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Background: Adherence to positive airway pressure (PAP) therapy for sleep

apnea is suboptimal, particularly in the veteran population. Accurately identifying

those best suited for other therapy or additional interventions may improve

adherence. We evaluated various machine learning algorithms to predict 90-

day adherence.

Methods: The cohort of VA Northeast Ohio Health Care system patients who

were issued a PAPmachine (January 1, 2010–June 30, 2015) had demographics,

comorbidities, and medications at the time of polysomnography obtained

from the electronic health record. The data were split 60:20:20 into training,

calibration, and validation data sets, with no use of validation data for model

development. We constructed models for the first 90-day adherence period (%

nights ≥4h use) using the following algorithms: linear regression, least absolute

shrinkage and selection operator, elastic net, ridge regression, gradient boosted

machines, support vector machine regression, Bayes-based models, and neural

nets. Prediction performance was evaluated in the validation data set using root

mean square error (RMSE).

Results: The 5,047 participants were 38.3 ± 11.9 years old, and 96.1% male,

with 36.8% having coronary artery disease and 52.6% with depression. The

median adherence was 36.7% (interquartile range: 0%, 86.7%). The gradient

boosted machine was superior to other machine learning techniques (RMSE

37.2). However, the performance was similar and not clinically useful for all

models without 30-day data. The 30-day PAP data and using raw diagnoses and

medications (vs. grouping by type) improved the RMSE to 24.27.

Conclusion: Comparingmultiple prediction algorithms using electronicmedical

record information, we found that none has clinically meaningful performance.

Better adherence predictive measures may o�er opportunities for personalized

tailoring of interventions.
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1 Introduction

Obstructive sleep apnea (OSA) affects an estimated 26% of the U.S. population and

47% of veterans with sleep disorders (Peppard et al., 2013; Alexander et al., 2016). OSA

causes daytime dysfunction, decreased quality of life, and increased rates of morbidity and

mortality, particularly in the veteran population (Guggisberg et al., 2007; Alexander et al.,

2016).
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Consistent use of positive airway pressure (PAP) therapy, the

mainstay of therapy, is effective in reversing OSA pathophysiology.

PAP therapy improves blood pressure control, cardiac remodeling,

measures of cardiac electrophysiological derangement, and atrial

fibrillation recurrence after ablation and cardioversion (Bonsignore

et al., 2002; Baranchuk, 2012; Colish et al., 2012; Baranchuk et al.,

2013; Gottlieb et al., 2014; Li et al., 2014; Campos-Rodriguez

et al., 2017). Treatment impacts patient-centered outcomes,

including improved sleep quality, decreased daytime sleepiness,

and improved quality of life. Perhapsmost impressive, OSA therapy

decreased overall health care resource utilization and costs in

Canada, a country with nationalized health care, making the lack of

health care access unlikely to account for the effect (Albarrak et al.,

2005). Taken in toto, therapy for OSA not only decreases morbidity

but may also decrease health care costs.

OSA therapy is effective. However, adherence to PAP therapy

is low-−24% stopped therapy within 3 months, with another

23% being non-adherent with therapy after 1 year (Aloia et al.,

2008). Long known to be a problem, adherence has not improved

substantially over the past 20 years, despite attempts of intensive

interventions (Rotenberg et al., 2016). Patients, providers, and

the health care system would reap enhanced efficiency and cost

savings by identifying and focusing on those most likely to become

non-adherent to therapy.

Although many studies describe associations between patient

characteristics or sleep study data and adherence, to our knowledge,

no predictive model has been developed. Improving prediction

could guide resource allocation and improve outcomes. We

developed, validated, and compared several machine learning

algorithms to predict adherence within the first 90 days

(percentage nights used at least 4 h a night). We hypothesize that

screening for non-adherence can be developed using a subset of

commonly collected electronicmedical record (EMR) variables.We

additionally hypothesize that comorbidities, particularly cardiac

and psychiatric comorbidities, contribute most to adherence

prediction model performance.

FIGURE 1

Study flow: recruitment, attrition, and retention.

2 Methods

2.1 Participants and study design

This retrospective cohort study evaluated adult veteran sleep

medicine clinic patients of the VA (Veterans Administration)

Northeast Ohio Health Care system. There were 5,548 PAP

adherence monitoring records started between January 1,

2010, and June 30, 2015 (Figure 1). Of the 5,174 unique

records, 5,047 were able to be matched with VA electronic

medical records. The VA Northeast Ohio Health Care system

institutional review board found this retrospective study exempt

from review.

