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Study objectives: The objective of this study was to determine whether

electrocardiogram (ECG) and heart rate accelerations that occur in the vicinity of

respiratory events could predict the severity of sleep-disordered breathing (SDB).

Methods: De-identified polysomnogram (NPSG) recordings from 2091 eligible

participants in the Sleep Heart Health Study (SHHS) were evaluated after

developing and validating an automated algorithm using an initial set of recordings

from 1,438 participants to detect RR interval (RRI) dips in ECG and heart rate

accelerations from pulse rate signal. Within-subject comparisons were made

between the apnea-hypopnea index (AHI) and both the total RRI dip index (total

RRDI) and total heart rate acceleration index (total HRAI).

Results: The estimated AHIs using respiratory-related HRAI correlated with NPSG

AHI both in the unadjusted and adjusted model (B: 0.83 and 0.81, respectively

P < 0.05). Respiratory-related HRAI had a strong agreement with NPSG AHI

(intraclass correlation coe�cient-ICC: 0.64, whereas respiratory-related RRDI

displayed weaker agreement and ICC: 0.38). Further assessment of respiratory-

related HRAI (≥5 events/h) showed a strong diagnostic ability (78, 87, 81, and 56%

agreement for traditional AHI cuto�s 5, 10, 15, and 30 events/h, respectively). At

the AHI cuto� of 5 events/h the receiver operating curves (ROC) revealed an area

under the curve (AUCs) of 0.90 and 0.96 for RE RRDI and RE HRAI respectively.

Conclusion: The automated respiratory-related heart rate measurements derived

from pulse rate provide an accurate method to detect the presence of SDB.

Therefore, the ability of mathematical models to accurately detect respiratory-

related heart rate changes from pulse rate may enable an additional method to

diagnose SDB.
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Introduction

Sleep-disordered breathing (SDB) is a deleterious medical
condition characterized by episodic asphyxia and interruption of
normal sleep (Hosselet et al., 2001) and is associated with significant
morbidity such as cardiovascular disease (Bauters et al., 2016). The
severity of an individual’s SDB is determined by calculating their
apnea-hypopnea index (AHI), which is the total number of apnea
and hypopnea events experienced per hour of sleep. This metric is
highly variable and dependent on the type of sleep test performed
as well as the expertise of the individual scoring the sleep study
(Berry et al., 2017). Due to the high cost and specialized equipment
required to perform a full nocturnal polysomnography (NPSG)
sleep test, less costly procedures with wider access and applicability
have been developed (Kapoor and Greenough, 2015). One such
example is type 3 home sleep apnea tests, which have become the
default method of diagnosis formany patients (Bozkurt et al., 2019).
Despite the usefulness of these tests, they may underestimate the
severity of the disease or miss the diagnosis in patients at high risk
of SDB due to a lack of electroencephalogram (EEG) which allows
the detection of arousals (Punjabi et al., 2013).

Advancements in technology and computing power now allow
for the formulation of algorithms that can analyze large amounts
of data with a high level of accuracy in an automated way. A
recent study demonstrated that a neural network-based analysis of
the oxygen saturation signal could provide an accurate assessment
of obstructive sleep apnea (OSA) severity in snoring children
(Hornero et al., 2017). Another potentially useful physiological
measure for estimating SDB is assessing fluctuations in heart rate.
In previous studies in individuals with sleep apnea, changes in
electrocardiogram (ECG) signal modeling was utilized to detect
with high accuracy the presence of apnea (Radha et al., 2019;
Iwasaki et al., 2021). A recent prospective community cohort study
examined the relationship between nocturnal heart rate changes
(via single lead ECG) and cardiovascular outcomes over a 15-
year period and found that an elevated frequency of nocturnal
shortened RR intervals (RRI) was associated with an increased
risk of cardiac-related events and mortality later in life (Sankari
et al., 2019). Considering that heart rate is non-invasive and can be
easily obtained from both sleep study recordings as well as wearable
devices, developing techniques to interpret its relationship to SDB
should be prioritized. Previous studies assessed the role of detecting
heart rate changes in the diagnosis of prognosis of SDB however
these studies either used ECG signals which are limited to full
polysomnography studies, were in a pediatric population (Hornero
et al., 2017) or used small sample sizes, or used heart rate variability
algorithms (Shao et al., 2019). At present, it is unknown whether
an automated analysis of the heart rate signal from readily available
signals such as pulse rate from pulse oximeter and/or ECG can be
used to estimate SDB in adults (Mejía-Mejía et al., 2020). If a strong
association is found, it may allow for a more accurate diagnosis in
limited home sleep apnea attests and assist in the prediction of the
likelihood of developing cardiovascular disease (CVD) outcomes in
an adult population (Azarbarzin et al., 2021).

