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Here, we aimed to clarify the factors that cause individual di�erences in manual

spindle detection during sleep by comparing it with automatic detection and

to show the limitations of manual detection. Polysomnography (PSG) signals

were recorded from ten young male participants, and sleep stages were

classified based on these signals. Using time-frequency analysis, we detected

sleep spindles from the single-channel electroencephalography (EEG) of C4-

A1 within the same PSG data. Our results show a detailed accuracy evaluation

by comparing the two skilled scorers’ outputs of automatic and manual

sleep spindle detection and di�erences between the number of sleep spindle

detections and spindle time length. Additionally, based on automatic detection,

the distribution of Cohen’s kappa for each scorer quantitatively showed

that individual scorers had detection thresholds based on EEG amplitude.

Conventionally, automatic detection has been validated using manual detection

outputs as the criterion. However, using automatic detection as the standard

and analyzing the manual detection outputs, we quantitatively showcased the

di�erences in individual scorers. Therefore, our method o�ers a quantitative

approach to examining factors contributing to discrepancies in sleep spindle

detection. However, individual di�erences cannot be avoided when using

manual detection, and automatic detection is preferable when analyzing data

to a certain standard.

KEYWORDS

sleep EEG, sleep spindle, manual detection, discrepancies between individuals,

automatic detection

1 Introduction

Manual sleep analysis remains the prevailing standard despite substantial

advancements and research in automated sleep analysis. Sleep analysis is usually

performed in 30-s epochs corresponding to sleep stages called polysomnography (PSG).

Lee et al. (2022) surveyed 101 references and showed the robustness of the reliability of
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manual determination of sleep stages using PSG. However, they

also showed low accuracy for specific sleep stages, such as sleep

stage N1. Notably, numerous publications have explored sleep

analysis methods using a few signals and evaluating their accuracy

by comparing them with PSG. PSG requires ∼1,000 sleep stage

classifications for a single night of data. Even for epoch units,

Lee et al. report that the unification of criteria among scorers is

difficult. Therefore, it is necessary to reduce the effort of manual

judgment; however, sleep research should also consider using

comparable indices that do not depend on the datasets. Thus, sleep

analysis techniques using objective indices based on physiological

mechanisms should be established.

During sleep, electroencephalography (EEG) exhibits several

characteristic waves. Typical examples include the delta, alpha,

and K-complex waves, which occur during slow wave sleep, eye

closure, and sleep stage N2, respectively. Sleep spindles manifest

during sleep stage N2 and are characterized by small amplitudes

and durations of >0.5 s. Animal experiments have revealed

that sleep spindles during light sleep are attributed to periodic

inhibition of thalamocortical circuits by neural activity from the

thalamic reticular nucleus, resulting in rhythmic activity (Llinás

and Steriade, 2006). The American Academy of Sleep Medicine

(AASM) manual states that “train of distinct waves with frequency

11–16Hz (most commonly 12–14Hz) with a duration > 0.5 s,

usually maximal in amplitude using central derivations” (Berry

et al., 2016). Furthermore, it has been reported that during light

sleep, external stimuli such as sensory, visual, and auditory stimuli

can induce sleep spindles and increase their density and length

(Sato et al., 2007). These reports suggest a correlation with cranial

nerve function activity levels. Therefore, given the physiological

significance of sleep spindle detection and its properties outlined in

the reports above, sleep spindle detection technology is promising

for advancing our understanding of sleep. Furthermore, sleep

spindle density is reportedly associated with various physiological

and pathological conditions and diseases, indicating its potential

as an indicator. In patients with Parkinson’s disease, sleep spindle

density is reduced, sleep spindle length is prolonged, sleep spindle

frequency is reduced, and maximum peak-to-peak amplitude is

increased compared with controls. Additionally, an increase in

maximum peak-to-peak amplitude has been reported compared

with controls (Christensen et al., 2015). Furthermore, sleep spindle

density has been associated with the progression of the pathology

of narcolepsy, suggesting its association with cranial nerve function

activity levels (Christensen et al., 2017). Additionally, sleep spindle

density is reportedly associated with the duration of sleep stage

N2 and recovery. Furthermore, it is associated with intelligence,

suggesting its potential as an intelligence marker and a marker

for assessing cognitive dysfunction and dementia (Sato et al.,

2007). The sleep spindle density increased by an average of 30%

during the first 90min of sleep onset after learning in 11 of 13

participants (Gais et al., 2002). In addition, it has been associated

with daytime activity and implicated in memory consolidation

(Laventure et al., 2016). Therefore, if sleep spindle density and

length can be accurately measured, the state of cognitive function

and memory consolidation can then be examined.