2.2 PAP adherence

All individuals with records of PAP disbursement had

ResMed© PAP machines with electronic modems. Adherence

data were automatically downloaded every morning to

EncoreAnywhere ©. Adherence was defined as the percentage

use of at least 4 h a day in the first 90-day period after their

PAP disbursement. In addition, we collected 30-day adherence

and efficacy metrics, including the percentage of days used

more than 4 h/night, mean and 90th percentile pressure,

residual apnea–hypopnea index, residual central apnea index,

Hunter–Cheyne–Stokes respiration, and leak.

2.3 Other measures

All other variables were obtained from the electronic medical

record from the time of PAP disbursement or, if not available at

that time, the time closest to PAP disbursement. Height and weight

were used to compute the body mass index (kg/m2). Race was

categorized as white, black, or other. Participants’ past medical
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TABLE 1 Model parameter tuned using a grid search.

Model Parameters tuned

Linear regression None

Ridge Alpha

Lambda

Elastic net Alpha

Lambda

Random forest Mtry

Minimal node size

Gradient boosted machine Interaction depth

Number trees

Shrinkage

Support vector machine with linear kernel Cost

Loss

Support vector machine with radial kernel Sigma

C

Naïve Bayes with LASSO Sparsity

Naïve Bayes—spike and slab Vars

Bayes regularized neural net Neurons

Neuralnet Layers sizes for 2 and 3 layers

Threshold

AvNNet Neurons

Decay

nnet Neurons

Decay

pcaNNet Neurons

Decay

Rang

history (obesity, cardiac disease, psychiatric diagnoses, other sleep

disorders, diabetes, chronic kidney disease, dementia, stroke, liver

disease, pain syndromes, alcohol abuse, and tobacco use) and

medications (benzodiazepines, benzodiazepine receptor agonists,

other sleep medications, tricyclic antidepressants, antidepressants,

antipsychotics, mood stabilizers, α2δ ligands, and stimulants) were

obtained. Cardiac disease was defined as a diagnosis of arrhythmia,

heart failure, and/or coronary artery disease. Psychiatric disease

was defined as schizophrenia, psychosis disorders, depression,

posttraumatic stress disorder (PTSD), bipolar disorder, anxiety,

and obsessive-compulsive disorder. Other sleep disorders included

insomnia, hypersomnia, hypoventilation, circadian rhythm

disorders, parasomnia, movement disorders, and narcolepsy.

Other sleep medications included ramelteon, diphenhydramine,

melatonin, doxepin, mirtazapine, and trazodone. Antidepressants

included serotonin reuptake inhibitors, serotonin norepinephrine

reuptake inhibitors, mirtazapine, trazodone, and nefazodone.

Stimulants included modafinil, armodafinil, methylphenidate,

and dextroamphetamine.

3 Statistical analyses

Participant characteristics were summarized as mean ±

standard deviation (SD), median (interquartile range, IQR), or

n (%). Standardized mean differences were calculated between

adherent and non-adherent participants.

3.1 Developing and optimizing adherence
prediction models

The cohort was randomly partitioned 60:20:20 into training

(n = 4,039), calibration (n = 1,008), and validation data sets

(n = 1,008). Only the training and calibration data sets were

used in developing the models, including cross-validation to select

hyperparameters. Multiple multivariate imputation via chained

equations using a random forest algorithm in the mice package was

used to estimate missing data (Buuren and Groothuis-Oudshoorn,

2011; Li et al., 2015). Adherence as a continuous variable of the

percentage use ≥4 h a night (%use) was the outcome. All other

variables (features) were included in the model based on clinical

and physiologic plausibility rather than variable selection via

machine learning approaches for feature selection. Models tested

included linear regression, least absolute shrinkage and selection

operator (LASSO), Bayesian LASSO, elastic net, random forest,

conditional inference random forest, gradient boosted machine

(GBM), support vector machine (SVM) regression (both linear

kernel and radial basis function kernel), spike and slab regression,

and several neural network models—flat and multilayer neural

networks (variable number and size of hidden layers, initialization

weights, initial learning rates, and optimizer algorithms), model-

averaged neural networks, Bayesian regularized neural networks,

and neural networks with feature extractions. The caret package

was used to cross-validate parameter estimates and optimize

hyperparameter values using 10-fold cross-validation performed

4 times (Kuhn, 2008, 2019). A grid search was used to identify

the model with a minimum cross-validated root mean square

error (RMSE) (Kuhn, 2008, 2019). The model parameters tested

are found in Table 1. These models were then recalibrated via

the Dalton method (Dalton, 2013), using the calibration data

set. Briefly, adherence was calculated for the calibration data set

using the model developed in the training data set. The difference

between the actual and predicted adherence was then calculated.