Our laboratory has developed an algorithm that can measure
respiratory-related heart rate changes that occur during sleep
studies (Sankari et al., 2019). The objective of this study was

to examine whether our novel algorithm could use heart rate
accelerations derived from a pulse oximeter and single-lead ECG to
detect SDB using data collected from the Sleep Heart Health Study
(SHHS). We hypothesized that the nocturnal heart rate changes
obtained from the pulse signal and ECG would provide an accurate
method to detect the presence of SDB.

Methods

Participants

We studied individuals from the SHHS database accessed from
the National Sleep Research Resource (NSRR) (Quan et al., 1997;
Zhang et al., 2018). The protocol was approved by the Human
Investigation Committee of Wayne State University.

Cohort description

The SHHS was comprised of 5804 adults aged 40 and older (at
the cohort’s inception) that completed unattended at-home NPSG
between the dates of November 1st, 1995, and January 31st, 1998,
and were tracked for cardiovascular disease outcomes until April
1st of 2006. SHHS participants were eligible to be included in this
study if they had complete NPSG data, including ECG and pulse
oximeter recordings, had no prior CVD event, and did not use
beta blockers on the night of the sleep study or at any other point
during follow-up.

Predictor

The main predictor variables were the hourly rate of heart rate
intervals (RRI) (defined as the time interval between a successive
pair of QRS complexes) and the hourly rate of heart rate (HR)
accelerations (HRA) over an entire NPSG (as illustrated in the
supplements). RRI was measured from the ECG signal sampled at
125Hz by using software that could detect R waves in LabChart
with a heart rate variability module (AD Instruments, Colorado
Springs, Colorado, USA) (Figure 1). Individuals performing data
analysis were blinded to the SDB severity of the participant. Each
tachogram created by LabChart was first closely examined for
artifacts and assessment of upper and lower limits for RRI values
to exclude non-physiological beats. The ECG signal was then
retrieved to a MATLAB R2019b program (MathWorks, Natick,
Massachusetts, USA) developed and validated by our group to
obtain an RRI signal for the entire night as depicted in Figures 1,
2 and Supplementary Figures S1–S5) (Sankari et al., 2019). The
RRI signal is exported from LabChart and divided into 1-min
segments. The program calculated the average RRI value for each
given segment, and considered it to be the baseline, then compared
each individual RRI value to that average as a baseline. The program
marked all RRI values that were <90% of the average RRI value in
the 1-min segment to which it belongs and grouped them together.
If two of these groups of consecutive beats were <10 seconds apart,
they were merged. In each group of these RRI points, the one
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with the lowest RRI value was an RRI dip (red dot in Figure 1).
For these beats to be considered they must have at least two
consecutive values that were less than the threshold (90%) of the
baseline to be considered as a dip; otherwise, they were considered
to be noise that was marked and not analyzed (more details are
available in the Supplementary material). The 90% threshold was
selected because previous work demonstrated that it correlated with
most respiratory events (Sankari et al., 2017). The total number
of dips was calculated and divided by the total recording time of
the NPSG to determine the total index of RRI dips (RRDI). For
the calculation of respiratory-related RRDI (RE RRDI), after the
RRI dips were selected, the program linked the RRI dips to the
specific respiratory events automatically if they occurred during or
up to 30 seconds after the end of a respiratory event. The scoring of
respiratory events is not automated given that they were scored in
the SHHS files. The RE RRDI was calculated as the total number of
respiratory-related RRI dips divided by the total NPSG recording
time in hours.

Heart rate accelerations (HRA) were assessed by using the
pulse rate signal sampled at 1Hz in the NPSG recording from
SHHS. Heart rate values were converted to heart rate intervals
mathematically and analyzed in the same way as above. Using
correlation analysis at different thresholds we found that the
5% threshold of HRA provided the highest correlation to AHI
from NPSG. Therefore, the HRA index (HRAI) was calculated by
dividing the total number of HRAs more than 5% from the baseline
HR for the 1-min time segment in which they occurred by the total
recorded time of the entire NPSG. The total HRAI and respiratory-
related HRAI were calculated in the same fashion as described
above for RRDI.

Sleep study analysis

Participants in the SHHS study underwent overnight
12-channel EEG-based NPSG (Compumedics Sleep Watch;
Abbotsford, Victoria, Australia) at home using a standard
protocol. Channels included oximetry, heart rate, chest wall
movement, abdominal wall movement, nasal/oral airflow,
central electroencephalogram (EEG) (bilateral), electrooculogram
(bilateral), chin electromyogram, and ECG. An apnea was
defined as a complete or almost complete cessation of the airflow
that lasted for at least 10 seconds. Hypopneas were scored
using the American Academic of Sleep Medicine (AASM) 2012
criteria (Berry et al., 2017) (defined as reductions in airflow
or chest wall movement to below approximately 70% of the
baseline for at least 10 seconds and accompanied by arousal
or a blood oxygen desaturation of 3% or more). The AHI was
calculated by summing the number of apneas and hypopneas
and dividing by the total sleep time in hours (from light on to
light out).

