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Introduction: This study evaluated the performance of a wrist-worn

wearable, Verily Study Watch (VSW), in detecting key sleep measures against

polysomnography (PSG).

Methods: We collected data from 41 adults without obstructive sleep apnea

or insomnia during a single overnight laboratory visit. We evaluated epoch-by-

epoch performance for sleep vs. wake classification, sleep stage classification

and duration, total sleep time (TST), wake after sleep onset (WASO), sleep

onset latency (SOL), sleep e�ciency (SE), and number of awakenings (NAWK).

Performance metrics included sensitivity, specificity, Cohen’s kappa, and Bland-

Altman analyses.

Results: Sensitivity and specificity (95% CIs) of sleep vs. wake classification were

0.97 (0.96, 0.98) and 0.70 (0.66, 0.74), respectively. Cohen’s kappa (95% CI) for

4-class stage detection was 0.64 (0.18, 0.82). Most VSW sleep measures had

proportional bias. The mean bias values (95% CI) were 14.0min (5.55, 23.20) for

TST, −13.1min (−21.33, −6.21) for WASO, 2.97% (1.25, 4.84) for SE, −1.34min

(−7.29, 4.81) for SOL, 1.91min (−8.28, 11.98) for light sleep duration, 5.24min

(−3.35, 14.13) for deep sleep duration, and 6.39min (−0.68, 13.18) for REM sleep

duration. Mean and median NAWK count di�erences (95% CI) were 0.05 (−0.42,

0.53) and 0.0 (0.0, 0.0), respectively.

Discussion: Results support applying the VSW to track overnight sleepmeasures

in free-living settings. Registered at clinicaltrials.gov (NCT05276362).

KEYWORDS

sleep-wake detection, sleep stage, digital health measures, polysomnography, free-

living, sleep detection accuracy, wearable technology

Introduction

Characterizing sleep in a free-living setting provides valuable insights into

physical and mental health. Changes in sleep may be key in the diagnosis of

sleep disorders like insomnia and hypersomnia, and are clinically meaningful

components for tracking mental and cardiovascular health, as well as other

conditions (Parish, 2009; Freeman et al., 2020; Tobaldini et al., 2019; Young et al.,

2008; Ahmadi et al., 2009; Hayashino et al., 2010). The gold standard for sleep

assessment is lab-based polysomnography (PSG). However, PSG is resource intensive,
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challenging to administer and subject to intra- and inter-scorer

variability, moreover, availability of PSG laboratories may be

limited (Norman et al., 2000; Deutsch et al., 2006). It is also

impractical for long-term surveillance, and may be prone to

artifacts that affect representativeness, such as altered sleep patterns

due to the novelty of a laboratory, and/or the discomfort of

the electrode setting (Toussaint et al., 1995). Furthermore, while

portable PSG tools do exist, they still have limited application in

free-living environments or routine clinical care.

Wearable sensors, particularly wrist-worn devices, provide a

promising avenue for sleep assessment in free-living settings. These

devices are widely available, relatively inexpensive, comfortable

to wear during sleep and include physiological sensors, such as

photoplethysmogram (PPG) and accelerometer, that can be used

for sleep monitoring (Imtiaz, 2021; de Zambotti et al., 2024).

However, before utilizing wearable-based technology as a routine

approach to monitor daily sleep, whether for care or for research

purposes, it is important to conduct performance evaluation of

devices and algorithms compared to a gold standard reference such

as PSG. Furthermore, researchers now know the importance of

conducting those analytical and clinical evaluations across diverse

and representative populations, such as participants with different

ages or skin tones, to increase confidence in the generalizability of

the results (Colvonen et al., 2020; Baumert et al., 2023; Nelson et al.,

2020).

This study evaluated the performance of the Verily Study

Watch (VSW, a wrist-worn wearable) to monitor sleep in a

diverse cohort of sleepers without obstructive sleep apnea (OSA) or

elevated insomnia symptoms, by comparing VSW sleep measures

against measures obtained from PSG-based labels. The VSW

classifies every 30-second epoch into 4 sleep-related stages: wake,

light sleep, deep sleep, and rapid eye movement (REM) sleep. These

classifications enable the calculation of multiple sleep measures

that provide information on the quantity and the quality of

an individual’s overnight sleep. In this study, the measures of

interest were: total sleep time (TST), wake after sleep onset

(WASO), sleep efficiency (SE), sleep onset latency (SOL), number

of awakenings (NAWK), and duration of each sleep stage. Our

main objective was to compare epoch-by-epoch VSW- against

PSG- derived classification of sleep-vs.-wake state and of sleep

stages. Additionally, we wanted to assess the VSW’s accuracy for

all computed sleep measures (listed above). Finally, we wanted to

evaluate any potential variability in the performance of the VSW’s

sleep algorithm across demographic factors such as age, sex, body

mass index (BMI), skin tone, and arm hair density.