Detecting individual sleep spindle periodic waveforms of

>0.5 s as with PSG proves to be time-consuming and expensive,

thus hindering sleep research involving large-scale data analysis.

Therefore, it is essential to promote automatic sleep spindle

detection methods. Notably, some reports have shown the accuracy

of automatic detection of sleep spindles. Wendt et al. (2015)

concluded that automatic motion detection of sleep spindles

has sufficient test-retest reliability. However, Wendt et al. also

argue that there is a challenge to the acceptance of automatic

detection of sleep spindles as a standard. Therefore, the sources

of discrepancies between automatic and manual detection must

be identified and resolved. This issue is a necessary consideration

when establishing automatic sleep spindle detection technology.

In addition, O’Reilly and Nielsen (2015) conducted a detailed

investigation into the accuracy of sleep spindle detection by scorers

across multiple databases, providing valuable insights for sleep

spindle detection. They also provided essential implications for

sleep spindle detection. First, they showed that there are significant

confounding factors between scorers and databases. They also

stated that sleep spindles are relatively sparse phenomena within

the EEG signal and highlighted that sensitivity and specificity

alone are insufficient for evaluating accuracy. Therefore, they

recommended the use of comprehensive statistics such as the

F1-score and Cohen’s kappa.

Furthermore, the inherent discrepancies among scorers in

manual detection add complexity to sleep research (Kaulen et al.,

2022). Thus, solving the above problems and developing a

standardized automatic detection algorithm could reduce the cost

of sleep spindle detection, increase time efficiency, and ensure

reproducibility. Therefore, there is a need to determine the causes

of discrepancies in manual detection and feed them back into the

automatic detection technology.

Consequently, we aimed to clarify the factors that cause

individual differences in manual spindle detection during sleep

by comparing it with the automatic detection method using the

Complex Demodulation Method (CDM) and show the limitations

of manual detection.

2 Methods

2.1 Participants

Ten healthy young male participants were enrolled in this

study, and their characteristics are presented in Table 1. The

participants had a mean age of 21.3 ± 0.7 years [mean ± standard

deviation (SD)] and a mean body mass index of 24.3 ± 3.8

kg/m2. The participants had no history associated with sleep

disorders. Furthermore, their total sleep time (TST) and sleep

efficiency were 6:53:03 ± 0:51:42 and 84.9 ± 10.5%, respectively.

The Apnea Hypopnea Index (AHI) was 2.3± 1.5. The participants

were instructed to avoid intense exercise and abstain from

alcohol, drugs, and caffeine intake starting from the day before

the experiment. They were provided with detailed information

about the experiment, including its procedures, potential benefits,

and risks.

2.2 PSG recording and scoring

A SOMNOscreenTM
R©
from SOMNOmedics was used as the

PSG recording device. The weight of the device itself was 206 g.

The sensors were attached to the participants, and they included
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TABLE 1 The characteristics and sleep parameters of the 10 participants.

ID Age
(years)

Height
(cm)

Weight
(kg)

BMI (kg/m2) AHI TST
(hh:mm:ss)

Sleep e�ciency
(%)

1 21 165 79.0 29.0 4.1 6:13:30 76.7

2 21 177 63.0 20.1 0.6 6:31:30 80.5

3 21 163 70.9 26.7 3.0 7:45:00 95.7

4 21 168 55.1 19.5 1.0 7:16:00 89.4

5 20 169 62.7 22.0 3.9 7:39:00 95.2

6 21 166 63.4 23.0 0.4 6:50:00 85.0

7 22 173 77.7 26.0 1.2 7:33:59 93.4

8 22 172 86.6 29.3 2.9 7:41:30 92.6

9 22 169 78.5 27.8 4.4 6:11:30 77.1

10 22 175 61.5 20.1 1.4 5:08:30 63.4

21.3± 0.7 169.7± 4.5 69.8± 10.2 24.3± 3.8 2.3± 1.5 6:53:03± 0:51:42 84.9± 10.5

(Mean± SD)

EEG, electrooculogram, electromyography (EMG) of the mentalis

muscle, airflow, snore, ECG, thoracic and abdominal movement,

SpO2, and EMG of the anterior tibialis muscle. The sampling

frequency for each signal can be adjusted from 4 to 512Hz. The

sampling frequency of the EEG was set at 256 Hz.

