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Introduction: High blood pressure (HBP) is an independent, modifiable driver of
cardiovascular (CV) morbidity and mortality. Nocturnal hypertension and non-
dipping of blood pressure (NdBP)may be early markers of HBP. Similar to patients
with NdBP, individuals with non-dipping of heart rate (NdHR) during sleep have
an increased risk of CV disease, CV events, and CV-related mortality. The aim
of this analysis was to evaluate if cardiopulmonary coupling (CPC) analysis-
derived sleep states [stable/unstable non-rapid eyemovement (NREM) sleep] and
concomitant heart rate (HR) changes can provide information about nocturnal
blood pressure (BP).

Method: Plethysmogram (pleth) signals from the HeartBEAT study
(NCT01086800) were analyzed for CPC sleep states. Included in the analysis
are sleep recordings from participants with acceptable pleth-signal quality at
baseline (n = 302) and follow-up (n = 267), all having confirmed CV disease or
CV-disease risk factors. The participants had a high prevalence of obstructive
sleep apnea (OSA), 98.4% with moderate-OSA [apnea–hypopnea index (AHI)
≥ 15) and 29.6% severe OSA (AHI ≥ 30). A “heart-rate module” was created to
evaluate the utility of identifying patients more likely to have BP dipping during
sleep. Patients who did not have a decrease of ≥10% in their BP from wake to
sleep were defined as NdBP and NdHR if their heart rate during stable-NREM
sleep was higher than during unstable-NREM sleep.

Results: The most significant di�erence in minimum HR (HRmin) was observed
when comparing BP dippers [56 ± 4 beats per minute (BPM)] and non-BP
dippers (59 ± 4 BPM; p < 0.0001) during diastolic blood pressure in stable-
NREM sleep. Higher HRmin were associated with an increased likelihood of
being a non-dipper, with the strongest relationship with diastolic BP and
stable-NREM sleep. Every increase of 1 BPM during stable-NREM sleep was
associated with an ∼4.4% increase in the probability of NdBP (p = 0.001).
Subjects with NdHR have higher mean BP during sleep and wake periods than
HR dippers. When continuous positive airway pressure therapy is e�cacious,
and a dipping pattern is achieved—physical and mental health is improved.
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Conclusion: HR analytics in relation to the sleep period and the CPC
spectrogram-estimated sleep states can provide novel and potentially clinically
useful information on autonomic health. HR dipping (or not) may be a useful
screener of BP dipping or non-dipping to identify individuals who may benefit
from a formal assessment of 24-h ambulatory BP. Such a stepped approach may
enable a more practical and applicable approach to diagnosing HBP.

Clinical Trial Registration: The Heart Biomarker Evaluation in Apnea Treatment
(HeartBEAT) study is registered at clinicaltrials.gov/ct2/show/NCT01086800.

KEYWORDS

sleep stability, blood pressure dipping, cardiovascular disease, cardiopulmonary

coupling (CPC), heart rate kinetics, heart rate dipping

1 Introduction

High blood pressure (HBP) is a major independent and

modifiable driver of cardiovascular (CV) morbidity and mortality

globally (Mills et al., 2020). Therefore, early diagnosis and

optimal management of HBP are essential (Williams et al., 2018).

Hypertension may be overt, with the physician’s estimate and

multiple home recordings in agreement, or it may be less obvious.

The term masked hypertension (MH) was first introduced in 2002,

describing a hypertension phenotype characterized by normal/not-

increased office blood pressure (BP) readings and elevated out-of-

office BP (Pickering et al., 2002). Identifying the MH phenotype is

of interest for multiple reasons: (a) the prevalence is substantial,

estimated at ∼10%−30% of individuals attending hypertension

clinics (O’Brien et al., 2013; Stergiou et al., 2021); (b) MH

increases the risk of CVmorbidity, with a meta-analysis comparing

normotensive individuals and those with MH finding a 2.09 times

increase in experiencing CV events for individuals with MH, while

individuals with sustained hypertension have a 2.59 times increase

in CV events (Pierdomenico and Cuccurullo, 2011); and (c) MH

is more difficult to diagnose, as an out-of-office evaluation is

required with 24-h ambulatory BP monitoring (24-ABPM). The

availability of classic cuff 24-ABPM may be relatively limited and

expensive, and the process is cumbersome and uncomfortable for

the user, with cuff inflations and the frequency of measurements

possibly causing arousals, disturbing sleep, and affecting the

nighttime BP (NBP) measurement, which may not represent the

true NBP (Pickering et al., 2006). While novel technologies are

in development, including wrist pulse wave analyses, these are

not yet fully validated. Moreover, such new technologies enable

the collection of a large number of BP readings, which are not

readily transferable to intermittent cuff inflation. Thus, disease-

related validation remains to be done with more continuous forms

of BP recording.

Nocturnal hypertension and non-dipping of BP may be early

markers of HBP and MH. Nocturnal BP and night-to-day BP

ratio have been identified as significant predictors of adverse CV

outcomes (O’Brien et al., 1988; Asayama et al., 2023) and better

predictors of fatal and non-fatal CV events and organ damage

than daytime BP (Ohkubo et al., 2002; Salles et al., 2016; Staplin

et al., 2023). Similar to changes in NBP, individuals with non-

dipping of their heart rate (HR) during sleep have an increased

risk of CV disease, CV events, and CV-related mortality (Eguchi

et al., 2009; Kabutoya et al., 2010; Tadic et al., 2018; Nelde et al.,

2023). For example, obstructive sleep apnea (OSA) is a common

disease capable of disrupting normal BP control (Senaratna et al.,

2017; Benjafield et al., 2019). A bidirectional relationship exists

between OSA and HBP, with OSA patients having an increased

risk of developing HBP, and the prevalence of OSA is higher

in patients with HBP (Sawatari et al., 2016). However, other

causes of sleep disruption such as insomnia and periodic limb

movements are also associated with elevated NBP (Palagini et al.,

2013).