Methods

Participants

The basic setup and eligibility for the study have been described

elsewhere (Nelson et al., 2024). Eligible participants were between

18–80 years old, and did not have identified symptoms of sleep

disorders based on the following criteria: obstructive sleep apnea

50 (OSA-50) scores <5; insomnia severity index (ISI) <8; Epworth

Sleepiness Scale (ESS) scores <10; no evidence of sleep-disordered

breathing at the PSG evaluation; and apnea-hypopnea index

(AHI) threshold of 5 defining hypopnea as ≥30% reduction

in airflow for ≥10 seconds associated with a ≥3% decrease in

oxygen saturation or an arousal. Individuals were ineligible if

they had a major medical or psychiatric condition, if they used

supplemental oxygen, or were unwilling to cease use of therapy,

such as continuous positive airway pressure or oral appliance for

sleep-disordered breathing during the visit. Additional exclusion

criteria included use of medications that affect sleep (e.g., hypnotics

or antidepressants) or any sleep medications in the previous

24 h; pregnancy, lactation, or breastfeeding; having an implantable

medical device; night-shift work; or travel over 3 time zones within

2 weeks prior to the study.

The study was approved by the WCG Institutional Review

Board (20215892), and all participants provided informed consent.

This study was registered at clinicaltrials.gov (NCT05276362).

Data collection

For each participant, data were collected during a single

overnight stay in a sleep laboratory at a single site (SRI; Menlo

Park, California), between February 14th and September 1st, 2023.

Participants slept in comfortable, sound-proof and temperature-

controlled bedrooms. Standard PSG protocols were used for

preparation, recording procedures, and instrument calibration

(Nelson et al., 2024).

Study watch data

During their overnight visit, participants wore the VSW on

their dominant wrist. This analysis was part of a larger study

including two devices: the Verily Numetric Watch (VNW) (Nelson

et al., 2024), in addition to the VSW. VSW is equipped with two

sensors: a green-light PPG sensor, and a 3-axis accelerometer. Both

sensors had a sampling frequency of 60Hz (in the VNW, the

PPG sensor consists of a green light emitter diode and two PPG

signal channels and the sampling rate of the 3-axis accelerometer is

104 Hz).

The sleep stage classification algorithm consists of a deep

convolutional neural network. The neural network model uses

instantaneous pulse rate as input, which is calculated from the PPG

signal, and predicts a probability distribution over the following

4 sleep stages every 30 seconds: wake, light sleep, deep sleep, and

REM sleep. The model largely consists of regular convolutional

layers that extract local features from the input, and additional

dilated convolutional layers that are used to discover long-range

temporal relationships across the length of the input. This model

was initially trained using 10,000 nights of PSG-labeled data from

the Sleep Heart Health Study (SHHS) and Multi-Ethnic Study

of Atherosclerosis (MESA) public datasets (Sridhar et al., 2020).

The algorithm was later modified to include accelerometer input

as well, and was fine-tuned using a smaller polysomnography

dataset collected at SRI, consisting of 30 nights of PSG-labeled data.

This was a separate dataset from the one used for performance

evaluation in this paper.

Frontiers in Sleep 02 frontiersin.org

https://doi.org/10.3389/frsle.2024.1481878
http://clinicaltrials.gov
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Saeb et al. 10.3389/frsle.2024.1481878

The overnight sleep measures, including TST, WASO, SE, SOL,

NAWK, and sleep stage durations (Supplementary Table 1), for

each participant were calculated using the VSW’s predicted sleep

stages, from the time the lights were turned off (“lights-off”) to the

time lights were turned back on (“lights-on”). VSW start time was

synced to the Lights Off time recorded on PSG to ensure alignment

for analysis of simultaneously recorded signals, using procedures

described elsewhere (Nelson et al., 2024; de Zambotti et al., 2019).

Reference data

Standard laboratory PSG sleep assessment including

electroencephalography (EEG), submental electromyography

and bilateral electrooculography was performed according to

the American Academy of Sleep Medicine (AASM) guidelines.

