∣Pj
∣

∣ − |Pmin|
|Pmin|

}(9)

where Kbranch
j is the set of all incidents causing power flow

crossings in branch j.

Let the vector Sevbranch represent the set of overload severity

indicators for all branches in the system under various faults, and

define the system power flow current overload severity indicator

ROL based on Sevbranch as:

Sevbranch = [Sevbranch1 , Sevbranch2 , ..., SevbranchM ]
T

(10)

ROL =
α

M

∥

∥

∥
Sevbranch

∥

∥

∥

1
+ β

∥

∥

∥
Sevbranch

∥

∥

∥

∞
(11)

where α and β are weight coefficients satisfying a sum of

1;
∥

∥

∥
Sevbranch

∥

∥

∥

1
and

∥

∥

∥
Sevbranch

∥

∥

∥

∞
are the 1-parameters and

∞-parameters of the vector Sevbranch, respectively.

2.2.3. Voltage overrun severity indicator

The node voltage overvoltage severity represents the

percentage of node voltage amplitude that deviates from the

normal amplitude limit, defined as the degree of node i voltage

overvoltage for all faults that may occur. The overlimit of node i

can be expressed as:

Sev
voltage
i =

∑

k∈Kvoltage
i

max{
vH − vi

vH
,
vi − vL

vi
} (12)

where Ki
voltage is the set of all incidents that cause the

voltage amplitude of node i to cross the limit.

Let the vector Sevvoltage represent the set of node voltage

overlimit severity indicators for all nodes in the system under

various faults, and define the system node voltage overlimit

severity indicator ROV based on Sevvoltage as:

Sevvoltage = [Sev
voltage
1 , Sev

voltage
2 , ..., Sev

voltage
N ]

T
(13)

ROV =
α

N

∥

∥

∥
Sevvoltage

∥

∥

∥

1
+ β

∥

∥

∥
Sevvoltage

∥

∥

∥

∞
(14)

where
∥

∥

∥
Sevvoltage

∥

∥

∥

1
and

∥

∥

∥
Sevvoltage

∥

∥

∥

∞
are the 1-parameters

and∞-parameters of the vector Sevvoltage, respectively.

Frontiers in SmartGrids 04 frontiersin.org

https://doi.org/10.3389/frsgr.2022.1110871
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Tian et al. 10.3389/frsgr.2022.1110871

3. Grid-side energy storage
configurations

3.1. Objective function

The energy storage operator plans the storage configuration

capacity at each node on the grid side with the objective function

of minimizing the total cost, where the total cost consists of three

parts: total investment cost, operation and maintenance (O&M)

cost, and the operator’s arbitrage revenue. So, the objective

function over the planning horizon is expressed as

obj : min
(

Cinv + Cmain − Carb
)

(15)

where Cinv is the annual equivalent cost of the total

investment cost; Cmain is the annual equivalent cost of the

system operation and maintenance cost; Carb is the energy

storage operator’s participation in market arbitrage revenue.

In the formula, the annual equivalent investment cost can be

expressed as:

Cinv =
∑

i∈CN
kESSi CESSi · λinvESS

r(1+ r)mESS

(1+ r)mESS − 1
(16)

where ki
ESS is the planning state of energy storage at node i,

ki
ESS = 1 is represented to be put into construction, otherwise 0;

Ci
ESS is the investment energy storage capacity of node i; λinvESS

is the fixed cost of investing in energy storage per unit capacity;

r is the discount rate; mESS is the service life of energy storage

equipment; CN is the set of nodes to be selected for investment

in the planning area.

Operation and maintenance cost refers to the annual cost of

energy storage equipment in the O&M process, which includes

equipment maintenance costs and corresponding labor costs.

In this paper, various operation and maintenance costs are

considered together as unit operation and maintenance cost

λ
op
ESS, and the annual equivalent operation andmaintenance cost

can be expressed as:

Cmain =
∑

i
kESSi CESSi · λopESS

r(1+ r)mESS

(1+ r)mESS − 1
(17)

where λ
op
ESS is the fixed operation and maintenance cost per

unit capacity of energy storage.