Statistical analysis

Total RRDI and HRAI and respiratory-related RRDI and
HRAI were compared to AHI. A Bland-Altman plot and intraclass

correlation coefficient (ICC) were used to directly assess the
agreement between the AHI and the respiratory-related HRAI
and RRDI. For ICC, the following cut-offs were used to interpret
the scores: <0.50 = poor, 0.50 to 0.75 = moderate, 0.75 to 0.90
= good, and >0.90 = excellent (Koo and Li, 2016). Diagnostic
testing was done to assess how well these metrics could predict
SDB with different AHI cutoffs (AHI ≥ 5 events/hr, AHI ≥ 10
events/hr, AHI ≥ 15 events/hr, AHI ≥ 30 events/hr) for RRDI
≥ 5, RE RRDI ≥ 5, HRAI ≥ 5, RE HRAI ≥ 5. Sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and agreement were calculated. A Spearman rank
correlation was used to assess the monotonic relationship and
a Pearson product-moment correlation was used to assess linear
relationships between several different variables, with the following
cutoffs used to interpret results: 0.00–0.10= negligible correlation,
0.10 to 0.39 = weak correlation, 0.40 to 0.69 = moderate
correlation, 0.70 to 0.89 = strong correlation and 0.90–1.0 =

very strong correlation (Schober et al., 2018). To visually examine
how well total RRDI/HRAI and RE RRDI/HRAI can predict
AHI severity at various cut points, we created receiver operating
curves (ROC). We computed ROC curves for 4 severity levels of
AHI (5, 10, 15, and 30 events/h). The higher the Area Under
the ROC Curve (AUC), the better the model (i.e., RE-RRDI)
is at predicting 0 cases as 0 and 1 cases as 1. When AUC is
0.7, it means there is a 70% chance that the model will be
able to distinguish between positive cases and negative cases.
The ROC curves and AUC were calculated using Proc Logistics
with the ROC option in SAS. We also examined correlations
between AHI and total RRDI/HRAI and RE RRDI/HRAI. We
first examined raw correlations and then we calculated adjusted
correlations for age, body mass index, and gender. A p-value
of <0.05 was considered statistically significant and all data
analyses were performed using SAS software (SAS Institute Inc.,
Cary, NC).

Results

Baseline characteristics

The baseline characteristics of eligible participants are
presented in Table 1. Out of a total of 2,574 sleep studies reviewed
for inclusion in this study, 2092 studies met the eligibility criteria
and were analyzed (studies excluded for incomplete NPSG,
inadequate/noisy ECG signal, arrhythmias, and participants with
CVD at baseline or using beta-blocker or other chronotropic
medications). The included studies were analyzed in two different
sets. A total of 1,438 files were used as a discovery dataset
as a training set to identify the diagnostic threshold before
it is validated. The remaining 653 files were analyzed as a
validation dataset.

Figure 1 is a representative polygraph of one of the participants
without SDB (AHI of 3.6 events/h, a total RRDI of 1.7 events/h, and
a total HRAI of 4.9 events/h). Figure 2 is a representative analysis of
one of the participants who have SDB (AHI of 16.9 events/h a total
RRDI of 34.4 events/h and a total HRAI of 45.8 events/h). Figure 3
depicts a polygraph of a 2-min recording segment illustratingHRAs
and dips that are associated with respiratory events.
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FIGURE 1

A representative record from a participant in the Sleep Heart Health Study. In the RRI channel, red dots indicate RRI dips and black stars indicate

artifacts. In the heart rate channel red dots indicate heart rate accelerations. In the SaO2 channel, the red triangles indicate desaturations that are 3%

or greater. RRI, R-R interval; SaO2, pulse oximetry. * indicate artifcats.

FIGURE 2

A representative record from a participant in the Sleep Heart Health Study who has SDB (AHI = 16.9 events/h). The red dots represent the O2

desaturations (ODI = 11.5), heart rate accelerations (HRAI from pulse oximeter), and RRI dips (from ECG) throughout the duration of the PSG

recording (9 h). Note the incremental increase of values from ODI, AHI to HRAI, and RRI dips. In the respiratory events channel, red lines indicate

hypopneas, blue lines indicate obstructive apneas and yellow lines indicate central apneas. In the hypnogram, the wake-sleep stages are indicated as

wake, N1, N2, N3, and REM. In the RRI channel, red dots indicate RRI dips. In the Heart Rate channel, red dots indicate heart rate accelerations. In the

SaO2 channel, the red triangles indicate desaturations that are 3% or greater. N1, non-REM stage N1; N2, non-REM stage N2; N3, non-REM stage N3;

RRI, R-R interval; SaO2, pulse oximetry.
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TABLE 1 Participant characteristics from the Sleep Heart Health study (SHHS).