Leg movement, electrocardiography (ECG), respiratory, and

oxygen saturation signals were also collected and used to

confirm the absence of sleep disordered breathing. All recordings

were performed using the Compumedics Grael
R©
HD-PSG system

(Compumedics, Abbotsford, Victoria, Australia). Two independent

sleep scorers labeled every 30-second epoch of the PSG data by

one of the following categories: wake, N1, N2, N3, and REM.

Inter-rater reliability (Kappa) between the two scorers was 91%,

and discrepancies were resolved by a third scorer.

For this analysis, PSG stages N1 and N2 were combined into a

single light sleep category, and PSG N3 was termed deep sleep.

Similar to VSW, for each participant, the overnight sleep

measures for PSG were calculated using the sleep scorer’s stage

labels from lights-off to lights-on.

Performance evaluation

Performance evaluation was done based on an existing

standardization framework (Menghini et al., 2021).

We evaluated the epoch-by-epoch performance of VSW’s sleep

stage classification against PSG in two ways: (1) sleep vs. wake

classification, using sleep as the positive class; and (2) 4-class

(wake, light, deep, and REM) sleep stage classification. For the

evaluation of sleep vs. wake classification, we estimated sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV).We calculated the 95%CI using cluster bootstrapping,

and we accounted for the clustering of epochs within a participant

using logistic mixed-effect regression models with the participant

as random effect. For the 4-class stage classification, we used

Cohen’s kappa and accuracy along with their 95% bootstrapped

CIs. Additionally we evaluated performance for each sleep stage

by reporting Cohen’s Kappa, accuracy, PPV, and sensitivity using

the average method (Menghini et al., 2021). To obtain performance

metrics on each sleep stage, the outcomes were dichotomized

to the sleep stage of interest against all others. The average

method calculates kappa for each individual participant and then

averages out the kappa across all participants with their associated

bootstrapped 95% CIs. All analyses were confined to the lights-off

to lights-on period.

TABLE 1 Performance of VSW’s sleep vs. wake classification against PSG

reference.

Sensitivity
(95% CI)

Specificity
(95% CI)

NPV
(95% CI)

PPV
(95% CI)

Sleep vs.

Wake

0.97 (0.96,

0.98)

0.70 (0.66,

0.74)

0.83 (0.78,

0.88)

0.93 (0.92,

0.95)

CI, Confidence Interval; NPV, Negative Predictive Value; PPV, Positive Predictive Value.

TABLE 2 VSW’s performance in 4-class sleep stage detection against the

PSG reference.

Sleep
stage

Kappa
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

Sensitivity
(95% CI)

Overall 0.64 (0.18,

0.82)

0.78 (0.58,

0.89)

NA NA

Wake 0.70 (0.43,

0.90)

0.92 (0.76,

0.98)

0.82 (0.51,

0.98)

0.71 (0.45,

0.94)

Light 0.60 (0.29,

0.78)

0.80 (0.66,

0.89)

0.80 (0.55,

0.91)

0.81 (0.59,

0.94)

Deep 0.66 (0.17,

0.91)

0.92 (0.84,

0.98)

0.69 (0.09,

0.97)

0.77 (0.37,

0.98)

REM 0.74 (0.38,

0.90)

0.92 (0.82,

0.98)

0.76 (0.44,

0.96)

0.84 (0.47,

0.99)

CI, confidence interval; PPV, Positive Predictive Value; REM, Rapid Eye Movement.

For evaluating the performance of all overnight sleep measures

except NAWK, we performed the Bland Altman analysis,

estimating the mean bias and lower and upper limits of agreement,

testing for the assumptions of proportional bias, heteroscedasticity,

and normality. For NAWK, we estimated the mean and median

count difference and linearly weighted Cohen’s kappa with their

95% CIs.

Finally, we evaluated all performance metrics across the

participant subgroups, including age, sex, BMI, skin tone, arm hair

index. For subgroups with insufficient number of samples (<10),

we did not evaluate the performance.

All analyses were performed with R version 4.3.1 (2023-06-16).

Results

There were 41 adult participants (18 male, age range: 18–78

years) in this study. Participants had a diverse range of skin tones,

BMI, and arm hair density (Supplementary Table 2).

VSW estimated sleep stages for a total of 38,796 epochs with

data collected between lights-off and lights-on for each participant.

The sensitivity (95%CI) of the VSW in classifying sleep vs. wake

was 0.97 (0.96, 0.98), specificity (95% CI) was 0.70 (0.66, 0.74), PPV

(95% CI) was 0.93 (0.92, 0.95), and NPV (95% CI) was 0.83 (0.78,

0.88) (Table 1).