The participants were instructed to arrive at the laboratory

at 21:00. They filled out a questionnaire and provided biometric

information, such as height and weight. Subsequently, the various

sensors for PSG were attached. Once the preparation was

completed, the participants commenced their sleep period in

the designated recording room. The bedtime ranged from 22:00

to 23:00, and the waking time ranged from 6:00 to 7:00. The

total sleep duration exceeded 8 h for all participants. Notably,

the participants were permitted to move freely during recording

owing to the separation between the transmitter and the receiver.

Their biomedical signals were recorded on a CompactFlash card

inserted into the transmitter and transmitted through Wi-Fi to the

monitoring room.When it was time to wake up, the examiner asked

the participants to get up, and the recording was stopped.

An experienced scorer with over 10 years of analysis expertise

classified the sleep stage from the PSG signals. The analysis software

used was DOMINO
R©
from SOMNOmedics. The rules for scoring

the sleep stages adhered to the guidelines outlined in the AASM

Manual version 2.3 for the Scoring of Sleep and Associated Events

(Berry et al., 2016).

2.3 The procedures of automatic and
manual decision for sleep spindle

First, two skilled scorers (Scorer A: 10 years of experience

in sleep EEG analysis in a medical institution and Scorer B:

7 years of experience in sleep EEG analysis in a medical

institution) performed manual detection of sleep spindles. The

manual detection process followed the guidelines outlined in the

AASM scoring manual (Berry et al., 2016). The DOMINO
R©

software displayed all signals recorded within a 30-s epoch on the

computer screen to detect the sleep spindles. Sleep spindle onset

and endpoints were determined through mouse operation, and

manual detections used the single EEG channel at C4-A1.

Automatic detection extracted sleep spindles from the same

single-channel EEG signals as manual detections using CDM, a

time-frequency analysis method for evaluating the amplitude of a

specific frequency in a signal (Bloomfield, 1976; Zeitlhofer et al.,

1997; De Gennaro and Ferrara, 2003). The CDM was used for the

automatic extraction of sleep spindles because, unlike the short-

time Fourier transform, the CDM has the advantage of being able

to freely select time and frequency resolution within the time-

frequency analysis. Notably, there are several reports on using

CDM to detect sleep spindles (Kumar et al., 1979; Hao et al., 1992),

and it has recently been used to automatically detect sleep spindles

(Ray et al., 2015).

As discussed in Section 1, the AASM manual states, “train

of distinct waves with frequency 11–16Hz (most commonly 12–

14Hz) with a duration > 0.5 s, usually maximal in amplitude using

central derivations” (Berry et al., 2016). Therefore, the frequency

bandwidth of sleep spindles is generally recognized as 11–16Hz.

However, as noted in the AASM manual, the central band of

sleep spindles is 12–14Hz. Therefore, there has been more detailed

research on sleep spindles, with slow spindles around 12Hz and fast

spindles around 14Hz, based on the differences in physiological

significance (Tamaki et al., 2008). In addition, the bandwidth of

11Hz overlaps with the alpha waves, and 16Hz overlaps with the

beta waves; therefore, limiting the frequency to 12–14Hz reduces

the influences from alpha and beta waves. Thus, in the automatic

detection in this study, we decided to extract sleep spindles in the

12–14 Hz range.

The EEG signals from the electrodes of C4-A1, the parietal

EEG, were employed to analyze the EEG using CDM. Figure 1a

shows the sleep spindles in a segment of a single-channel EEG,

whereas Figure 1b exhibits the spectrogram obtained by applying
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FIGURE 1

CDM amplitude distributions to sleep spindles: (a) an EEG with spindle occurrence marked by a red line, (b) the time-frequency distribution with

CDM from the EEG in (a).