Current guidelines highlight the importance of accurate

diagnosis of HBP. The gold standard for identifying MH is 24-

ABPM (Franklin et al., 2017), but still, the diagnosis is largely

based on in-office BP measures, and patients with HBP and

MH may therefore remain undiagnosed (Stergiou et al., 2021).

Somewhat surprisingly, another readily available signal, HR during

sleep [from ambulatory recordings and the millions of laboratory

polysomnography (PSG) or home polygraphy done yearly], has

not been subjected to rigorous analysis. Arousals from sleep are

associated with both HR and BP elevations. It is thus plausible that

an analysis of HR during sleep may provide a surrogate of BP or at

least identify those who should have a formal 24-ABPM performed.

HBP in patients with OSA is often predominantly nocturnal,

and non-dipping BP is common (Marin et al., 2012). Therefore,

alternative, simple, and less invasive measures that may estimate

changes related to HRmight be of value to identify non-dippers for

further evaluation, including 24-ABPM as a tool that might assist

in managing patients with OSA, insomnia, or comorbid insomnia

and sleep apnea (Sweetman et al., 2019) and HBP (Tadic et al., 2018;

Nelde et al., 2023).

This report targeted nocturnal heart rate (NHR) by analyzing

photoplethysmogram (PPG) and oximetry information (SpO2)

recorded during a conventional home sleep apnea test (HSAT).

The cardiopulmonary coupling (CPC) sleep state and the HR

kinetics analysis were computed to estimate alignments of

HR with stable- and unstable-NREM sleep (Al Ashry et al.,

2021b). It has been noticed that HR profiles across the night

can on average drop (“HR dipping”), remain relatively flat

(“HR non-dipping”), or even rise (“HR reverse dipping”). HR

dipping is maximal during stable-NREM sleep periods [high-

frequency coupling (HFC)] but can sometimes rise during such
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periods, suggesting increased sympathetic drive when normally

NREM3/stable NREM2 should be associated with reduced

sympathetic drive. We hypothesized that a simple method for

calculating HR changes during stable-NREM sleep can be utilized

to estimate dipping, non-dipping, or reverse-dipping HR. To

test our hypothesis, we utilized the Heart Biomarker Evaluation

in Apnea Treatment (HeartBEAT) study, which was designed

to evaluate alternative approaches to reduce the risk of heart

diseases. This study included classic cuff ABPM (Gottlieb et al.,

2014).

2 Materials and methods

2.1 Study design

The HeartBEAT study (NCT01086800) was a four-site,

randomized, parallel-group trial among patients with high CV

risk (Gottlieb et al., 2014). At baseline, patients were screened

for OSA with the Berlin questionnaire (Netzer et al., 1999), and

if they were at risk for OSA, an HSAT was initiated utilizing a

portable sleep monitor, including recording PPG-signal and pulse-

oximetry (SpO2) data from a fingertip sensor. Patients with an

AHI of ≥15 events per hour of sleep were eligible to participate

in the study. Patients with an AHI of >50 and a central index

of >5 were excluded from randomization. The primary outcome

of the HeartBEAT study was to evaluate changes in 24-h mean

arterial blood pressure (MAP). In addition, nocturnal dipping and

non-dipping of BP were reported, with non-dipping BP defined as

a mean nocturnal BP higher than 90% of the mean daytime BP

value. Participants in theHeartBEAT study were randomly assigned

to one of three groups: continuous positive airway pressure

(CPAP) therapy, nocturnal oxygen therapy, or healthy lifestyle with

sleep education. Institutional review board approval was obtained

from each participating institution. For this analysis, a data user

agreement was obtained from theNational Sleep Research Resource

(Dean et al., 2016).

2.2 Participants

Patients aged 45–75 with established coronary heart disease or

multiple CV-disease risk factors and well-managed hypertension,

were recruited from cardiology practices at four participating

medical centers. Patients with an AHI in the range of 15–50 were

offered the opportunity to participate in the study. This study is

based on a CPC analysis of the data derived from the fingertip PPG-

sensor (the pleth waveform and oxygen data), as well as information

reported about participants’ dipping or non-dipping status.

2.3 Follow-up

A detailed description of the methodology and primary results

of the trial’s outcome have been reported (Gottlieb et al., 2014).

In brief, outcomes were measured at baseline and 12 weeks after

randomization. The primary outcome was 24-h MAP (measured

using the 90207 Ambulatory Blood Pressure Monitor, Spacelabs

Healthcare). The mean pressure was calculated at each reading as

one-third of systolic pressure plus two-thirds of diastolic pressure.

The 24-h mean pressure was calculated as a weighted average of

the mean pressure during wakefulness and sleep, with the weights

determined by the percentage of reported time spent in each state

as recorded in a sleep diary. Nocturnal non-dipping blood pressure

was defined as the mean nocturnal BP higher than 90% of the mean

daytime value.

2.4 Methods

2.4.1 The data set
The HeartBEAT study measured and reported BP dipping and

non-dipping. Subjects were stratified into BP dippers and BP non-

dippers, where non-dippers did not demonstrate a decrease in BP

of ≥10% from wake to sleep.

2.4.2 CPC analysis
The CPC method has been described in detail in several

prior publications (Thomas et al., 2005; Al Ashry et al., 2021a).