A natural spline regression of the difference between actual

and calculated adherence (dependent variable) vs. the predicted

adherence (independent variable) to find offset parameters to

calibrate the model. Model performance was evaluated in the

validation data set with RMSE as the primary measure and mean

absolute error (MAE) as the secondarymeasure. A calibration slope

and intercept were evaluated frommodels fit on the validation data

set to evaluate calibration (Alba et al., 2017).

3.2 Secondary analyses

We evaluated which group of variables had the highest

impact on prediction performance. The best model was built
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TABLE 2 Baseline characteristics∗.

Characteristic Overall (n = 5,047) Adherent†

(n = 1,861)
Non-adherent‖

(n = 3,186)
SMD

Age (years) 38.8± 11.9 40.4± 11.2 37.9± 12.2 0.22

Female gender 198 (3.9%) 59 (3.2%) 1,39 (4.4%) 0.06

Comorbidities

Obesity 3,156 (62.5%) 1,207 (64.9%) 1,949 (61.2%) 0.08

Diabetes 2,489 (49.3%) 946 (50.8%) 1,543 (48.4%) 0.048

Heart failure 834 (16.5%) 282 (15.2%) 552 (17.3%) 0.06

Coronary artery disease 1,856 (36.8%) 682 (36.6%) 1,174 (36.8%) 0.004

Depression 2,656 (52.6%) 897 (48.2%) 1,759 (55.2%) 0.14

PTSD 1,261 (25.0%) 378 (20.3%) 883 (27.7%) 0.17

Anxiety 1,495 (29.6%) 491 (26.4%) 1,004 (31.5%) 0.11

Insomnia 776 (15.4%) 217 (11.7%) 559 (17.5%) 0.17

Alcohol abuse 1,037 (20.5%) 257 (13.8%) 780 (24.5%) 0.27

Tobacco use 1,826 (36.2%) 550 (29.6%) 1,276 (40.1%) 0.22

Medication use

Benzodiazepines 1,088 (21.6%) 344 (18.5%) 744 (23.4%) 0.12

BZRA 376 (7.4%) 112 (6.0%) 264 (8.3%) 0.09

SSRI/SNRI 2,623 (52.0%) 899 (48.3%) 1,724 (54.1%) 0.12

Antipsychotics 1,024 (20.3%) 277 (14.9%) 747 (23.4%) 0.22

Mood stabilizers 803 (15.9%) 232 (12.5%) 571 (17.9%) 0.15

BMI, body mass index; BZRA, benzodiazepine receptor agonists; PTSD, posttraumatic stress disorder; SMD, standardized mean difference; SSRI/SNRI, selective serotonin reuptake

inhibitor/serotonin norepinephrine reuptake inhibitor. ∗Statistics presented as mean ± SD, median (25th percentile, 75th percentile), or n (%). †Adherent was defined as positive airway

pressure therapy use of at least 4 h a night for at least 70% of nights in the first 90 days after machine disbursement. ‖Non-adherent was defined as using <70% of night for at least 4 h a night in

the first 90 days after machine disbursement. Bold indicates significantly different.

on the training data set by removing from the main analysis

groups of variables as follows: psychiatric medications, psychiatric

comorbidity, cardiovascular comorbidity, pain comorbidity, sleep

comorbidity, and tobacco and alcohol use/abuse. Analyses were

evaluated in the validation data set with RMSE and MAE. In

addition, we examined the effect of adding 30-day adherence data

on model performance as this is a common time point to check in

on therapy adherence. We also examined the models’ performance

on non-grouped (raw) data.

All analyses were conducted using R software version 3.4.3 (R

Core Development Team, Vienna, Austria) (Core Team, 2014).