Because when the operator charges the grid at low tariffs

and discharges the grid at high tariffs to generate revenue,

the arbitrage revenue of the energy storage operator can be

expressed as follows:

Carb =
∑

t
λtP

ESS
i,t (18)

where λt is the power grid price at moment t, and PESSi,t is

the amount of energy storage equipment charged and discharged

at node i at time t, where discharging is positive and charging

is negative.

3.2. Constraints

3.2.1. Planning constraints

Limitations on the scale of investment in energy storage

equipment, taking into account the limitations of construction

space and investment costs:

CESS_min ≤ CESSi ≤ CESS_max ∀i ∈ CN (19)

where CESS_max, CESS_min are the upper and lower limits of

the installed capacity of the node energy storage.

3.2.2. Operational constraints

3.2.2.1. System static security constraints

Based on the system static security assessment method

proposed in 2.2, the grid company constrains the static security

indicators during system operation to ensure that the system

does not experience power flow and voltage’s overlimit under the

N-1 expected accident set.

ROL ≤ Rmax
OL (20)

ROV ≤ Rmax
OV (21)

∑

pr ≤ prmax, pr(·|Kn) ∈ prpr(·|Kn) ∈ pr (22)

where Rmax
OL , Rmax

OV , prmax are the maximum limits of the

system power flow overload severity indicator, the system node

voltage crossing severity indicator, and the probability of the

system not meeting the static security constraints.

3.2.2.2. Nodal power balance constraints

E

(

∑

j
Plineij,t

)

+ E
(

PPVi,t

)

+ E
(

PWi,t

)

+ kESSi PESSi,t

= E
(

Ploadi,t

)

(23)

where Plineij,t is the active power transmitted from line j at

node i at time t; PPVi,t is the PV output at node i at time t; PWi,t
is the wind power output at node i at time t; Ploadi,t is the load at

node i at time t.
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FIGURE 1

Overall framework.

3.2.2.3. SOC of energy storage equipment constraints

∣

∣

∣
PESSi,t

∣

∣

∣
≤ PESS_max (24)

0 ≤ Qi,t ≤ CESSi (25)

SoCi,t =
Qi,t

Qrated
(26)

SoCmin ≤ SoCi,t ≤ SoCmax (27)

SoCi,t = SoCi,t−1 +
{

max(0, η0 · PESSi,t )+min(0,PESSi,t /η0)
}

CESS
i

(28)

where PESS_max is the charging and discharging capacity

upper limit of the energy storage device, considering the

safe operation of the energy storage device, its charging

and discharging capacity cannot exceed PESS_max. Qi,t is

the capacity of the energy storage device at node i at time

t, and Qrated is the rated capacity of the energy storage

device. SoCi,t is the charge state of the device at node

i at time t. SoCmax, SoCmin are the upper and lower

limits of the charge state of the energy storage device. η0

is the charging and discharging efficiency of the energy

storage device.

4. Genetic algorithm solution for
energy storage configuration under
semi-invariant method

4.1. Stochastic power flow model based
on semi-invariant method

Traditional stochastic power flow calculations are

linearized at the base run of the power flow. And the

probability density function of the state variables and the

branch power flow is obtained by a convolution operation

Frontiers in SmartGrids 06 frontiersin.org

https://doi.org/10.3389/frsgr.2022.1110871
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Tian et al. 10.3389/frsgr.2022.1110871

as usual. The semi-invariant method transforms the

convolution operation of the random variables into an

algebraic operation of semi-invariance, which greatly simplifies

the calculation.

Assuming that the random perturbations of the injected

power at each node are independent of each other, linearizing

the AC power flow current equation at the base run yields

(Bin et al., 2022):

{

1X = S01W

1Z = T01W
(29)

where 1X is the random perturbation of the

state variable, 1W is the random perturbation of the

branched power flow, 1Z is the random perturbation

of the injected power at the node; S0, T0 are the

sensitivity of the state variable and the branched

power flow to changes in the injected power at the

node, respectively.

According to the additivity of semi-invariance, the

k-th order semi-invariance of the random perturbation

1W of the nodal injected power is equal to the

sum of the random perturbation 1WPV of the

PV output and the random perturbation 1WW of

the wind power output. The order semi-invariance

of the random perturbation 1Wl of the load is

as follows:

1W(k) = 1WPV
(k) + 1WW

(k) + 1Wl
(k) (30)

On the basis of the k-th order semi-invariance of order 1W,

the semi-invariance of order 1X and 1Z can be calculated

as follows.