Characteristic Summary measure Comparison
of samples

Total sample
n = 2,091

Discovery
sample

n = 1,438

Validation
sample
n = 653

p-value

Age, mean (sd) min-max 60 (10) 39–87 59 (11) 39–87 62 (9) 40–86 <0.0001

BMI, mean (sd) 28 (5) 28.5 (5) 27.8 (5) 0.0021

Race, n (%) <0.0001

White 1820 (87) 1278 (89) 542 (83)

Black 118 (6) 59 (4) 59 (9)

Other 153 (7) 101 (7) 52 (8)

Male sex, n (%) 888 (42) 631 (44) 257 (39) 0.0525

Smoking, n (%) 0.2589

Current 216 (10) 138 (10) 78 (12)

Former 879 (42) 609 (42) 270 (41)

Never 991 (48) 688 (48) 303 (47)

Hypertension, n (%) 341 (16) 210 (15) 131 (20) 0.0017

Diabetes, n (%) 78 (4) 41 (3) 37 (6) 0.0023

Stroke at baseline, n (%) 32 (2) 22 (2) 10 (2) 0.9979

Antihypertensive medications use, excluding chronotropic agents 299 (14) 187 (13) 112 (17) 0.0121

Total recording time, hours 7.8 (1.0) 7.8 (0.9) 7.7 (1.1) 0.4283

Total sleep time, hours 6.2 (1.0) 6.2 (1.0) 6.1 (1.0) 0.1267

AHI, mean (sd) min-max 21 (17) 0.38–116 20 (16) 0.7–116 22 (18) 0.4–102 0.0099

AHI, n (%) 0.0351

<5 219 (10) 148 (10) 71 (11)

5–15 740 (35) 535 (37) 205 (31)

> 15 1132 (54) 755 (53) 377 (58)

SaO2 < 90%, % total sleep time, mean (sd) min-max 2.4 (0–95) 2.4 (0–95) 2.4 (0–80) 0.924

RRDI total, mean (sd) min-max 24 (20) 0–184 24 (19) 0–160 23 (22) 0–184 0.8432

HRAI total, mean (sd) min-max 31 (15) 3.6–118 31 (15) 4.4–102 30 (17) 3.6–118 0.2961

RE RRDI, mean (sd) min-max 8.3 (10) 0–149 8.4 (10) 0–149 8.1 (10) 0–110 0.5162

RE HRAI, mean (sd) min-max 11 (12) 0–127 11 (12) 0.2–127 11 (11) 0–101 0.9267

Arousal index, mean (sd) min-max 21 (11) 3.9–102 21 (10) 3.9–102 21 (11) 4–83 0.7778

Arousal RRDI, mean (sd) min-max 8.7 (6.6) 0–78 8.9 (6.7) 0–78 8.2 (6.4) 0–47 0.0347

Arousal HRAI, mean (sd) min-max 8.9 (6.0) 0.3–62 9.1 (6.0) 0.4–62 8.6 (5.9) 0.3–36 0.1144

AHI, apnea-hypopnea index; HRAI total, the total number of heart rate accelerations divided by the total NPSG recording time in hours; RRDI total, total number of RR interval dips divided

by the total NPSG recording time in hours; RE RRDI, respiratory related RRDI; RE HRAI, respiratory related HRAI; SaO2 , pulse oximetry. Arousal RRDI, arousal related RRDI; Arousal HRAI,

arousal related HRAI. Total recording time is calculated as number of hours from light on to light out regardless of sleep or wake stages. Total sleep time is calculated as number of hours from

light on to light out that had sleep stages (N1, N2, N3 or REM). SaO2 < 90% is defined by the percentile of time that Oxygen saturation is below 90% for the total sleep time.

Agreement with AHI

As shown in Table 2 and Figure 4, the estimated AHIs
using respiratory-related HRAI and respiratory-related RRDI
correlated significantly with AHI (p < 0.05). Further, the
Spearman correlation for total HRAI is higher than that of
total RRDI after adjusting for age, sex, and body mass index

(BMI). These values indicate a strong positive correlation
between respiratory-related HRAI and AHI and a moderate
correlation between respiratory-related RRDI and AHI
(p < 0.05).

Respiratory-related HRAI showed strong agreement with AHI
(intraclass correlation coefficient (ICC: 0.64), whereas respiratory-
related RRDI displayed weaker agreement (ICC: 0.38). The
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FIGURE 3

A representative polygraph from a participant in the Sleep Heart Health Study. In the EEG channel, the dotted lines indicate the beginning and ends of

arousals scored by SHHS sta�. In the flow channel, the dotted lines indicate the beginning and end of respiratory events scored by SHHS sta�. In the

SaO2 channel, the gray arrow indicates a desaturation. In the heart rate channel, the black arrows indicate heart rate accelerations. In the RRI

channel, the white arrow indicates RRI dips. EEG, electroencephalogram; EMG, electromyogram; SaO2, pulse oximetry; EKG, electrocardiogram; RRI,

R-R interval.