FIGURE 2

Sleep spindle detection using the CDM method: (a) the CDM distribution for a specific period; (b) the time series of the highest CDM amplitudes

within the 12–14Hz range.
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FIGURE 3

The horizontal axis of the figure shows the respective threshold values, and the vertical axis shows Cohen’s kappa of manual and automatic detection

(a, b) shows Cohen’s kappa between Scorers A and B. The box-and-whisker diagram in the figure shows, from top to bottom, the maximum, third

quartile, median, first quartile, and minimum values. The squares within the boxes indicate the average values, and the circles represent Cohen’s

kappa values for each participant.

CDM to the occurrences of the sleep spindles. CDM reveals the

analysis detections within the frequency range of 12–14Hz (the

range between the white dotted lines in Figure 1b), corresponding

to the appearance of sleep spindles. CDM shows a bright-colored

response in the region where the sleep spindles appear.

The maximum amplitude value within the frequency band

of 12–14Hz was selected for each sample. Therefore, using

the maximum amplitude value instead of the mean amplitude

helps increase the variability of the values and facilitates the

differentiation between the presence and absence of sleep spindles.

Subsequently, if the maximum amplitude value, like Figure 2 of a

sample, exceeds a specific threshold, the sample is classified as part

of a sleep spindle. This procedure is referred to as automatic sleep

spindle detection. The detailed threshold value setting is described

in the Section 3.

Regarding the detected outputs, we compared manual

detections from the two scorers and automatic detection, varying

the threshold for detecting sleep spindles based on the CDM

analysis detections. We aimed to determine the threshold value

at which Cohen’s kappa was maximized for each scorer. We also

evaluated the Recall, Precision, and F1-score for manual detection

vs. automatic detection.

Furthermore, we initially compared the manual detection

outcomes between the two scorers. Cohen’s kappa coefficient

was calculated to assess the agreement of sleep spindle detection

between the scorers. Additionally, the number of sleep spindles

detected by each scorer and the duration of the detected

sleep spindles were compared. A cross-tabulation evaluation was

conducted, where areas identified as sleep spindles were assigned a

value of 1, and those not identified were assigned a value of 0.

Frontiers in Sleep 05 frontiersin.org

https://doi.org/10.3389/frsle.2024.1427540
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Tamamoto et al. 10.3389/frsle.2024.1427540

FIGURE 4

Sleep spindle detection and comparison for ID 7: (a) sleep architecture diagram with PSG; (b) the binary decisions on the automatic and manual

spindle detection, 1 for presence and 0 for absence.

3 Results

3.1 Comparison between automatic and
manual detection

The authors compared the outputs of manual and automatic

detection of sleep spindles. Threshold values for estimating sleep

spindles were determined from the maximum amplitude values in

the 12–14Hz frequency band extracted from the CDM. Initially,

threshold values were set in increments of 0.5 µV within 5.0–

13.0 µV. Sleep spindles for the 10 participants were detected

at each threshold value. For sleep spindles detected using CDM

(based on exceeding the threshold of CDM) at each threshold,

the agreement between the CDM and the manually detected sleep

spindles was evaluated using Cohen’s kappa. Figure 3a illustrates

Cohen’s kappa values for Scorer A in manual and automatic

detection, whereas Figure 3b displays Cohen’s kappa values for

Scorer B. The median Cohen’s kappa value for manual detection

at each automatic detection threshold was greater than that

for Scorer A when the threshold was set at 11.0 µV and for

Scorer B when the threshold was set at 8.0 µV. Compared

with Scorer A, Scorer B tended to detect sleep spindles of

smaller amplitude. Table 2 shows the details of the number and

duration of each detection, with the threshold set at 11.0 and

8.0 µV, respectively.

The authors also evaluated the agreement between scorers A

and B and the automatic detection; a threshold for the CDM

analysis was set at 10 µV based on the general definition.

Consequently, Cohen’s kappa between Scorer A and automatic

analysis was 0.48 ± 0.10, and that between Scorer B and automatic

analysis was 0.34± 0.14. Furthermore, as shown in Table 3, the F1-

score between Scorer A and automatic detection was 0.49 ± 0.10,

and that between Scorer B and automatic detection was 0.36± 0.14.