The accuracy (95% CI) of the VSW sleep algorithm in

classifying all 4 sleep stages was 0.78 (0.58, 0.89), and the kappa

(95% CI) was 0.64 (0.18, 0.82) (Table 2). There was variability

in the performance across different sleep stages, with light sleep

stage prediction having the lowest accuracy (Table 2), as there were

instances of confusion between the light sleep stage and all other

stages (Supplementary Table 3).
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TABLE 3 Performance of VSW overnight sleep measures against PSG reference.

Measure Mean Assumptions Proport. bias Lower LOA Upper LOA

PSG (SD) VSW (SD) Bias (95% CI) Estimate 95% CI Estimate 95% CI Estimate 95% CI

TST (min) 384.98 (60.85) 398.98 (49.04) 14.00 (5.55, 23.20) Prop Bias= T

Normality= F

Heteroscedastic= F

125.51+

−0.29 x PSG

Intercept=

[65.50, 186.28]

Slope= [−0.45,

−0.14]

−9.04 [−87.36, 18.83] 105.04 [26.76, 133.36]

WASO (min) 62.72 (49.97) 49.60 (38.73) −13.12 (−21.33,

−6.21)

Prop Bias= T

Normality= F

Heteroscedastic= F

7.11+−0.32

× PSG

Intercept=

[−3.68, 15.8]

Slope= [−0.51,

−0.10]

Bias - 2.46

(1.32+ 0.18×

PSG)

Intercept=

[−2.91, 6.58]

Slope= [0.06,

0.27]

Bias+ 2.46

(1.32+ 0.18×

PSG)

Intercept=

[−2.91, 6.58],

Slope= [0.06,

0.27]

SE (%) 81.69 (11.71) 84.67 (9.01) 2.97 (1.25, 4.84) Prop Bias= T

Normality= F

Heteroscedastic=

T

30.04+−0.33

× PSG

Intercept=

[14.81, 42.28]

Slope= [−0.47,

−0.16]

Bias - 2.46

(11.98+

−0.11 x PSG)

Intercept=

[4.19, 21.56],

Slope=

[−0.22,−0.02]

Bias+ 2.46

(11.98+

−0.11× PSG)

Intercept=

[4.19, 21.56],

Slope= [−0.22,

−0.02]

SOL (min) 25.43 (20.37) 24.09 (19.73) −1.34 (−7.29, 4.81) Prop Bias= T

Normality= F

Heteroscedastic= F

11.7+−0.51

× PSG

Intercept= [3.28,

21.81]

Slope= [−0.86,

−0.15]

−44.21 [−84.21,−7.38] 34.21 [−5.59, 70.51]

Light (min) 240.65 (49.27) 242.56 (43.83) 1.91 (−8.28, 11.98) Prop Bias= T

Normality= T

Heteroscedastic= F

83.34+−0.34

× PSG

Intercept=

[40.42, 123.65]

Slope= [−0.51,

−0.17]

−25.06 [−119.66,−10.10] 107.06 [12.69, 122.06]

Deep (min) 63.39 (27.19) 68.62 (20.12) 5.24 (−3.35, 14.13) Prop Bias= T

Normality= T

Heteroscedastic= F

54.33+−0.77

× PSG

Intercept=

[40.81, 67.44]

Slope= [−0.95,

−0.60]

−72.30 [−97.21, 3.10] 39.31 [14.51, 114.76]

REM (min) 82.49 (25.46) 88.88 (23.60) 6.39 (−0.68, 13.18) Prop Bias= T

Normality= T

Heteroscedastic= F

45.69+−0.48

× PSG

Intercept=

[26.79, 69.87]

Slope= [−0.78,

−0.24]

−21.48 [−84.16,−3.21] 68.48 [5.91, 86.55]

Measure PSG
mean (SD)

VSW mean (SD) Mean di�erence (95% CI) PSG median VSW median Median di�erence (95% CI) Linear weighted kappa
(95% CI)

NAWK

(count)

2.17 (1.96) 1.88 (2.31) 0.05 (−0.42, 0.53) 1 1 0.0 (0.0, 0.0) 0.58 (0.41, 0.71)

CI, confidence interval; LOA, Limits of Agreement; NAWK, Night Awakenings; PPV, Positive Predictive Value; PSG, Polysomnography; REM, Rapid Eye Movement; SD, Standard Deviation; SE, Sleep Efficiency; SOL, Sleep Onset Latency; TST, Total Sleep Time;

VSW, Verily Study Watch; WASO, Wake After Sleep Onset.
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FIGURE 1

Bland-Altman plots of overnight sleep measures for the device (VSW) against the reference (PSG). Solid red lines indicate mean bias, dotted red lines

indicate 95% CI of mean bias, solid gray lines indicate the 95% LOAs, and dotted gray lines indicate 95% CI of LOAs. Black dots are observations. CI,

confidence interval; REM, Rapid Eye Movement; SD, Standard Deviation; SE, Sleep E�ciency; SOL, Sleep Onset Latency; TST, Total Sleep Time;

WASO, Wake After Sleep Onset.