Bland-Altman plots in Figure 5 compare the NPSG AHI of
the participants with various heart rate-based AHI estimations
(respiratory-related HRAI, respiratory-related RRDI, total HRAI,
and total RRDI) in the discovery dataset. A low mean negative
difference (AHI underestimation) was observed for respiratory-
related HRAI and respiratory-related RRDI vs. AHI, although
respiratory-related HRAI underestimated it to a lesser degree
compared to respiratory-related RRDI (average RE HRAI–NPSG
AHI=−9; CI:−27–8 vs. average RE RRDI–NPSGAHI=−12; CI:
−35–11). A high mean negative difference (AHI overestimation)
was observed for total RRDI and HRAI vs. AHI, although RRDI
overestimated it to a lesser degree compared to HRAI (average total
RRDI–NPSG AHI = 3; CI: −40–46 vs. average total HRAI–NPSG
AHI= 11; CI:−23–45).

The Bland-Altman plots in Figure 6 shows a similar
relationship in the validation dataset for the respiratory-related
measures and AHI (average RE HRAI–NPSG = −11; CI: −34–11
vs. average RE RRDI–NPSG=−14; CI:−44–15). The relationship
between total HRAI/RRDI and AHI was also similar in the
(average total HRAI–NPSG AHI = 8; CI: −35–49 vs. average total
RRDI–NPSG AHI = 1; CI: −53–55). The ICC values were small
for both HRAI and RRDI in the discovery dataset (ICC = 0.22 for
HRAI vs. AHI and ICC = 0.22 for HRAI vs. AHI) and were even
smaller in the validation dataset (ICC = 0.19 for HRAI vs. AHI
and ICC= 0.08 for HRAI vs. AHI).

Diagnostic performance

When the respiratory-related HRAI (≥5 events/h) is used there
is a strong diagnostic ability (78, 87, 81, and 56% agreement for
traditional AHI cutoffs 5, 10, 15, and 30 events/h, respectively) as

TABLE 2 Spearman correlations with AHI for total HRAI, total RRDI, RE

HRAI, and RE RRDI.

Discovery dataset Validation dataset

Unadjusted Adjusted Unadjusted Adjusted

Total HRAI 0.30∗ 0.28∗ 0.24∗ 0.26∗

Total RRDI 0.19∗ 0.18∗ 0.06 0.11

RE HRAI 0.87∗ 0.86∗ 0.83∗ 0.81∗

RE RRDI 0.71∗ 0.70∗ 0.57 0.56

AHI, apnea-hypopnea index; RRDI, RR interval dips index; HRAI, heart rate acceleration

index; RE RRDI, respiratory-related RR interval dips index; RE HRAI, respiratory heart rate

acceleration index; PPV, positive predictive value; NPV, negative predictive value. (∗p< 0.05).

depicted in Table 3. In addition, a high level of sensitivity was found
with respiratory-related HRAI (≥5 events/h) with traditional AHI
cutoffs 5, 10, 15, and 30 events/h, respectively (100, 94, 79, and
36%, respectively). RE RRDI (≥5 events/h) showed less modest
agreement (59, 70, 73, and 63%) for traditional AHI cutoffs 5, 10,
15, and 30 events/h, respectively, and lower specificity compared to
HRAI, especially at a high AHI cutoff of 15 events/hour.

Table 4 shows the four-class confusion matrix comparing the
classification agreement AHI with the classification of the RE
HRAI at different thresholds in the validation dataset. Furthermore,
dividing the validation dataset into two subgroups based on age
<55 and ≥55 years respectively showed a similar and strong
diagnostic ability for RE HRAI (79, 87, 83, and 56% agreement
for traditional AHI cutoffs 5, 10, 15, and 30 events/h, respectively)
in the age group of ≥55 years of age and (76, 87, 78, and 58%
agreement for traditional AHI cutoffs 5, 10, and 15, and 30 events/h,
respectively) in the subgroup < 55 years of age as depicted in
Supplementary Tables S1, S2.
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FIGURE 4

Correlation plots between NPSG-AHI and (A) total RRDI; (B) respiratory-related RRDI; (C) total HRAI; and (D) respiratory-related HRAI in the validation

dataset. HRAI, heart rate acceleration index; RRDI, RR interval dips index; AHI, apnea–hypopnea index; NPSG, nocturnal polysomnography.

FIGURE 5

Bland Altman plots comparing (A) respiratory-related HRAI to AHI [ICC = 0.64 (0.61, 0.67)]; (B) respiratory-related RRDI to AHI [ICC = 0.38 (0.33,

0.42)]; (C) total HRAI to NPSG AHI [ICC = 0.22 (0.17, 0.27)]; and (D) total RRDI to NSPG AHI [ICC = 0.22 (0.16, 0.26)] in the discovery dataset. HRAI,

heart rate acceleration index; RRDI, RR interval dips index; AHI, apnea–hypopnea index; NPSG, nocturnal polysomnography.