3.2 Inter-scorers comparison

Two skilled scorers performed manual detection of sleep

spindles for the 10 participants. Examples of sleep stage

determination by Scorer A and manual and automatic detection

are shown in Figure 4. The Cohen’s kappa for the two detections

yielded moderately consistent results at 0.41 ± 0.10. Table 4 shows

the details of the number of detection counts and times for each

detection. The average number of sleep spindles detected was 537.9

± 267.0 and 1,275.9 ± 347.5 for Scorers A and B, respectively, in

the 10 participants, with Scorer B detecting ∼2.4 times more sleep

spindles than Scorer A. The average duration of the detected sleep

spindles was 0.96± 0.15 s for Scorer A and 1.04± 0.05 s for Scorer

B, with no significant difference in the paired t-test (p = 0.15). The

maximum duration of the detected sleep spindles was 1.79± 0.40 s

for Scorer A and 2.27± 0.27 s for Scorer B in the average of 10 male

participants, and the paired t-test showed a significant tendency

for Scorer B to detect even longer sleep spindles (p < 0.05). The

minimum duration of the detected sleep spindles was 0.54 ± 0.04 s

for Scorer A and 0.51 ± 0.00 s for Scorer B. Furthermore, the

minimum duration for Scorer B was also the same value; thus, the

SD was 0. Therefore, the t-test could not be applied. This may be
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TABLE 2 The sleep spindle decision by scorers A and B for the participants.

ID Count Average duration (s) Maximum duration (s) Minimum duration (s)

Automatic
detection
threshold
11.0 µV

Automatic
detection
threshold
8.0 µV

Automatic
detection
threshold
11.0 µV

Automatic
detection
threshold
8.0 µV

Automatic
detection
threshold
11.0 µV

Automatic
detection
threshold
8.0 µV

Automatic
detection
threshold
11.0 µV

Automatic
detection
threshold
8.0 µV

1 242 1,019 0.72 0.81 1.95 2.60 0.50 0.50

2 519 1,618 0.79 0.88 3.13 4.03 0.50 0.50

3 909 1,945 0.87 0.97 2.22 3.75 0.50 0.50

4 886 2,257 0.72 0.82 1.80 4.26 0.50 0.50

5 328 992 0.73 0.82 1.71 2.21 0.50 0.50

6 260 1,112 0.69 0.78 1.64 3.44 0.50 0.50

7 478 1,334 0.79 0.85 3.89 7.02 0.50 0.50

8 989 2,066 0.86 0.99 2.29 4.38 0.50 0.50

9 123 618 0.69 0.76 1.68 2.75 0.50 0.50

10 432 1,190 0.86 0.91 4.26 7.00 0.50 0.50

Mean± SD 516.6± 308.0 1415.1± 534.9 0.77± 0.07 0.86± 0.08 2.46± 0.96 4.14± 1.67 0.50± 0.00 0.50± 0.00

p-value 0.87 0.49 0.002∗∗ 0.00001‡ 0.06 0.0026‡ 0.0096∗∗ 2.6E-12‡

∗∗p<0.01 vs. scorer A, ‡p<0.01 vs. scorer B in this table with the paired t-test.

Two extraction thresholds were adopted: 11.0 µV, which had the highest Cohen’s kappa with the extraction by Scorer A, and 8.0 µV, which had the highest Cohen’s kappa with the extraction by Scorer B.
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TABLE 3 Precision, recall, F1-score, and Cohen’s kappa for manual detection by two skilled scorers’ decisions and for automatic decisions in ten

participants.

Precision Recall F1-score Cohen’s kappa

Scorer A vs. auto 0.51± 0.15 0.54± 0.18 0.49± 0.10 0.53± 0.09

Scorer B vs. auto 0.64± 0.14 0.27± 0.14 0.36± 0.14 0.48± 0.09

Scorer A vs. scorer B 0.29± 0.09 0.79± 0.10 0.42± 0.10 0.41± 0.10

(Mean± SD)

TABLE 4 The sleep spindle decision by scorers A and B for the participants.