Mean bias and 95% CI values for all overnight sleep

measures is shown in Table 3. Bland-Altman analyses

(Figure 1) showed that all measures had significant

proportional bias, with the VSW overestimating the

measures at the lower end of the distribution, and

underestimating them at the upper end, relative to the

PSG. For all overnight sleep measures except the sleep stage

durations, the assumption of normality was false, and for

all measures except SE the assumption of homoscedasticity

was true.

Performance of the VSW metrics across demographic

subgroups of age, sex, BMI, skin tone, and arm hair density are

reported (Supplementary Tables 4, 5) without formal statistical

testing, due to small subgroup sample size.

Discussion

The results of this study show the ability of the VSW to capture

information related to sleep quantity and quality, as well as the
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distribution of sleep stages across overnight periods in individuals

without OSA or elevated insomnia symptoms. The sensitivity and

specificity of the VSW in classifying sleep vs. wake were 0.97

and 0.70 respectively, and the Cohen’s kappa for the 4-class stage

classification was 0.64. This performance supports the application

of the VSW to monitor overnight sleep in free-living settings.

As with other wearable sleep-wake detection devices (Pesonen

and Kuula, 2018; de Zambotti et al., 2016; Miller et al., 2022),

the sleep algorithm in this study was more likely to miss wake

than sleep, as reflected in the higher sensitivity relative to

specificity, and the positive and negative bias values for TST and

WASO, respectively. When evaluating the performance of sleep

monitoring devices, the AASMhas established a range of “allowable

differences,” based on actigraphy studies conducted in patients with

specific sleep disorders (e.g., insomnia; Smith et al., 2018). The

95% CIs of the mean bias estimates for TST, WASO, SOL, and

SE measured by the VSW were within those allowable difference

ranges (40min, 30min, 30min, and 5%, respectively). However,

for the proportional mean bias estimates, which account for

variations in bias over the range of measurement, 95%CIs exceeded

these thresholds at lower and higher ends of the measurements

(Figure 1). Nonetheless, applying the AASM standards to these

results may require caution. Unlike the studies included in the

AASM assessment, the present study excluded (via questionnaire)

participants with symptoms of certain sleep disorders.

There are a few caveats to consider when interpreting our

results. First, data collection for this study took place at a sleep

laboratory, with standardized study boundaries and settings, such

as lights-on/off to define the “in bed” time period when an

individual is (in theory) set to sleep. Free-living environments are

more organic and complex, and the generation of sleep measures

in them may require additional layers of data. Following the prior

example, defining “in bed” time may necessitate additional sensor

readings, which then would be integrated into the derivation of

the measures, particularly sleep stage classification and duration,

or SOL. Second, the sleep stage classification had variable accuracy

when compared to PSG, albeit on par with other wearable devices

(Chinoy et al., 2021; Schyvens et al., 2024). Future research should

continue to refine sleep stage classification to improve its accuracy

and agreement with PSG.

Another caveat is that participants in this study were free

of sleep-related diagnoses and symptoms (such as OSA or

heightened insomnia symptoms). Participants with certain clinical

conditions may manifest different patterns in their biological

signals (e.g., pulse rate) and/or sleep architecture, which could

complicate the sleep stage classification task. Future studies

should evaluate the performance of VSW in real-world settings

and in clinically relevant populations such as individuals with

sleep disorders.

In summary, we evaluated the performance of the VSW and its

algorithm to classify sleep vs. wake state and the four different sleep

stages in sleepers without OSA or heightened insomnia symptoms,

as well as a series of measures that illustrate the quantity and

quality of overnight sleep. The results demonstrate the potential of

VSW to classify sleep vs. wake states and sleep stages and compute

overnight sleep measures when compared to gold-standard PSG

measurements. These findings support further application of the

VSW “sleep vs. wake” classification and all derived sleep metrics

from this measure (TST, WASO, SOL, SE, and NAWK) for

tracking the overnight sleep behaviors in individuals without OSA

or heightened insomnia symptoms in free-living settings. The

performance of VSWon individuals withmore disrupted sleep such

as OSA is yet to be evaluated.
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