Cardiopulmonary sleep spectrograms were first obtained from

a single lead electrocardiogram (ECG). ECG-derived respiration

(EDR) is obtained either by using R-S wave amplitudes or variations

in the QRS complex area. Ectopic beats are identified and removed,

normal sinus–normal sinus (NN) intervals are extracted, and

outliers are filtered (Thomas et al., 2005). After extracting the

NN interval series on ECG and its associated EDR, the signals

are then resampled using cubic splines at 2Hz. The fast Fourier

transform is applied to three overlapping 512-sample sub-windows

within the 1,024-coherence window. The 1,024-coherence window

is then advanced by 256 samples (2.1min), and the calculation

is repeated until the entire NN interval/EDR series is analyzed.

Thus, the cross-spectral power and coherence of these two signals

are calculated over a 1,024-sample (8.5-min) window. For each

1,024-sample window, the product of the coherence and cross-

spectral power is used to calculate the ratio of coherent cross-

power in the low-frequency (0.01–0.1Hz) band to that in the high-

frequency (0.1–0.4Hz) band. The logarithm of the high-to-low-

frequency CPC ratio [log (HFC/LFC)] is then computed to yield

a continuously varying measure of CPC sleep stability/instability

output metrics. While, originally, the ECG signal was used as

input, any signal or signal set that encodes respiration and heart

rate variability (HRV) may be used to compute the CPC sleep

spectrogram; most conveniently, this signal set can be obtained

from the peripheral PPG-signal, which is readily available from

current generation oximeters. The current embodiment uses a

ring- or fingertip-based oximeter to collect the data coupled

with a mobile application and Bluetooth to stream the data for

automated analysis. The SleepImage system complies with the

Health Insurance Portability and Accountability Act (HIPAA),

is cleared by the Food and Drug Administration (K182618),

and complies with the EU Medical Device Directive (CE-mark

2862) to automatically generate biomarkers, presented numerically

and graphically (Figure 1). The analysis is otherwise essentially

identical. The outputs of the CPC algorithm include low-frequency
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(LFC; 0.01–0.1Hz), high-frequency (HFC; 0.1–0.4Hz), and very

low-frequency (vLFC; 0.001–0.01Hz) couplings, and an elevated

LFC-broad band (eLFCBB) that is a sleep fragmentation signal

biomarker (Thomas et al., 2005). HFC/LFC covary more strongly

with an electroencephalographic (EEG) non-cyclic alternating

pattern (n-CAP) and CAP, respectively (Thomas et al., 2005), than

conventional N3/N2—although most of N3 is HFC, and much of

HFC occurs during N2.

Stable-NREM sleep (HFC) is associated with several desirable

sleep characteristics, including increased absolute and relative delta

power (Thomas et al., 2014), a consolidated NREM sleep <1-

Hz slow oscillation, temporally stable breathing, stable arousal

thresholds, normal arterial oxygen (O2) and carbon dioxide (CO2)

concentrations, and BP dipping (Wood et al., 2020). Unstable

NREM (LFC) is characterized by features opposite of stable-

NREM (HFC), and ineffective (fragmented) REM sleep takes

on LFC coupling signatures, while wake or effective REM sleep

shows vLFC pattern (Thomas et al., 2005). HFC covaries better

with relative than absolute EEG slow-wave power and is thus

less constrained by the “loss” of slow-wave sleep (SWS) with

age (Thomas et al., 2014). Specific spectrographic signatures

of fragmented sleep (elevated LFC narrow band, eLFCNB) are

biomarkers of strong chemoreflex effects on sleep respiration

(Thomas et al., 2007), identifying areas of sleep with central apneas

and periodic breathing. BP dipping occurs only during periods

of HFC (Wood et al., 2020), consistent with the demonstration

that non-CAP is the EEG correlate of BP dipping (Iellamo et al.,

2004). LFC is associated with hypertension and stroke (Thomas

et al., 2009), while HFC is reduced in depression (Yang et al.,

2011), heart failure (Yeh et al., 2008), and fibromyalgia syndrome

(Thomas et al., 2010). HFC is an independent determinant of

the glucose disposition index (Pogach et al., 2012). Pre- and

posttreatment effects in sleep apnea are captured via changes

in HFC/LFC (Lee et al., 2014). An integrated metric, the

Sleep Quality Index (SQI), which is heavily weighted by stable-

NREM sleep, is associated with desirable directions of metabolic

health and blood pressure (Magnusdottir et al., 2020, 2021,

2022).

2.4.3 HR and CPC analysis
The PPG signal from each polygraphy recording in the

HeartBEAT data was processed through the SleepImage System

algorithms. A software module (“HR module”) was developed

for evaluating the HR data collected during the sleep study,

which was then intersected with the sleep-state output from the

SleepImage System: (a) A 2-sample-per-second resampled NN

series was evaluated by cropping the entire series from sleep

onset to sleep conclusion. Then, a linear trendline was fitted to

generate a slope coefficient, the associated p-value, and an R2

for model fit. While this method may provide insight that some

clinical professionals may value, it was not expected to have much

explanatory power, as it attempts to describe HR as a linear

trend over the course of the sleep period, lumping all sleep states

together. The disproportionate effect of sleep stage on BP dynamics

has been explained in the literature (Stein and Pu, 2012). (b)

HR rate statistics for each CPC sleep state classification were

then calculated using the same 2-sample-per-second resampled

NN series.