This analysis used the mice, caret, glmnet, randomForest, and

tidyverse packages extensively (Liaw andWiener, 2002; Buuren and

Groothuis-Oudshoorn, 2011; Simon et al., 2011; Fritsch et al., 2019;

Kuhn, 2019; Wickham et al., 2019).

4 Results

4.1 Study population

Table 2 reports the baseline characteristics of the cohort. The

5,047 participants in the overall cohort were 38.3 ± 11.9 years

old, and 3.9% female. The 90-day adherence distribution was

bimodal with modes at 0% and 100% use >4 h/night; participant

adherence at 90 days was 44.0% ± 40.4% (mean ± SD), with

36.9% of participants adherent by the Centers of Medicare &

Medicaid Services standard of at least 70% of nights used at

least 4 h a night. Among those who were adherent based on this

standard, mean use >4 h/night was 91.2% ± 10.6%, whereas

non-adherent individuals used PAP at least 4 h/night on 16.5%

± 21.6% of nights. The cohort had a high number of people

with cardiometabolic comorbidity: 62.5% with obesity, 49.3% with

diabetes, and 36.8% with coronary artery disease. In addition, there

was notable psychiatric comorbidity as evidenced by 52.6% with

depression, 29.6% with anxiety, and 25.0% with PTSD history.

There was also substantial overlap in the psychiatric diagnoses, with

37.2% of the cohort with two or more diagnoses. The non-adherent

participants were significantly younger (aged 37.9 ± 12.2 years vs.

40.4 ± 11.2 years) with more history of psychiatric comorbidity,

alcohol abuse (24.5% vs. 13.8%), and tobacco use (40.1% vs. 29.6%).

Non-adherent participants had a substantially increased use of

benzodiazepines, antipsychotics, and mood stabilizers. Cardiac

comorbidities were evenly balanced across groups.

4.2 Adherence model performance

The best model after hyperparameter tuning was GBM, with

an RMSE of 37.2 and an MAE of 33.1 (Table 3, Figure 2); this

indicates that predictions by this model were off by 37% on
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TABLE 3 Performance characteristics of machine learning algorithms for

90-day adherence in the validation cohort∗.

Adherence model Root mean
square error

Mean absolute
error

Linear regression 37.31 33.30

LASSO 37.32 33.27

Elastic net 37.31 33.27

Bayesian LASSO 37.36 33.28

Random forest 37.58 33.86

Conditional inference

random forest

37.40 33.46

GBM 37.21 33.07

Spike and slab regression 37.32 33.31

SVM linear kernel 37.31 33.30

SVM radial kernel 37.38 33.35

Bayesian regularized neural

network

37.34 33.33

Model averaged neural

network

37.34 33.36

Neural network with feature

extraction

37.52 33.51

Flat neural network 37.77 34.06

GBM, gradient boosted machine; LASSO, least absolute shrinkage and selection operator;

SVM, support vector machine. ∗Bold data indicate algorithm with lowest error.

average from the actual value. However, other models including the

least sophisticated—cross-validated linear regression—were only

slightly worse on this data set. The GBM performed the best

in models that included 30-day adherence and PAP effectiveness

information (Table 4). Models with 30-day PAP data performed

substantially better than all other models. However, removing

features (e.g., psychiatric comorbidity) did not substantially affect

model performance (Table 5). Models that did not group variables

(e.g., cardiac comorbidity vs. individual diagnoses of heart failure,

coronary artery disease, etc.) but instead used each diagnosis

performed better than those with grouped variables (RMSE 37.2 in

GBM with grouped variables vs. RMSE 36 for the raw data model,

including 102 features) (Table 6). Models that were restricted by

eliminating variables with near-zero variance were not substantially

worse than the full feature set (42 variables, GBM RMSE 36.1).

5 Discussion

This investigation compared several machine learning

algorithms for predicting adherence to PAP therapy in a veteran

population using robust methodologies. We found the GBM

algorithm to be incrementally the most accurate model after

hyperparameter tuning. However, other evaluated models

performed similarly, and none was deemed clinically distinct at

this point. Even though model performance overall was subpar,

these models could be used to identify those people who are

highly likely to be extremely adherent (and therefore need limited

intervention) or not use their PAP at all (and, therefore, be

candidates for alternative therapy). Adding 30-day adherence

data substantially improved the accuracy of the predictions for

all models; however, there is a high probability of data leakage

because 30-day adherence is also included in the outcome, 90-day

adherence. Additional model improvements would be expected

if sleep study, symptom, and contextual factors were added to

models. This is the first study to our knowledge to (1) try to predict

adherence as opposed to finding associations with variables, (2)

compare multiple machine learning algorithms using reproducible

methods to evaluate a sleep condition, and (3) use data that were

readily available from the EMR to make such predictions.