Figure 7 displays the receiver operating characteristic curves
for respiratory-related HRAI/RRDI and total HRAI/RRDI
with three AHI cutoffs for the diagnosis of SDB in validation
datasets, respectively. The corresponding AUC for each
respiratory-related attribute diagnostic cutoff was high in
both datasets, with decreasing scores as the AHI cutoff
increased (see Supplementary Figure S6). However, the AUC

scores were significantly lower for total HRAI and RRDI.
Using RE RRDI and RE HRAI values to predict AHI ≥5
events/h revealed a sensitivity of 0.99 for both indices and
the agreement was 63 and 78% for RE RRDI and RE HRAI
respectively. At the cutoff of AHI ≥5 events/h only, the ROC
revealed AUCs of 0.90 and 0.96 for RE RRDI and RE HRAI,
respectively.
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FIGURE 6

Bland Altman plots comparing (A) respiratory-related HRAI to AHI [ICC = 0.51 (0.45, 0.56)]; (B) respiratory-related RRDI to AHI [ICC = 0.18 (0.10,

0.25)]; (C) total HRAI to NPSG AHI [ICC = 0.19 (0.12, 0.26)]; and (D) total RRDI to NSPG AHI [ICC = 0.08 (0.003, 0.16)] in the validation dataset. HRAI,

heart rate acceleration index; RRDI, RR interval dips index; AHI, apnea–hypopnea index; NPSG, nocturnal polysomnography.

Discussion

Summary of findings

This study provides several important findings: (1) heart rate
measurements derived from ECG and pulse oximeter signals are
strongly correlated with AHI (derived from gold standard NPSG);
(2) Nocturnal pulse rate changes provide a greater diagnostic ability
than ECG-derived metrics with higher sensitivity and agreement;
(3) Nocturnal respiratory related pulse-rate analytic approaches are
capable of reliably identifying adults with SDB, using AHI clinical
cutoff value (AHI≥5 events/hour), while also allowing for accurate
estimates of NPSG derived AHI and thus could lead the way to find
an effective, non-invasive preliminary screening tool to detect the
presence of SDB.

The gold standard for diagnosing SDB currently is an attended
in-laboratory polysomnography, involving the simultaneous
recording of physiological measures, including EEG, EOG, chin
and leg EMG, ECG, nasal–oral thermistors, and pulse oximetry
(Ucak et al., 2021). In contrast, home sleep apnea testing (HSAT) is
less intensive, unattended, and may be more representative of an
individual’s typical sleep pattern. Both types of tests require manual
scoring and may be affected by subjective scorer bias (Collop,
2002). Therefore, there is a critical need to develop automated,
valid, and reliable developing techniques using more readily
available equipment and automated analysis techniques should
therefore be prioritized to circumvent these limitations as well as
to allow for more accessible and affordable SDB screening.

Previous research has investigated the use of heart
rate measurements from single-lead ECG to detect OSA.

De Chazal et al. (2003) extracted heart rate variability (HRV) time
and frequency domain features and were able to differentiate
apneic recording segments from normal segments with a success
rate between 90.5 to 100%. A more recent investigation performed
by Zarei and Asl (2020) utilized more advanced methods that
incorporated multiple HRV parameters and achieved 93.3%
accuracy in detecting respiratory events. In a similar study,
Rahman et al. (2018) used a supervised classification technique
to categorize patients as having either severe or non-severe
sleep apnea with a high degree of success (accuracy 87.5%,
sensitivity 100%, and specificity 83.3%). The findings of our study
were comparable to these previous investigations but employed
time-domain features instead of frequency-domain features.
Additionally, our sample size was considerably larger than that
of all three of these studies as we analyzed over 2,000 NPSGs
whereas none of these analyzed more than 200 NPSGs. The percent
agreement for respiratory-related HRAI ranged from 67 to 87%,
whereas that for respiratory-related RRDI ranged from 54 to 63%.
In our study, at all cutoff values assessed for respiratory-related
HRAI, the sensitivity was exceptional (79 to 100% for AHI cutoff
15 to 5 events, respectively as shown in Table 3), indicating that our
algorithm can be highly effective in ruling out individuals without
SDB. With the higher cutoff values, the sensitivity was reduced,
meaning that these cutoffs would be less effective in identifying
individuals with SDB.

There are also some similarities between our approach and
that of cardiopulmonary coupling (CPC). CPC also uses RRI
data, but it employs frequency domain analysis instead of time
domain analysis to convert periods of RRI into various frequency
coupling bands (Thomas et al., 2018). These frequency coupling

Frontiers in Sleep 08 frontiersin.org

https://doi.org/10.3389/frsle.2023.1162652
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Maresh et al. 10.3389/frsle.2023.1162652

TABLE 3 Diagnostic testing for RE RRDI and HRAI as a metric of estimated AHI ≥ 5 for the validation dataset.