2.4.4 Primary endpoint
For this analysis, the following variables of interest were

extracted from the HeartBEAT data set: (a) MAP non-dipping

and dipping, (b) systolic blood pressure (SBP) non-dipping and

dipping, and (c) diastolic blood pressure (DBP) non-dipping and

dipping, where non-dippers were defined as patients who did not

demonstrate a decrease in BP ≥10% from wake to sleep. The

primary endpoint was to evaluate (a) the relationship between HR

during stable and unstable CPC sleep states and BP and (b) if sleep

evaluation combined with this HRmodule can be utilized to stratify

patients to identify patients more likely to have non-BP dipping

during sleep for further evaluation.

2.5 Statistical analysis

The primary endpoint, questioning if the HR module can be

utilized to identify BP dipping during sleep, was evaluated using a

logistic regression, regressing HR parameters from the HR module

on the dipping and non-dipping variables extracted from the

HeartBEAT data, controlling for gender, age, and race to assess the

predictive power on BP dipping.

Basic summary statistics, such as counts, are presented, along

with means and standard errors (in parentheses) for gender, race,

age, and body mass index (BMI). A one-way analysis of covariance

was utilized to compare non-dippers and dippers controlling for

age, gender, BMI, and site identifier. Means and standard errors

for the HR parameters are presented, along with the p-values

for pairwise comparison between the groups. The analysis was

performed using Stata version 15.1.

3 Results

3.1 Study population

Included in this analysis of the pleth signal from the

HeartBEAT data (Gottlieb et al., 2014) are both baseline

and follow-up recordings with signal quality defined

as average successful peak detection on the overnight

recording of no <70% for analysis to evaluate HR during

sleep and on data describing dipping and non-dipping

BP status. The data set contained sleep recordings with

acceptable pleth-signal quality from 302 patients at baseline

and 267 at follow-up, or a total of 569 sleep recordings

(Supplementary Table S1).

3.2 Primary outcome measures

First, the relationship between the CPC-sleep-state analysis

and the software HR module and dipping or non-dipping

status of BP was evaluated (Table 1). The most significant

difference in minimum HR (HRmin) was observed when
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FIGURE 1

Heart rate kinetics during sleep. The arrows indicate heart rate characteristics (green: dipping, black: non-dipping, red: reverse dipping).

comparing HR for dippers (56 ± 4 BPM) and non-dippers

(59 ± 4 BPM) during DBP and stable-NREM sleep (p

< 0.0001).

Table 2 presents the result from different logit models

regressing variables of interest (HR metrics; HRmin during sleep

andHRmin during stable-NREM sleep), controlling for age and race
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TABLE 1 Heart rate (HR) software module (“HR parameters”) for dippers and non-dippers, beats per minutes (BPM).

Average HR (BPM)
measured during diastolic
blood pressure (mm/Hg)

Average HR (BPM)
measured during systolic
blood pressure (mm/Hg)

Average HR (BPM) measured
during mean arterial blood

pressure (mm/Hg)

Non-Dipa Dipa p-valueb Non-Dipa Dipa p-valueb Non-Dipa Dipa p-valueb

Sleep

Mean HR 66.4 (±5.5) 64.7 (±5.5) 0.063 66.0 (±5.5) 65.1 (±5.5) 0.301 66.6 (±5.5) 65.1 (±5.5) 0.090

Min HR 55.6 (±2.6) 54.31 (±2.6) 0.003 55.6 (±2.6) 54.6 (±2.6) 0.016 55.8 (±2.6) 54.6 (±2.6) 0.003

Wake

Mean HR 69.2 (±5.7) 67.8 (±5.6) 0.126 69.1 (±5.7) 68.1 (±5.6) 0.293 69.6 (±5.7) 68.1 (±5.6) 0.100

Min HR 57.5 (±3.0) 55.9 (±3.0) 0.001 57.7 (±3.0) 56.2 (±3.0) 0.003 57.871 (±3.0) 56.3 (±3.0) 0.001

Stable NREM

Mean HR 67.2 (±7.4) 64.3 (7.3) 0.017 66.1 (±7.4) 64.9 (±7.34) 0.318 66.6 (±7.4) 64.6 (±7.3) 0.150

Min HR 58.6 (±4.1) 56.3 (4.1) <0.0001 57.6 (±4.2) 56.74 (±4.1) 0.189 58.25 (±4.2) 56.7 (±4.1) 0.022

HR, heart rate; NREM, non-rapid eye movement sleep; BPM, heart beats per minute.
aValues are mean± standard deviation.
bDifference between groups (p-value).

on the indicator variables for diastolic, systolic, and MAP non-

dipping. BMI was explored as a control but did not add to the

explanatory/predictive power of any of the models. The results are

presented as coefficient estimates from the logit regression with

p-values in parentheses. The strongest associations were observed

when including HRmin during stable-NREM sleep. Higher HRmin

were associated with a higher likelihood of being a non-dipper,

with an increase of 1 beat per minute in HRmin during stable

NREM being associated with an approximate 4.4% increase in

the probability of being a non-dipper (p = 0.001). Being African

American and increased age were found to be factors that increased

the likelihood of being a non-dipper, while gender did not seem

to be a significant predictor. For the sake of brevity, the mean HR

in stable-NREM sleep was not included in the results, although it

showed a statistically significant effect on diastolic non-dipping, in

favor of the minimum, which had a higher coefficient. The variance

inflation factor (VIF) was calculated to investigate the presence of

collinearity. The average VIF did not exceed 1.08 for any of the

models, with the highest calculated VIF of 1.14 for an individual

variable. This indicates that multicollinearity is not of concern with

the chosen independent variables.