ID Count Average duration (s) Maximum duration (s) Minimum duration (s)

Scorer A Scorer B Scorer A Scorer B Scorer A Scorer B Scorer A Scorer B

1 318 974 1.18 1.03 1.89 2.21 0.63 0.51

2 281 848 1.18 0.99 2.64 1.98 0.59 0.51

3 377 1,657 1.13 1.03 2.24 2.87 0.55 0.51

4 1,113 1,959 0.93 0.95 1.57 2.04 0.55 0.51

5 500 1„292 0.92 1.04 1.73 2.11 0.51 0.51

6 733 1,274 0.85 1.02 1.65 2.28 0.51 0.51

7 492 1,407 0.83 1.05 1.38 2.08 0.51 0.51

8 799 1,359 0.95 1.15 1.89 2.36 0.51 0.51

9 303 899 0.82 1.10 1.34 2.25 0.51 0.51

10 463 1,090 0.83 1.02 1.54 2.52 0.51 0.51

537.9± 267.0 1,275.9±

347.5

0.96± 0.15 1.04± 0.05 1.79± 0.40 2.27± 0.27 0.54± 0.04 0.51± 0.00

(Mean± SD)

because the AASM rules define sleep spindles as≥0.5 s, and Scorers

intentionally extracted spindles > 0.5 s.

Table 5 shows a cross-tabulation table of sleep spindle detection

for the 10 participants. Notably, of the total recording time of

291,887 s for the 10 participants, there were 4,027.8 s during which

both scorers identified the presence of a sleep spindle. Additionally,

there were 1,030.9 s when Scorer A detected a sleep spindle while

Scorer B did not, and 9,172.1 s when Scorer B detected a sleep

spindle while Scorer A did not.

4 Discussion

The authors agree with the opinions of O’Reilly et al. and,

accordingly, present the statistics such as Cohen’s kappa and

F1-score from our study in Table 3. O’Reilly et al. also raised

concerns about the reliability of scorer-based manual scoring as

the definitive gold standard. In this study, we objectively highlight

the noted problems by quantifying individual differences in manual

detections. The findings in Figure 3 indicate that the outcomes

of sleep spindle detection by the two scorers, using the same

automatic detection method, are amplitude-dependent and reflect

variations in scorer individuality. Moreover, Figure 3 provides

statistical insights into the number of sleep spindle detections and

sleep spindle lengths between scorers. Notably, Scorer B detected

more sleep spindles than Scorer A in all participants, highlighting

the influence of amplitude as a criterion.

Table 3 presents the precision, recall, and F1 scores for Scorers

A and B. According to the paired t-test (p < 0.05), Scorer B’s

F1-score was significantly lower than that of Scorer A. Figure 3

highlights an amplitude-dependent variation between the two

scorers, potentially contributing to the observed difference in F1-

scores. Precision, recall, and F1-score were evaluated; however,

none of these metrics showed high values.

In Table 5, the time intervals in which sleep spindles occurred

were sparsely small compared with those in which sleep spindles

did not occur due to the sample-by-sample evaluation. In

addition, manual sleep spindle detection may have been affected

by individual differences in the durations of the sleep spindle

detections. Based on these considerations, we can conclude

that Precision, Recall, and F1-score only show overall values

reflecting the results of various factors and are not suitable

for identifying specific discrepancy factors. Our results reveal

individual differences between the two scorers by varying the

amplitude threshold between automatic and manual detection.

We also evaluated Cohen’s kappa for each manual detection by
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TABLE 5 The cross-tabulation of the sleep spindle decisions between scorers A and B.

Scorer B

1 0 Total

Scorer A 1 4,027.8 s (1.4%) 1,030.9 s (0.4%) 5.058.8 s (1.7%)

0 9,172.1 s (3.1%) 277,656.2 s (95.1%) 286,828.2 s (98.3%)

Total 13,199.9 s (4.5%) 278,687.1 s (95.5%) 291,887.0 s (100.0%)

the two scorers, with the automatic detection as the reference.

From our results, we believe that it would be better not

to rely solely on conventional scorer-dependent criteria. This

approach can identify discrepancy causes using highly reproducible

automatic algorithms.