AHI cut o� (RE RRDI ≥ 5) AHI cut o� (RE HRAI ≥ 5)

AHI 5 AHI 10 AHI 15 AHI 30 AHI 5 AHI 10 AHI 15 AHI 30

Sensitivity, % 100% 93% 82% 36% 100% 94% 79% 36%

Specificity, % 21% 48% 65% 86% 33% 72% 86% 98%

PPV, % 54% 63% 69% 71% 75% 87% 92% 97%

NPV, % 100% 88% 79% 59% 100% 85% 67% 43%

Agreement, % 59% 70% 73% 62% 78% 87% 81% 56%

Kappa 0.21 0.40 0.46 0.22 0.40 0.68 0.61 0.25

AHI, apnea-hypopnea index; RE RRDI, respiratory RR interval dips index; RE HRAI, respiratory heart rate acceleration index; PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 Four–class confusion matrix showing classification agreement of AHI and respiratory-related HRAI in the validation dataset.

RE HRAI severity

AHI RE HRAI < 5 5 ≤ RE HRAI < 10 10 ≤ RE HRAI < 15 15 ≤ RE HRAI < 30 30 ≤ RE HRAI

AHI < 5 71 0 0 0 0

5 ≤ AHI < 10 84 27 1 0 0

10 ≤ AHI < 15 30 54 8 1 0

15 ≤ AHI 25 87 65 39 0

30 ≤ AHI 5 23 29 57 47

AHI, apnea-hypopnea index; RE HRAI, respiratory-related heart rate acceleration index.

FIGURE 7

Receiver operating characteristic curves for (A) respiratory-related HRAI to AHI; (B) respiratory-related RRDI to AHI; (C) total HRAI to NPSG AHI; and

(D) total RRDI to NSPG AHI in the validation dataset. HRAI, heart rate acceleration index; RRDI, RR interval dips index; AHI, apnea-hypopnea index;

NPSG, nocturnal polysomnography.

bands include high-frequency coupling (HFC) which corresponds
to periods of stable sleep, low-frequency coupling (LFC) which
corresponds to periods of fragmented sleep, elevated low-frequency
coupling (e-LFC) which is correlated to periods of the obstructive
airway, and sustained chemoreflex effects on respiration and very

low-frequency coupling (VLFC) which corresponds to periods of
wake or REM sleep. It has been demonstrated that HFC showed
higher intraclass coefficients in healthy participants than in those
with sleep apnea (Thomas et al., 2018). Ma et al. (2020) used
CPC to derive a respiratory event index (CPC-REI) and found
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that this measure was positively correlated with AHI (r = 0.851,
p < 0.001). This method differs from our method in the way
that the respiratory events are defined, as those in CPC do not
necessarily align with respiratory events scored in the same way
as the respiratory-related RRI dips and respiratory-related heart
rate accelerations.

Automated signal analysis

Our work contributes to the exciting and ever-advancing area
of automated analysis in sleep research. Other groups have used
machine learning algorithms to estimate SDB-related metrics from
a subset of NPSG signals. For example, Bozkurt et al. (2019)
developed a machine-learning-based apnea detection algorithm
using data from Photoplethysmography (PPG) signal and HRV.
After using digital filters to clean PPG signals, a real-time embedded
four-feature PPG system was able to operate with an accuracy of
93.8% and thus was an effective method for diagnosing respiratory
events. Another investigation by Hornero et al. (2017), used
a convolutional neural network to predict AHI from only the
oxygen saturation signal in pediatric patients. Their model was
very accurate and increased as the AHI cutoff increased from
1 events/h to 10 events/h. This differs from our two models
which were more accurate at lower AHI cutoffs, meaning that
our system may be more effective in diagnosing those with mild
SDB. Their model also differs from ours by not relying on changes
in the saturation signal to align with respiratory events. Instead,
their model was trained on 589 PSGs with scored AHI and
applied to 3,602 other PSGs. Urtnasan et al. (2018), similarly
used a convolutional neural network to classify 10-second epochs
as either having obstructive apnea or not having obstructive
apnea by analyzing the raw ECG signal alone. They were able
to achieve 96% sensitivity and specificity in their test set after
forming the model in a training set of 63 patients. A limitation
of this model was that it was only used to identify those with
obstructive apneas.