Second, the cohort was stratified based on the “HR parameter”

into HR dippers and HR non-dippers (Table 3). At baseline, fewer

HR non-dippers used calcium-channel blockers (10.7%, p= 0.047)

and diuretics (10.9%, p= 0.044) thanHR-dippers. Additionally, HR

non-dippers presented with a higher meanMAP when awake of 2.2

mmHg (p = 0.046) than HR-dippers. Comparing HR dippers and

non-dippers and focusing on BP, HR non-dippers have significantly

higher average DBP (DBPave; 85.3 vs. 83.8 mmHg, p = 0.035);

DBPsleep (74.6 vs. 72.7 mmHg, p = 0.018); and DBPwake (90.8 vs.

89.0 mmHg, p = 0.024). Additionally, they have a higher average

MAP (MAPave; 89.7 vs. 88.1 mmHg, p = 0.050); MAPsleep (79.4 vs.

77.4 mmHg, p = 0.036); and MAPwake (95.2 vs. 93.3 mmHg, p =

0.031), respectively (Table 4).

Finally, the subgroup that received the CPAP therapy was

stratified based on dipping status (HR dipper or HR non-dipper)

at baseline and at a 12-week follow-up (Table 5). When comparing

participants who were HR non-dippers at baseline and HR

dippers at follow-up, significant improvements were observed

in depression severity measured using the Patient Health

Questionnaire-9, −3.1 (p = 0.005), and the health and quality-of-

life indicators that were evaluated using the Short Form (36) Health

Survey: (a) vitality, 12.8 (p = 0.036); (b) physical functioning, 20.1

(p= 0.003); and (c) emotional functioning, 16.5 (p= 0.005); social

functioning, 17.4 (p = 0.007); and mental health and emotional

wellbeing, 13.9 (p= 0.001).

4 Discussion

The analysis of HR across the night in relation to CPC

sleep state, HR, and BP showed the following statistically

significant results: (a) lower HRmin during sleep in participants

who demonstrated diastolic, systolic, and MAP dipping when

compared to non-dippers; (b) lower HRmin during wake within the

sleep period in participants who demonstrated diastolic-, systolic-

, and MAP dipping compared to non-dippers; (c) lower HRmin

and HRmean during stable-NREM sleep (HFC) in those who

demonstrated diastolic dipping compared to non-dippers; (d) the

strongest associations were observed when including HRmin during

stable-NREM sleep (HFC); (e) when utilizing the HR module

to stratify the cohort based on HR dipping and non-dipping,

participants with non-dipping of HR had significantly higher MAP

and DBP when comparing all readings, readings during sleep, and

readings during wake; and (f) in the subgroup of participants

who received CPAP-therapy, participants with a HR non-dipping

pattern at baseline and HR dipping pattern at follow-up (i.e.,

treatment responders based on heart rate profiles), significantly

improved their subjective mental and physical functioning. The

results overall suggest that HR dipping in stable-NREM sleep/HFC

is a desirable biological characteristic.
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TABLE 2 Logistic regression models regressing the HR parameter on diastolic, systolic, and mean arterial blood pressure (MAP) non-dip indicators.

Diastolic non-dipping
blood pressurea

Systolic non-dipping
blood pressurea

MAP non-dipping
blood pressurea

Sleepmin 0.049 (0.010) 0.041 (0.035) 0.049 (0.010)

Stable NREMmin 0.044 (0.001) 0.026 (0.032)

Male 0.092 (0.674) 0.117 (0.591) 0.030 (0.891) 0.153 (0.483) 0.193 (0.378)

Race

African American 0.744 (0.009) 0.720 (0.012) 1.013 (0.001) 0.960 (0.001) 0.921 (0.002)

Other 0.086 (0.815) −0.002 (0.995) 0.007 (0.983) 0.195 (0.592) 0.117 (0.749)

Age 0.019 (0.146) 0.023 (0.073) 0.035 (0.008) 0.026 (0.049) 0.032 (0.016)

Const. −4.205 (0.000) −4.572 (0.001) −4.400 (0.002) −3.532 (0.002) −5.010 (0.000)

NREM, non-rapid eye movement sleep; MAP, mean arterial pressure.
aValues are the logistic regression coefficients with p-values in parenthesis.

HR kinetics during sleep seems to provide indirect information

about BP during sleep, an important cardiovascular health

variable. HR is readily available through most systems that

track sleep oximetry and could allow for risk stratification;

individuals with a non-dipping HR pattern could be directed to

selectively undergo conventional ABPM. The finding that HR was

specifically influenced by stable-NREM sleep (HFC) as estimated

through the pleth spectrogram was not surprising. Autonomic

physiology presents an important window into sleep; for example,

hemodynamics, HRV, and respiration are markedly dependent

on the sleep stage, with vagal dominance, stable breathing, and

BP reductions (“dipping”) during SWS/N3 (Javaheri and Redline,

2012). Furthermore, standard reporting of EEG-based stages as

a percentage of sleep time is an insensitive metric of sleep

fragmentation (Bianchi and Thomas, 2013). Most HSATs do not

provide EEG stages, although machine learning applied to ECG

and respiratory signals can approximate deep sleep. The ability to

evaluate HR dynamics in relation to sleep state without the need for

extensive PSG has practical advantages.