The next logical step to consider is whether incorporating

other data improves predictive performance. Work in medication

adherence has consistently shown that prior adherence to

medications is a good predictor of future medication adherence

(Muntner et al., 2014; Kumamaru et al., 2018; Zullig et al.,

2019). Therefore, information on adherence to medication and no-

show rates to scheduled medical visits may improve prediction

accuracy. However, other variables, such as age, although strongly

associated with adherence, had no ability to discriminate between

who would or would not be adherent. Attitudes about therapy are

associated with adherence and may aid in determining who will

or will not be adherent (Balachandran et al., 2013). Perhaps the

addition of a point-of-care questionnaire on attitudes before the

start of PAP therapy could improve adherence prediction accuracy.

Furthermore, integrating social determinants of health may

improve prediction accuracy as shown in models of cardiovascular

risk (Dalton et al., 2017).

Any adherence prediction model that is developed for VA data

will need to be externally validated because there are inherent and

dramatic differences between the VA population and the non-VA

general sleep population. In the VA, there is a very high percentage

ofmen, a non-representative racial mix, andmuchmore psychiatric

comorbidity. Hence, these findings may not be representative of

EMR prediction algorithm performance in other populations. In

particular, model discrimination can be lower when the risk profile

of the analyzed population is relatively homogeneous, as may be the

case with the population in this analysis.

Given the recent popularity of neural networks, it is perhaps

counterintuitive that they were not able to accurately predict

veterans’ future adherence and that GBM—an ensemble of decision

trees—had superior performance. However, neural networks are

not a panacea. Not only is algorithm performance very dependent

on the data and field for which it is being developed, but there is also

evidence that tree-based models may be an improvement on neural

networks in several situations (Fernández-Delgado et al., 2014).

SVM outperformed neural networks in both binary classification

for image identification and corporate bankruptcy prediction

(Moghaddam and Yang, 2001; Shin et al., 2005) and multiclass

prediction problems such as financial time-series forecasting and

protein folding (Ding and Dubchak, 2001; Tay and Cao, 2001).

Neural networks work best with large training sets in cases in which

there are complex hierarchical relationships. In addition, there are

numerous hyperparameters for neural nets, and hyperparameter

value selection is complicated. Finding the ideal architecture by

tuning the numerous hyperparameters inherent to neural networks

is not intuitive, and even a grid search is not guaranteed to guide
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one in the optimal direction for hyperparameter optimization.

Furthermore, neural networks are prone to finding local, rather

than global, minima, and overfitting. This may be why when testing

179 algorithms in 121 data sets, tree-based methods were found to

be the best family of models (Fernández-Delgado et al., 2014). In

addition, the interpretability of models is crucial in medicine to

detect bias and build trust in the model. Neural networks suffer

from poor interpretability. Even small changes in parameters can

lead to substantial shifts in model output. Because neural networks

are often non-intuitive and opaque—with no clear explanation for

why one set of variables slightly differing from another yielded

substantially different results—using these models would be hard to

justify in medicine in their current form. However, there is fervor

in the community to develop tools to allow a better understanding

of model decision-making (Teng et al., 2022). Despite the recent

popularity of neural networks, they are not the best tool for every

data analytic job.

Several study strengths and limitations are worth noting. This

study used a separate training and validation data set (no part

of the validation data set was used in any part of the training

algorithm), which safeguards validity. The present study enrolled a

broad cohort of every eligible patient who received a PAP machine,

regardless of whether they used it or not. This large data set allowed

advanced machine learning models to be used, such as neural

nets, which smaller data sets would have difficulty converging.