Recent studies also explored the role of single-lead ECG in
detecting cortical arousals from home sleep studies using deep
learning techniques and found an AUC score of 0.93 (Li et al.,
2020). Likewise, Lachapelle et al. (2019) used heart rate changes
to predict cortical arousals. As previously mentioned, the inability
to detect cortical arousals is a weakness of home sleep apnea tests.
Lachapelle et al. found that they could improve agreement between
home sleep apnea tests AHI and full NPSG AHI if they included
non-scored hypopneas that were accompanied by increases in heart
rate (mean difference in AHI 11.2 events/hr vs. 7.1 events/hr,
p = 0.01). The objective of their study differed from ours, but
their results demonstrate the potential benefits of studying heart
rate changes associated with respiratory events. Nevertheless, in
our study, we found that approximately a third of the total heart
rate changes (RRDI and HRAI) were related to cortical arousals
(as outlined in Table 1 and Figure 2), indicating the importance
of arousals in the overall estimated score for severity of SDB. In
addition, it suggests that this technique may enhance the diagnostic
yield of sleep studies (such as HSAT) that do not score arousals to
provide more accurate respiratory events scores.

There have been many studies that have used the oxygen
desaturation index (ODI) as a predictor for AHI. Golpe et al.
compared 4% ODI to AHI and found that a cutoff value of
ODI = 31.4 was most accurate for predicting an AHI value of
15 events/hour or more (Lachapelle et al., 2019). This method
exhibited a sensitivity of 32% and a specificity of 97%, indicating
that it could be used to exclude severe disease but not necessarily
rule it in. Hang et al. used a more sophisticated algorithm that
employed a support vector machine to create a model that used
many different features from the oxygen saturation signal derived
from a pulse oximeter to predict AHI (Lachapelle et al., 2019).
They were able to achieve a sensitivity of 86% and a specificity
of 93% when diagnosing patients with severe sleep apnea (AHI
= 30 events/h). The methods of predicting AHI from ODI have
value, though our model has the advantage of having a very high
specificity at the mild cutoff point, allowing us to minimize false
negatives for the detection of the presence of sleep apnea.

Clinical implications

The findings of this study suggest a clear association between
heart rate changes detected through ECG and pulse oximeter
signals and respiratory events. The strong correlations between
respiratory-related heart rate changes and AHI suggest that
automated analysis using signals from sleep studies can accurately
identify respiratory events using signals such as pulse rate (derived
from pulse oximetry signal). These observations are a major step
in the direction of developing a simple heart rate-based algorithm
to diagnose SDB. Such a breakthrough would have the potential to
greatly decrease screening costs and allow for a much greater pool
of individuals to be assessed for SDB.

Limitations

There are several limitations to this work, the most notable of
which was poor ECG signal quality in some studies. Studies with
more than 10% of the signal that could not be analyzed due to
poor signal quality were excluded. This is a potential weakness
of using respiratory-related RRDI as a surrogate for AHI, but it
also demonstrates a potential strength of using HRAI. Another
limitation was that this method of analysis is not suitable for
patients who have arrhythmias or are on certain medications that
influence heart rate (Miyatani et al., 2018). Patients who have
atrial fibrillation or multiple premature ventricular contractions,
for example, have heart rates that are more variable and will have
artificially higher RRDIs and HRAIs. Despite those differences, we
observed that both RRDIs and HRAIs correlate strongly with each
other (with a correlation coefficient = 0.83; p < 0.0001). However,
based on this study HRAI performs better diagnostically. Our
explanation is that the signal is smoother and gets affected less by
the presence of ectopic beats or taking medications or chronotropic
agents such as beta-blockers (ongoing study). In addition, these
two signals are not the same in term of sampling rate, thresholds,
or circulation time which explain the delay noticed in Figure 2. It
should also be noted that the participants in the SHHS database
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were overwhelmingly Caucasian, and future studies involving this
type of analysis in additional cohorts are warranted. There are
also some inherent weaknesses in our findings due to the data
being obtained from a retrospective cohort study. The original
SHHS study was not designed specifically for this type of analysis.
Cohort studies are prone to bias, but this was accounted for by
implementing the automated analysis of the sleep studies which
were reviewed visually to ensure that signal quality was acceptable
and that arrhythmias were not present.

Another major limitation of this work is that the respiratory-
related HRAI and RRDI indices, which have greater predictive
ability than their total HRAI/RRDI counterparts, require events
to be manually scored. The goal of this work is to make the
diagnosis of sleep apnea simpler and less expensive. Recent
studies assessed the ability to detect ECG-derived respiration
(EDR) and showed promising results and strong agreement
with cardiopulmonary coupling such as that was used in this
study (De Chazal et al., 2003; Zheng et al., 2016). Hence, it
may allow combing these techniques in the future to assist in
automatically detecting these events from simplified recording.
Further studies in this area could greatly assist in the development
of these algorithms.

Conclusion

In conclusion, our data showed that nocturnal heart rate
changes (HRAI) derived from ECG and pulse rate correlate
strongly with SDB severity. However, pulse rate changes provide
a greater diagnostic ability than ECG-derived metrics with higher
accuracy that can provide accurate estimates of AHI, especially
in cases of limited settings such as using home sleep apnea
testing. Future studies are needed to validate this method in other
independent samples and representative clinical settings. Work
in this area should be continued to enhance automated heart
rate analysis to allow for accurate prediction of AHI using only
simple equipment.
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