A reduction in BP during sleep (BP dipping) is considered

a BP-related biomarker of healthy sleep (Routledge et al., 2007;

Salles et al., 2016). There is a progressive reduction of BP from

wake through SWS, with an increase in REM sleep or transiently

in association with arousals. The HR profile follows this basic

scheme and is the highest in REM sleep and unstable-NREM

sleep or during arousals and lowest in conventional N3 (Javaheri

and Redline, 2012). In a prior study by our group, we used PSG

with beat-to-beat BP monitoring, ECG-derived CPC analysis, and

quantified delta power and the rate of occurrence of the<1-Hz slow

oscillation.We found that BP dipping occurred only during periods

of stable NREM (HFC), concomitant with slow oscillation/delta

power-enriched NREM sleep. HR was lowest in N3, but the small

sample size of 11 subjects perhaps explained the lack of HR dipping

during HFC; however, the current analysis shows the predicted dip

in HR. Mechanisms associated with rising slow wave/delta power

and a high grade of electrocortical synchrony are likely the drivers

of an integrated response of BP, HR, and stable breathing. Even in

conditions associated with fragmented sleep, such as sleep apnea,

delta power, and vagal HRV dominance tends to ebb and flow in a

correlated manner (Jurysta et al., 2006; Wood et al., 2020).

There is substantial variability in sleep quality in individuals

with similar severities of sleep apnea. Such differences may be

quantified by subjective symptoms e.g., questionnaire such as the

Insomnia Severity Index (Bastien et al., 2001); conventional criteria

e.g., N1, N3, total sleep time, sleep efficiency; EEG-based methods

such as the odds ratio product, which estimates sleep depth

continuously (Younes et al., 2015; Younes, 2023); and ECG/PPG

CPC spectrograms and the SQI (Thomas et al., 2014; Hilmisson

et al., 2019; Magnusdottir et al., 2020). BP during sleep is another

useful measure, while HR analysis could provide a complementary

metric for sleep quality.

There are sleep and circadian influences on BP and HR control.

Even in forced desynchrony experiments, both metrics are low in

the biological night when body temperature is low and melatonin

is high. Thus, there are both sleep and circadian components to

BP and HR dipping, and a loss of this pattern can occur from

either sleep or circadian factors. Any case of sleep fragmentation

can flatten or even reverse BP and HR during the biological

night. OSA can affect sleep quality and cause non-dipping BP by

autonomic dysfunction, transient surges associated with arousals,

the upregulation of neurohumoral systems, oxidative stress, and

a general lowering of sleep depth. However, when there is non-

dipping of either BP or HR during stable (unfragmented) sleep

of which HFC is a good biomarker, it likely reflects abnormal

autonomic regulation as many other drivers are less active during

this state (e.g., breathing and oxygenation are stable). Profiles of HR

may be useful when following treatment of sleep apnea, especially

with therapies with residual apnea. While CPAP when used can

largely normalize breathing, other increasingly used therapies, such

as weight loss, hypoglossal nerve stimulation, and oral appliances,

are more likely to have residual apnea. Partial CPAP use will also

demonstrate residual apnea. HR profiles could be one way to

assess the impact of residual disease as successful therapy could be

expected to improve HR dipping and even convert a non-/reverse

dipper to a dipper as demonstrated in this analysis when looking at

the subgroup treated with CPAP.

This analysis has some limitations, including (a) the study

population was selected for presence of CV disease or risk and

does not readily generalize to the range of medical backgrounds

on which sleep apnea occurs; (b) classic sleep staging was
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TABLE 3 Baseline characteristics: heart rate dippers vs. non-dippers.

Heart ratea

Alla

(n = 302)
HR dippersa

(n = 143, 47.4%)
HR non-dippersa

(n = 159, 52.6%)
HR dippers compared to

HR non-dippers (p-values)b

Characteristics

Age (years) 63.0 (±0.410) 63.1 (±0.617) 63.0 (±0.585) 0.910

Body mass index (BMI; kg/m2) 34.4 (±0.358) 34.9 (±0.539) 33.7 (±0.511) 0.103

Neck circumference (cm) 42.2 (±0.211) 42.3 (±0.313) 42.0 (±0.297) 0.561

Waist/hip ratio 1.0 (±0.004) 1.0 (±0.006) 1.0 (±0.006) 0.091

African American (%) 13.2 13.3 12.6 0.855

Caucasian (%) 79.2 78.3 79.9 0.741

Ever smoked (%) 62.9 6.3 11.3 0.127

Coexisting conditions (%)

Prior myocardial infarction 22.0 22.3 23.3 0.532

Diabetes mellitus 42.5 44.3 40.9 0.554

Dyslipidemia 77.8 77.8 78.6 0.874

Hypertension 82.8 85.7 80.5 0.233

Obstructive sleep apnea (%)

Moderate (AHI 15–30) 98.4 97.2 99.3 0.141

Severe (AHI ≥ 30) 29.6 29.4 29.6 0.971

Medication use (%)

ACE or ARB 69.8 73.4 64.8 0.106

Any beta-blockers 67.3 65.7 66.7 0.865

Calcium-channel blocker 30.1 37.1 26.4 0.047

Medication for diabetes 39.3 42.7 35.8 0.227

Diuretic 37.7 42.7 31.8 0.044

Lipid-lowering medication 89.0 86.0 91.8 0.107

Questionnaires

Epworth Sleepiness Scale 8.9 (±0.204) 9.1 (±0.304) 8.8 (±0.288) 0.431

Patient Health Questionnaire-9 (PHQ-9) 5.5 (±0.279) 5.5 (±0.420) 5.6 (±0.399) 0.971