This expansive approach of gathering the entire clinical population

given PAP therapy may improve performance in other clinical

populations, at least within the VA. Furthermore, data included a

limited subset of features that are readily gleaned from any EMR,

giving the ability to implement such a method at scale in health

systems. The evaluation of multiple machine learning algorithms

allows for comparison in the validation data set. Several limitations

are also worth noting. The cohort is from a VA population, which

is largely male with a higher psychiatric and cardiac comorbidity;

therefore, this veteran cohort may not be generalizable to the

broader OSA population. This EMR data set misses potentially

important predictors by not assessing patient symptoms or sleep

study data. Medical treatment has evolved over the 10-year span

that was sampled in this study and may affect adherence patterns.

Additional bias in the data may incorrectly classify people because

it lacks contextual data such as beliefs, socioeconomic status, and

implicit bias in health care; this concern has higher prominence in

data sets with limited diversity (e.g., low number of women in the

present data set). If used for decision-making, further validation

of such algorithms is paramount. It is notoriously difficult to

understand the decision process of neural net models, and this is

a detractor in medicine because the ability to explain the process is

often important in understanding and improving the error rate.

Study findings could be broadened by examining populations

enriched with women and minorities. Reevaluation and

redevelopment of an adherence algorithm in larger, diverse

cohorts may yet show the utility of these variables in determining

future adherence. Future work may focus on identifying subgroups

within the non-adherent population to guide the provision of

enhanced interventions to promote adherence or encourage

the use of a different treatment modality. Further refinement of

adherence models with additional EMR data (e.g., anthropometry,

physiologic variables, and past adherence to medications) may

yield a more potent ability to predict future adherence. Adding

contextual and social factors, such as marital status, presence of

FIGURE 2

Calibration curves for gradient boosted machine model.
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TABLE 4 Performance characteristics of machine learning algorithms for

90-day adherence with additional 30-day adherence information in the

validation cohort∗.

Adherence model Root mean
square error

Mean absolute
error

Linear regression 24.52 17.56

LASSO 24.49 17.52

Elastic net 24.50 17.53

Bayesian LASSO 24.54 17.57

Random forest 24.72 17.86

Conditional inference

random forest

24.49 17.61

GBM 24.43 17.46

Spike and slab regression 24.52 17.55

SVM linear kernel 24.51 17.55

SVM radial kernel 24.54 17.48

Bayesian regularized neural

network

24.55 17.58

Model averaged neural

network

24.86 17.84

Neural network with feature

extraction

24.68 17.76

Flat neural network 24.55 17.67

GBM, gradient boosted machine; LASSO, Least absolute shrinkage and selection operator;

SVM, support vector machine. ∗Bold data indicate algorithm with lowest error.

TABLE 5 Performance characteristics of GBM algorithm with and without

various feature sets∗.

Adherence model Root mean
square error

Mean absolute
error

Original model 37.17 32.97

Original model with 30-day

PAP data

24.44 17.45

No cardiac comorbidity 37.14 32.95

No psychiatric comorbidity 37.16 32.97

No psychiatric medications 37.16 32.98

No sleep comorbidity 37.22 33.01

No pain comorbidity 37.16 32.96

No alcohol/tobacco use/abuse 37.25 33.18

GBM, gradient boosted machine; PAP, positive airway pressure therapy. ∗Bold data indicate

algorithm with lowest error.

a bed partner, socioeconomic variables, and attitudes, could also

improve prediction performance.

We were able to develop and calibrate a model for PAP

adherence using EMR data. After evaluating several machine

learning algorithms, including neural nets, we found GBM to be

superior in predicting 90-day PAP therapy adherence; however, no

model had sufficient performance for clinical application. Further

work on refining the feature set to predict adherence is warranted.

Improving the prediction of future adherence may open avenues

for personalized therapy at OSA diagnosis.

TABLE 6 Performance characteristics of GBM algorithm in models with

individual diagnoses and medications (raw model), individual diagnoses

and indications with near-zero variance features removed, and grouped

diagnoses and medication classes∗.

Adherence model RMSE MAE

Original model (grouped

classes)

37.21 33.07

Original model with 30-day

PAP data

24.43 17.46

Raw data model (102

variables)

37.21 33.07

Raw data model with 30-day

PAP data (111 variables)

24.27 17.25

Raw model without NZV

variables

37.07 33.00

Raw model with 30-day PAP

data without NZV variables

24.30 17.27

GBM, gradient boosted machine; MAE, mean absolute error; NZV, near-zero variance;

PAP, positive airway pressure therapy; RMSE, root mean square error. ∗Bold data indicate

algorithm with lowest error.
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