{

1X(k) = S
(k)
0 1W(k)

1Z(k) = T
(k)
0 1W(k)

(31)

Where S0
(k) and T0

(k) represents the matrix obtained by

raising each element of the matrix S0 and T0 to the k-th power.

The coefficient Cv of the Gram-Charlier series can be

derived from the central distance by finding the corresponding

central distance through the semi-invariance of 1X and

1Z. The distribution function of the random variable is

expressed as an expansion of the Gram-Charlier series of the

following form:

F(x) = 8(x)+ C18
′(x)+ C28

′′(x)+ C38
′′′(x)+ · · · (32)

f (x) = ϕ(x)+ C1ϕ(x)+ C2ϕ(x)+ C3ϕ(x)+ · · · (33)

where F(x) is the cumulative distribution function

of the random variable: f(x) is the probability density

function of the random variable; 8(x) and ϕ(x) are the

cumulative and probability density functions of the standard

normal distribution, respectively, which can be derived from

Hermite polynomials.

1. Input initial data

Input parameters related to transaction λinvESS, r,mESS, λ
op
ESS, λt

and kESSi ,CESSi , PESSi,t to obtain initial grid side planning energy

storage configuration strategy.

2. Iterations between ESPs and static security indicators

For iteration k= 1

Based on the energy storage configuration strategy,

solve the optimal operation strategy of the system according

to Equations (15–18), and generate the initial parental

chromosome. Collect static security indicators of the system:

ROL, ROV .

3. Form offspring chromosomes

Adaptively cross and mutate the parental chromosomes that

didn’t meet the static security constraints, in order to obtain the

offspring chromosomes. And compare the fitness function value

to select the new parental chromosomes. Then return to Step 2.

4. Iterations among population satisfied with constraints

(ROL ≤ RMAX
OL and ROV ≤ RMAX

OV )

Parfor populationm = 1 :M

For iteration l = 1

Select the parental chromosome, calculate the fitness function

and update the optimal strategy by comparing the value of

function.

If l = L

End for population

If k= K

End for iteration

End for improved heuristic genetic iteration

Algorithm 1. Iterative algorithm for improved heuristic GA.

4.2. Genetic algorithm solving process
for energy storage configuration

In this paper, a two-stage energy storage allocation

optimization model for planning and operation is
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constructed, in which the planning-side energy storage

capacity allocation strategy and the operation-side energy

storage operation scheduling strategy interact with each

other, and if the system in the operation stage does not

satisfy the static security constraints under the expected

accident set, the energy storage allocation strategy needs

to be readjusted in the planning stage. Among them,

the overall framework diagram of this paper is shown in

Figure 1.

Genetic algorithms are commonly used to solve two-

level mixed-integer programming problems. In view of

the scalability of the solution, the traditional enumeration

method is not suitable for solving large-scale problems,

and the process is slow and difficult. Meanwhile, analytical

algorithms such as Benders’ algorithm are often used to

deal with complex mixed-integer linear programming

problems, which are difficult to apply to the non-linear

programming problems in this paper. In contrast, a heuristic

genetic algorithm is used to decouple the two phases of

the planning operation, but given that traditional genetic

algorithms tend to fall into local optima and converge slowly,

this paper optimizes the strategies by means of improving

crossover and variational operations, and ultimately selects the

optimal solution.

The heuristic genetic algorithm consists of three basic

elements: encoding, chromosome, and fitness function. In

the planning problem constructed in this paper (Liu et al.,

2010; Chen et al., 2022), the encoding process is the

mapping of the set of energy storage allocation strategies

into the genetic space in binary form, and in the genetic

space, the chromosome is a description of the set of

all planning solutions. And the fitness function is the

objective function of the operator to optimize the energy

storage allocation (Rudnick et al., 2001). Based on the basic

elements, the genetic algorithm consists of three computational

processes: selection, crossover and variation. In addition,

chromosomes with high fitness in the selection process

have a higher probability of appearing in the subsequent

crossovermutation process, and new chromosomes are obtained

by adaptive crossover and mutation operations introduced

as follows.