Furthermore, we would like to discuss the issue described by

Wendt et al. The issue is identifying the factors contributing to

automatic andmanual detection differences. Notably, many reports

on accuracy verification have compared automatic detection output

with manual detection. Wendt et al. present the agreement rates

for manual detection within and between scorers for 24 registered

polysomnography technologists: Cohen’s kappa was 0.66 ± 0.07.

However, according to this paper, Cohen’s kappa in the sample-

by-sample evaluation among the scorers was 0.52 ± 0.07. In this

study, Cohen’s kappa was 0.41 ± 0.10, which is a lower agreement

compared with the results of Wendt et al. A possible cause of

the false negatives based on automatic detection is inferred to be

the difficulty in identifying during classification waveforms that

overlap with K-complex and baseline fluctuations. Waveforms

with large amplitude fluctuations in the frequency band close to

sleep spindles, such as arousal responses, could also have been

detected erroneously. As for false positives, the average duration in

Tables 2–4 shows that the average duration for manual detection is

significantly longer than that for automatic detection (p < 0.05).

This means that the spindle waveforms with manual detection are

significantly longer than those with automatic detection.

Consequently, the extra length of the spindle waveforms due to

manual detection is detected as an error because they are longer

than those due to automatic detection. This may be the reason

for the lower Cohen’s kappa for manual detection vs, automatic

detection. The sleep spindles in this study were detected from the

entire PSG of each participant, whereas in Wendt’s study, sleep

spindles were detected from 400 segments. The lower agreement

rate may be partly due to the difference in assessment methods.

Differences in the datasets used by different research groups are

a problem for further accuracy evaluation of automatic detection

techniques. O’Reilly et al. have shown that there are significant

confounding factors between datasets. Recently, increasing efforts

have been made to make biometric data publicly available for

evaluation using a standard dataset for accuracy comparisons

(O’Reilly et al., 2014; Devuyst et al., 2011). Therefore, we

plan to examine accuracy evaluation using these datasets in

the future.

The AASM definition of a sleep spindle is a periodic

waveform ranging from 12 to 14Hz, lasting over 0.5 s. Based

on this definition, Wendt et al. state that metrics such as

sleep spindle density are used primarily to verify whether

they adequately reflect physiological events. In this case, an

event-by-event assessment of the presence or absence of sleep

spindles would suffice, even if the length, onset, and end

cannot be accurately estimated. Another study compared manual

sleep spindle detection accuracy in event-by-event assessment

to automatic sleep spindle detection (Warby et al., 2014).

Notably, if only sleep spindle generation and spindle density

are required, then applying event-by-event evaluation to measure

sleep spindle characteristics is acceptable. However, sample-by-

sample evaluation becomes necessary if sleep spindle wavelength

is also required.

Consequently, sleep spindle wavelength, onset,

and end time accuracy can be verified and evaluated

more objectively. In this study, sleep spindle detection

with sample-by-sample evaluation revealed individual

differences between the scorers regarding sleep spindle

duration. Therefore, it can be concluded that sample-by-

sample evaluation provides a more detailed examination

of the characteristics of sleep spindles compared with

event-by-event evaluation.

5 Conclusions

In this study, PSGs from ten young male participants were

recorded, and the output of an automated sleep spindle detection

algorithm using CDMwas compared with the outputs of two skilled

scorers for the C4-A1 single-channel EEG, which was extracted

from the PSGs.

When comparing Cohen’s kappa for the two scorers’ manual

detection while varying the amplitude threshold of the automatic

detection from 5.0 to 13.0 µV, we found that the amplitude

threshold at which Cohen’s kappa reached its maximum was 11.0

µV for scorer A and 8.0µV for scorer B, a difference of 3.0µV. This

result indicates that the two scorers differ in their amplitude criteria

for detecting sleep spindles. Individual differences in manual

extraction are generally acknowledged as inevitable; however, our

results quantitatively and visually revealed amplitude-dependent

differences in detection between the scorers.

Currently, when evaluating the performance of automatic

detection algorithms, the output of manual detection is often used

as a primary standard. However, as shown in this study, we could

not eliminate individual differences between judges. As our data

shows, quantitatively examining the variability in manual detection

results is expected to provide useful insights into the causes of

discrepancies in manual analysis. Furthermore, by using highly

reproducible automatic detection as a reference, more reproducible
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and objective measurements that are not dependent on individuals

can be achieved.
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