PHQ-9 depression severity 0.7 (±0.054) 0.8 (±0.080) 0.7 (±0.076) 0.687

Sleep measures

Sleep Quality Index (SQI) 41 (±0.910) 41 (±1.324) 40 (±1.255) 0.489

Apnea-Hypopnea Index (AHI) 33 (±0.555) 33 (±0.809) 33 (±0.764) 0.935

Stable sleep (%) 27 (±1.030) 28 (±1.498) 26 (±1.420) 0.352

Unstable sleep (%) 50 (±0.982) 49 (±1.428) 51 (±1.354) 0.476

Fragmentation (eLFCBB :%) 26 (±0.945) 26 (±1.375) 26 (±1.304) 0.925

Periodicity (e-LFCNB :%) 3 (±0.276) 3 (±0.401) 3 (±0.381) 0.910

Blood pressure measures (mm/Hg)

Average diastolic pressure, all readings 71 (±0.456) 70 (±0.684) 71 (±0.646) 0.101

Average diastolic pressure, sleep 65 (±0.490) 64 (± 0.231) 65 (±0.685) 0.184

Average diastolic pressure, wake 73 (±0.742) 72 (±0.742) 74 (±0.701) 0.067

Average systolic pressure, all readings 124 (±0.833) 123 (±1.262) 125 (±1.191) 0.160

(Continued)
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TABLE 3 (Continued)

Heart ratea

Alla

(n = 302)
HR dippersa

(n = 143, 47.4%)
HR non-dippersa

(n = 159, 52.6%)
HR dippers compared to

HR non-dippers (p-values)b

Average systolic pressure, sleep 116 (±0.943) 115 (±1.415) 117 (±1.330) 0.223

Average systolic pressure, wake 128 (±0.844) 126 (±1.280) 129 (±1.208) 0.102

Average mean arterial pressure, sleep 83 (±0.573) 82 (±0.855) 84 (±0.804) 0.138

Average mean arterial pressure, wake 92 (±0.523) 91 (±0.789) 93 (±0.745) 0.046

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.
aValues are mean± standard deviation for continuous variables and percentages for categorical variables.
bDifference between groups (p-value).

TABLE 4 Heart rate dipper vs.. non-dipper: blood pressure and biochemical measures.

HR-dippera

(n = 143, 47.4%)
HR-non-dippera
(n = 159, 52.6%)

p-valuesb

Medication use (%)

ACE or ARB 76 65 0.008

Any beta-blockers 59 56 0.455

Calcium-channel blocker 12 2 0.017

Medication for diabetes 28 19 0.028

Diuretic 26 17 0.031

Lipid-lowering medication 35 35 0.953

Blood pressure measures (mm/Hg)

Average diastolic blood pressure 84 (±3.183) 85 (±3.164) 0.035

Average diastolic pressure, sleep 73 (±3.459) 75 (±3.436) 0.018

Average diastolic pressure, wake 89 (±3.392) 91 (±3.371) 0.024

Average systolic pressure 106 (±5.723) 108 (±5.688) 0.230

Average systolic pressure, sleep 94 (±6.415) 96 (±6.371) 0.145

Average systolic pressure, wake 112 (±5.854) 114 (±5.818) 0.175

Average mean arterial pressure 88 (±3.568) 90 (±3.546) 0.050

Average mean arterial pressure, sleep 77 (±4.040) 79 (±4.013) 0.036

Average mean arterial pressure, wake 93 (±3.713) 95 (±3.690) 0.031

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.

aValues are mean± standard deviation for continuous variables and percentages for categorical variables.

bDifference between groups (p-value).

not available or possible; (c) only one night of recording was

available at any given time point; (d) HR can be modified

by numerous factors including stress, anxiety, and pain, the

impact of which on the type of analysis we performed is

unknown; (e) the implications of HR-pattern analysis for disease

prognostics, well established for conventional ambulatory blood

pressure, are unknown; (f) the impact of drugs such as beta-

blockers or antihypertensives in general on the noted patterns

need to be established, and it is plausible that both attenuation

or amplification of the HR response during sleep may occur

based on cardiovascular functional status; and (g) conditions such

as heart failure, advanced renal disease, post-cardiac transplant,

or advanced autonomic neuropathy are likely to have relatively

unchanging HR across the night and may not allow this analysis.

Heart rate analysis would be invalidated by atrial fibrillation and

during fixed-rate cardiac pacing for bradyarrhythmias, while other

modes of pacing may still allow analysis, but that needs to be

directly demonstrated. The parent study design and our current

analysis cannot determine if HR is an independent risk factor

(beyond nocturnal BP) for cardiovascular outcomes. Additionally,

a generalization of its potential usefulness to non-apnea conditions

such as insomnia or restless legs and their treatments cannot

be determined.

In conclusion, HR analytics in relation to the sleep period

and the CPC spectrogram-estimated sleep states can provide

novel and potentially clinically useful information on autonomic

health. HR dipping (or not) may be a useful screener of BP

dipping/non-dipping and identify individuals who may benefit

from formal assessment of ambulatory BP and/or evaluate the

efficacy of various therapies. Such a stepped approach may
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TABLE 5 Heart rate dipper vs. non-dippers: comparison of characteristics.

Baseline Follow-Up p-valuesb

I. HR-dippera

(n = 45, 45.9%)
II.