Adaptive crossover and mutation approach can adjust the

probability of crossover and mutation with chromosome fitness,

with smaller crossover and mutation probabilities obtained

when individual chromosome fitness is higher than population

fitness, and larger probabilities obtained when individual

chromosome fitness is lower than population fitness. The smaller

mutation probability allows good individuals to be retained,

while the larger mutation probability accelerates mutation to

obtain new chromosomes. This improved scheme can effectively

prevent the population from forming local convergence and

falling into a local optimum during initial evolution, improving

the performance of the genetic algorithm for optimal solution.

According to the Algorithm 1 mentioned above, the basic

steps for solving this paper are as follows.

(1) Setting the initial strategy of the grid-side planning

strategy and forming the initial parent chromosome.

(2) Solving the optimal operation strategy of the system

based on the energy storage configuration strategy, using

the semi-invariant random power flow method to obtain the

random distribution of node voltages and branch currents,

obtaining the system static security index values, checking

whether the system static security constraint is satisfied. If not,

proceeding directly to the next step, and if the constraint is

satisfied, proceeding to Step 4.

(3) Obtaining the offspring chromosome through a two-

point crossover and mutation operation, and get a new

parent chromosome by comparing the value of fitness function

between offspring chromosome and the parent chromosome,

and furthermore returning to Step 2.

(4) Select parent chromosome. And if the current

chromosome has a higher fitness than the optimal chromosome,

the current chromosome becomes the optimal, if it is not the

optimal chromosome, it is eliminated until the number of

iterations reaches the upper limit, the optimal strategy set is

output in the end.

5. Case study

5.1. Case setup

In this paper, simulation tests are conducted based on the

IEEE-30 node system, as shown in Figure 2. There are six

thermal power units in the system, and the maximum active

output is distributed between 3 and 8MW. Renewable energy

units with a capacity of 3MW are connected at nodes 22 and

27, and priority is given to the consumption of renewable

energy units when dispatching. In this paper, it is assumed

that the system load, PV output and wind speed meet normal

distribution, where the standard deviation of load and wind

speed is 20% of the mean value, and the standard deviation

of PV output is 20% of its rated power. The expected fault set

includes 6 units shutdown faults and 41 line three-phase short-

circuit faults, a total of 47 fault types, which are tested for N-1

faults. The time-sharing tariff settings are shown in Figure A1

in Supplementary material, and the relevant parameters are set

as shown in Table 1. See Table A1 in the Supplementary material

for limits of each branch power flow constraint, and the upper

and lower limits of each node voltage are 0.96∼ 1.04 p.u.

In order to verify the rationality of this paper, two

comparative cases are set up for analysis as follows.

Case 1: The static security constraint of system operation is

considered in the process of energy storage configuration.

Case 2: The static security constraint of system operation is

not considered in the process of energy storage configuration.
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FIGURE 2

IEEE 30-bus system.

TABLE 1 Parameters setting of case study.

Investment costs per unit capacity of energy

storage (thousand yuan/kWh)

1.3

O&M costs per unit of energy storage

capacity (thousand yuan/kWh)

0.13

Upper/lower limit of installed capacity of

nodal energy storage (WM)

15

Upper limit of system power flow overload

severity

55

Upper limit of system node voltage overrun

severity

1

α/β 0.7/0.3

Upper limit of energy storage charge and

discharge (WM)

3

Upper/lower limit of state of charge (SoC) of

nodal energy storage

0.1/0.9

Power for energy storage charging and

discharging

0.95

5.2. Optimized results

5.2.1. Energy storage configuration strategy

The results are shown in Figure 3, where a total of 130

MW of energy storage capacity is allocated in Case 1 and

135 MW in Case 2, compared to a total of 5 MW in

Case 1. The cost comparison between Case 1 and 2 for

the operator is shown in Table 2, where the investment cost

of Case 1 is 3.71% lower than that of Case 2, but the

revenue of the operator is also 2.663 million yuan lower.

This results in an overall reduction of 19.2% in the operator’s

total revenue under Case 2 compared to Case 1, taking

into account the investment operation and maintenance costs

and revenue.

5.2.2. System static security indicators

The power flow current overload probability of each

branch and the voltage overvoltage probability of each node

under an N−1 fault for Case 1 are shown in Figure 4.

The branches with the highest probability of power flow

overlimit under all faults are branches 9 and 10, both of which

have a 97.87% probability of power flow overlimit. At the

same time node 19 has the highest probability of 38.66% of

voltage overlimit under all faults due to the high load on its

connected branches, while node 3 has the lowest probability

of 1.12%.

The power flow current crossing probability of each branch

and the voltage crossing probability of each node under an N−1

fault for Case 2 are shown in Figure 5. For all fault conditions,

branches 10, 12, 15, and 34 have the highest power flow overrun

probability of 97.87%. Node 26 also has a maximum probability
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FIGURE 3

Energy storage capacity configuration comparison.

TABLE 2 Operator cost comparison.

Cost items Case 1 Case 2

Investment Costs (thousand yuan) 13,561 14,083

O&M costs (thousand yuan) 1,356 1,408

Operator arbitrage gains (thousand yuan) 23,749 26,412

Total costs (thousand yuan) −8,832 10,921

of 48.49% for all fault conditions due to the large load connected

to it, in contrast to Node 5 which has a minimum probability

of 1.29%.

Further considering the overall probability of failure for

Case 1 and 2, analysis of the data shows that the average

value of the probability of power flow overload before and

after the addition of the static security constraint is reduced

by 9.75%, and the average value of the probability of node

voltage overvoltage is reduced by 1.61%. It can be concluded

that the system overlimit probability is reduced after considering

the static security constraint, and the expected static security

enhancement effect is achieved.

Figures 6, 7 show the severity of branch currents and

node voltage overlimit under N−1 faults for Case 1 and 2

energy storage configuration strategies. The average value of

the branch power flow current overload severity for Case 1

is 44.70 and the average value of the node voltage overlimit

severity is 10.17 in 24 h. At 12 h, the power flow and voltage

overlimit severity indicators both reach the maximum value

of 54.30 and 15.53 due to excessive load access. At 18 h, the

power flow overload severity reaches the minimum of 38.39,

and at 5 h, the voltage overlimit severity reaches the minimum

of 6.45.

In Case 2, the average value of branch power flow current

overload severity is 45.17 and the average value of nodal voltage

overlimit severity is 10.31 in 24 h. The maximum values of

system power flow current and voltage overrun severity are 49.99

and 13.17 at 24 h due to each branch load access, while the

minimum values of power flow current and voltage overlimit

severity are 41.82 and 8.96 at 3 and 5 h.

In comparison with Figures 6, 7, the system severity

indicators of Case 1 and 2 show that the average values

of the branch power flow current severity and node voltage

severity of Case 1 are reduced by 18.67 and 3.26, respectively,

compared with those of Case 2. So, in the future, it is

necessary to strengthen the management of the power flow

currents of branch 8, 9, and 10, and the voltages of node 8,

19, 20, and 30. In conclusion, by comparing the probability

of failure and current and voltage overrun indicators of

Case 1 and 2, it’s obvious that Case 1 with static security

constraints has better performance. It can effectively reduce the

probability of failure and severity of power flow current and

voltage violation.

5.2.3. Sensitivity analysis

To further verify the effectiveness of the planning

method proposed in this paper when the proportion of

renewable energy sources connected to the grid increases.

The static security indicators of the energy storage
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FIGURE 4

System failure probability under Case 1.

allocation strategies in Case 1 and 2 are analyzed on

the basis of Case 1 and 2 with 4 and 6 renewable energy

units connected.

Under the four renewable energy units, the average values

of power flow current and voltage overlimit failure probability

under the static security configuration are 32.02 and 15.04%.

Compared with 56.71 and 27.99% without considering static

safety constraints, the fault probability decreased by 43.54 and

46.27%. Although the improvement in the severity of overruns

is not significant, the reduction in the probability of overruns

of branch currents and nodes by nearly 50% is still an effective

improvement in static security.

Similarly, with 6 renewable energy units connected, the

probability of branch power flow current and node voltage

overlimit probability are reduced by 51.55 and 45.17%

respectively. And the overlimit severity indicators of power

flow current and voltage are reduced by 0.3828 and 0.24849,

respectively. There is no doubt that with more renewable

energy units connected in the grid, storage configuration

considering static security can effectively reduce failure

probability and maintain the system at a good level than

Case 2.