HR-non-dippera

(n = 53, 54.1%)

III. HR-dippera

(n = 42, 51.2%)
IV. HR-non-

dippera

(n = 40, 48.8%)

III vs. I IV. vs. I III vs. II IV vs. II

Characteristics

Age (years) 63.3 (±1.025) 62.5 (±0.618) 64.0 (±1.074) 62.5 (±1.087) 0.966 0.951 0.729 1.000

Body mass index (BMI; kg/m2) 33.6 (±0.769) 33.5 (±0.708) 32.5 (±0.815) 33.9 (±0.815) 0.757 0.997 0.795 0.898

Neck circumference (cm) 42.2 (±0.518) 41.5 (±0.478) 41.1 (±0.550) 42.0 (±0.550) 0.477 0.944 0.948 0.906

Waist/hip ratio 1.0 (±0.009) 1.0 (±0.008) 1.0 (±0.009) 1.0 (±0.009) 0.998 1.000 0.848 0.742

African American (%) 8.9 3.8 9.5 2.5 0.999 0.613 0.654 0.994

Caucasian (%) 82.2 86.8 78.6 85.0 0.969 0.986 −0.714 0.996

Coexisting conditions (%)

Prior myocardial infarction 15.6 18.9 14.3 25.0 0.999 0.680 0.941 0.876

Diabetes mellitus 37.2 43.4 57.1 37.5 0.252 0.975 0.537 0.941

Dyslipidemia 79.1 83.0 78.6 67.5 1.000 0.590 0.955 0.291

Hypertension 72.1 84.9 81.0 67.5 0.765 0.959 0.968 0.200

Medication use (%)

ACE or ARB 68.9 66.0 78.0 60.0 0.800 0.817 0.604 0.926

Any beta-blockers 57.8 62.3 58.5 57.5 1.000 1.000 0.984 0.968

Calcium-channel blocker 40.0 26.4 26.8 27.5 0.549 0.710 1.000 0.999

Medication for diabetes 35.6 33.9 48.8 25.0 0.575 0.740 0.445 0.807

Diuretic 28.9 30.2 41.5 35.0 0.611 0.934 0.664 0.963

Lipid-lowering medication 93.3 88.7 92.7 85.0 1.000 0.584 0.920 0.938

Questionnaires

Epworth sleepiness scale score 8.2 (±0.554) 8.1 (±0.511) 8.6 (±0.574) 8.2 (±0.588) 0.972 1.000 0.927 1.000

Patient Health Questionnaire-9

(PHQ-9)

4.8 (±0.658) 5.7 (±0.606) 2.6 (±0.681) 4.6 (±0.698) 0.119 1.000 0.005 0.657

PHQ-9 Depression severity 0.6 (±0.123) 0.8 (±0.113) 0.2 (±0.127) 0.6 (±0.130) 0.233 0.999 0.01 0.746

Short Form (36) Health Survey

SF-vitality 54.8 (±3.370) 54.1 (±3.105) 66.9 (±3.530) 57.0 (±3.574) 0.067 0.969 0.036 0.928

(Continued)
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TABLE 5 (Continued)

Baseline Follow-Up p-valuesb

I. HR-dippera

(n = 45, 45.9%)
II.

HR-non-dippera

(n = 53, 54.1%)

III. HR-dippera

(n = 42, 51.2%)
IV. HR-non-

dippera

(n = 40, 48.8%)

III vs. I IV. vs. I III vs. II IV vs. II

SF-physical functioning 74.4 (±4.190) 65.5 (±3.861) 86.1 (±4.390) 65.6 (±4.445) 0.221 0.474 0.003 1.000

SF-general health perceptions 62.6 (±3.345) 56.4 (±3.082) 66.5 (±3.504) 60.9 (±3.548) 0.853 0.984 0.138 0.778

SF-emotional functioning 81.3 (±3.514) 75.6 (±3.238) 92.1 (±3.681) 76.7 (±3.727) 0.152 0.803 0.005 0.997

SF-social functioning 81.1 (±3.797) 73.8 (±3.499) 91.2 (±3.978) 76.6 (±4.027) 0.264 0.844 0.007 0.997

SF-mental health/emotional

wellbeing

74.0 (±2.567) 72.2 (±2.365) 86.1 (±2.689) 72.6 (±2.722) 0.007 0.983 0.001 1.000

Sleep measures

Sleep Quality Index (SQI; 0–100) 41 (±2.538) 40 (±2.339) 42 (±2.627) 41 (±2.692) 0.995 1.000 0.957 0.994

Apnea-Hypopnea Index (AHI) 32 (±1.774) 32 (±1.635) 20 (±1.836) 25 (±1.882) <0.001 0.042 <0.001 0.013

Blood pressure measures (mm/Hg)

Average diastolic blood pressure,

all readings

73 (±1.117) 71 (±1.028) 69 (±1.157) 70 (±1.187) 0.063 0.382 0.499 0.963

Average diastolic pressure, sleep 68 (±1.236) 66 (±1.135) 63 (±1.282) 65 (±1.315) 0.062 0.534 0.488 0.996

Average diastolic pressure, wake 76 (±1.185) 74 (±1.090) 71 (±1.228) 73 (±1.259) 0.074 0.552 0.461 0.989

Average systolic pressure, all

readings

126 (±2.014) 122 (±1.853) 123 (±2.087) 122 (±2.140) 0.816 0.685 0.990 1.000

Average systolic pressure, sleep 118 (±2.378) 115 (±2.184) 115 (±2.466) 115 (±2.530) 0.791 0.858 1.000 1.000

Average systolic pressure, wake 130 (±2.026) 126 (±1.864) 127 (±2.099) 126 (±2.152) 0.745 0.704 0.990 0.995

Average mean arterial pressure,

sleep

85 (±1.488) 83 (±1.366) 82 (±1.543) 83 (±1.583) 0.288 0.724 0.860 1.000

Average mean arterial pressure,

wake

94 (±1.264) 92 (±1.163) 90 (±1.310) 92 (±1.343) 0.238 0.700 0.859 1.000

HR, heart rate; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker.
aValues are mean± standard deviation for continuous variables and percentages for categorical variables.
bP-values based on difference between groups at baseline and follow-up.
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enable a more practical, cost-effective, and applicable approach to

diagnosing MH.
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