6. Conclusion

In this paper, we propose an optimal grid-side energy

storage allocation method that takes into account the static

security assessment of the power system, and verify that the

proposed energy storage allocation method can effectively

improve the static security of the system in a power system

with a high percentage of renewable energy penetration by

analyzing the IEEE-30 node system. The average value of

power flow overlimit probability before and after adding static

security constraints is reduced by 9.75%, and the average

value of node voltage overlimit probability is reduced by

1.61% at the same time, the system power flow overload

severity is reduced by 1.05% and node voltage overlimit
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FIGURE 5

System failure probability under Case 2.

severity is reduced by 1.38%. When the proportion of

renewable energy is further increased, that is, the number

of renewable energy units is increased to 4 or even 6. By

comparing the mean fault probability, when 4 units are

connected in the energy storage configuration with constraints

considered, the failure probability of the system power flow

and voltage overlimit the violation is reduced by 24.69

and 12.95% compared with the case without considering

constraints. The failure probability of 6 units is also reduced

by 29.23 and 13.49%. In addition, the overlimit severity

indicator also decreases to a certain extent, which indicates

that the energy storage configuration considering the static

security constraints of the system proposed in this paper

is useful. It can effectively guarantee the safe and stable

operation of the power system through the coordinated

energy use of the energy storage station, relieve the pressure

of the higher branch power flow and node voltage at the

same time.
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Nomenclature

σP Standard variance of active power k1, k2 Wind speed parameter

µP Mean values of active power PW Wind power

PPV Predicted PV output value K0 Set of expected accidents

σPV Standard deviation of PV Kbranch
j The set of all incidents causing power flow

crossings in branch j to cross the limit

v̄ Predicted wind speed vH Max voltage amplitude at node i

σQ Standard variance of reactive power vi, v0, vN Cut-in, out, and rated wind speed

µQ Mean values of reactive power Wav Predicted wind output power value

1εPV Predicted PV output error σv Standard deviation of wind speed

β% Proportion factor of σPV vL Min voltage amplitude at node i

K
voltage
i The set of all incidents causing the voltage

amplitude of node i to cross the limit

Sevvoltage The set of voltage overrun severity indicators for

all nodes under faults

Sevbranch The set of overload severity indi-cators for all

branches under faults

Pmax,Pmin Max active power at branch j

α, β Weight coefficients
∥

∥

∥
Sevbranch

∥

∥

∥

∞
∞-parameters of Sevbranch

∥

∥

∥
Sevbranch

∥

∥

∥

1
1-parameters of Sevbranch

∥

∥

∥
Sevvoltage

∥

∥

∥

∞
∞-parameters of Sevvoltage

∥

∥

∥
Sevvoltage

∥

∥

∥

1
1-parameters of Sevvoltage Cmain Annual equivalent cost of the system operation

and maintenance

Cinv Annual equivalent cost of the total investment

cost

ki
ESS Planning state of energy storage at node i

Carb Market revenue of energy storage operator’s

participation

λinvESS Fixed cost of investing in energy storage per unit

capacity

Ci
ESS Investment in energy storage capacity of node i mESS Service life of ES equipment

r Discount rate PESSi,t The amount of energy storage equipment

charged and discharged at node i at time t

λ
op
ESS Fixed O&M cost per unit capacity of energy

storage

ROL System overload severity indicator

λt Power grid price at moment t PPVi,t PV output at node i at time t

ROV Overvoltage severity indicator Ploadi,t The load at node i at time t

PWi,t Wind power output at node i Qi,t Capacity of the energy storage device at node i at

time t

Plineij,t Active power transmitted from line j at node i at

time t

Qrated Rated capacity of the energy storage device

SoCi,t Charge state of the device at node i at time t 1W Random perturbation of the branched power

flow

1X Random perturbation of the state variable S0, T0 Sensitivity of 1X and 1Z to changes in the

injected power at the node

1Z Random perturbation of the injected power at

the node

mESS Service life of ES equipment

S0
(k),T0

(k) The matrix obtained by raising each element of

the matrix S0 and T0 to the k-th power
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