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Background: Sleep is an important driver of development in infants born preterm.

However, continuous unobtrusive sleep monitoring of infants in the neonatal

intensive care unit (NICU) is challenging.

Objective: To assess the feasibility of ultra-wideband (UWB) radar for sleep stage

classification in preterm infants admitted to the NICU.

Methods: Active and quiet sleep were visually assessed using video recordings

in 10 preterm infants (recorded between 29 and 34 weeks of postmenstrual age)

admitted to the NICU. UWB radar recorded all infant’s motions during the video

recordings. From the baseband data measured with the UWB radar, a total of

48 features were calculated. All features were related to body and breathing

movements. Six machine learning classifiers were compared regarding their ability

to reliably classify active and quiet sleep using these raw signals.

Results: The adaptive boosting (AdaBoost) classifier achieved the highest

balanced accuracy (81%) over a 10-fold cross-validation, with an area under the

curve of receiver operating characteristics (AUC-ROC) of 0.82.

Conclusions: The UWB radar data, using the AdaBoost classifier, is a promising

method for non-obtrusive sleep stage assessment in very preterm infants admitted

to the NICU.
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Introduction

Very preterm infants (e.g., infants born <32 weeks of gestation) spend the first weeks

of their life developing in an incubator rather than within the protective environment

of the mother’s womb. These infants are particularly vulnerable, as the late second and

third trimesters of pregnancy are critical periods for fetal brain development during which

new connections are formed (Kostovi et al., 2019). In the womb, fetal sleep is believed

to be the major driver of neural activity, a process that is essential for neuronal survival,

axonal guidance, and synapse maturation (Vanhatalo et al., 2005; Rio-Bermudez et al.,

2020). However, in the neonatal intensive care unit (NICU), preterm infants are exposed

to a myriad of extrinsic stimuli that can radically alter their sleep-wake states (Peirano

and Algarín, 2007; Graven and Browne, 2008; Besedovsky et al., 2012; Tham et al., 2017).

Continuous monitoring of neonatal sleep in the NICUmight support care in two ways. First,
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because of the important role of neonatal sleep in development,

it may serve as a biomarker for future outcomes, such as the

maturational state and illness severity of an infant (Scher and

Loparo, 2009). Secondly, if sleep is monitored in real-time, elective

care can be adapted to sleep stages, ensuring optimal (brain)

development (Graven and Browne, 2008; Colombo et al., 2011;

Allen, 2012).

The main gold standard of sleep assessment in very preterm

infants is currently behavioral observation (de Groot et al., 2022).

Sleep consists of three behavioral stages. Active sleep (AS) is

thought to be important for developing new connections in the

brain. Quiet sleep (QS) is thought to be essential for consolidating

connections and recovery, and intermediate sleep is thought to

be a transitory stage (Knoop et al., 2021). Ideally, elective care

is adjusted to neonatal sleep stages. However, to achieve this,

continuous sleep observations are required; this is time-consuming

and expensive. In behavioral sleep stage classification, heart rate

and respiratory rate are important features in addition to visual

observation of the behavior of the infant (de Groot et al., 2021).

Contact-based sleep monitoring methods like polysomnography

(PSG) are difficult to utilize for infants specially inside medical

environments (Agnew et al., 1966; Tamaki et al., 2005). As a result,

there is a trend to monitor sleep stages in these vulnerable patients

through contactless methods (de Goederen et al., 2021). Algorithms

based solely on cardiorespiratory parameters seem only moderately

reliable (Werth et al., 2019; Sentner et al., 2022). As a result, there

is a demand for new or complementary methods and algorithms

that can continuously keep track of sleep stages with a higher rate

of accuracy.

Several technologies have been proposed for non-contact

monitoring of movement and vital signs in the neonatal population

(Werth et al., 2017). A promisingmethod is ultra-wideband (UWB)

radar (de Goederen et al., 2021). He et al. (2020) have shown

that–for five adult subjects–a high-resolution contactless UWB

radar can monitor respiration rate more accurately than contact-

based methods in the presence of considerable movement artifact.

Furthermore, UWB radar is a pulse-based radar that can reliably

and non-obtrusively capture vital signs in humans (Walid et al.,

2021); it can measure both breathing rate and movement. An UWB

radar can discriminate between different objects with a high rate

of specificity (Barrett, 2001). It can detect human presence and

movement up to 10m with high spatial resolution using signals

that are able to pass through almost any non-organic material (e.g.,

plastic, blankets and metals) (Walid et al., 2021). Finally, the UWB

radar can be used in the dark, creating an advantage over using

video-based algorithms, as preterm infants spend most of their

time in relatively dark environments [this is already proven to be

important in the development of some physiological mechanisms

like circadian systems among preterm infants (Hazelhoff et al.,

2021)].

UWB radar has already been used successfully to classify sleep

stages in older children (de Goederen et al., 2021). However, the

use of UWB radar has been investigated only once in a series of 4

infants, including one preterm infant, to distinguish between sleep

and wake states (Lee et al., 2021).

In summary, there is a gap in literature about automated sleep

classification of preterm infants in a medical environment. The

majority of previous studies use term born infants or children (de

Goederen et al., 2021), techniques that do not include movement-

features (Werth et al., 2017, 2019), techniques that require

additional electrodes (Ansari et al., 2018) or they use assessment

methods that require high computing power (Cabon et al., 2019).

Furthermore, varying–albeit low–performance of these existing

algorithms shows that a well-rounded state of the art technique is

not available yet. Finally, the existing UWB radar-based techniques

have not yet explored additional features besides amplitude (Lee

et al., 2021).

As the separate sleep stages (active sleep and quiet sleep)

provide important information about sleep quality, the aim of

the current study is to assess the feasibility of using UWB radar

to continuously measure separate sleep stages in preterm infants

admitted to a NICU. Preterm infants show more movement and

more irregular breathing patterns in AS compared to QS (de

Goederen et al., 2021; de Groot et al., 2022). Therefore, to improve

algorithm performance in sleep stage classification, we used

movement and respiration (extracted from radar signals) as main

features for sleep stage classification. In addition, we utilized the

phase of UWB radar data to enhance the classification performance.

Furthermore, we integrated empirical mode decomposition (EMD)

of the raw radar data into our feature extraction process to capture

the non-stationary characteristics and content of sleep-related

breathing in very preterm infants.

Methods

Study population

All the recordings and evaluations afterward (sleep stages

observations) were conducted at the Wilhelmina Children’s

Hospital in Utrecht, the Netherlands. For all infants, recordings

took place between 29 + 0 and 33 + 6 weeks postmenstrual

age (PMA). Data was collected from February to October 2022.

Exclusion criteria were congenital malformations, a history of

seizures, overt brain injury [e.g., intraventricular hemorrhage >

grade 2 according to Papile (Papile et al., 1978)], congenital

abnormalities and mother’s use of recreational drugs during

pregnancy. Written informed consent was obtained from parents

before enrollment in the study. Permission to use pseudonymized

patient data was obtained from parents using the consent form and

from the local Medical Ethical Review Committee (METC number

21-816/C). Table 1 lists general patients’ characteristics and specific

characteristics during radar and video.

Study set-up

An overview of the study setup is displayed in Figure 1. Videos

were recorded with an Intel R© RealSense Depth Camera D435i

camera (Intel Corporation, Santa Clara, USA) or a 1SEE VDO360

camera (VDO360, Maryland, USA). Both cameras used 30 frames

per second with a resolution of 1,920 × 1,080 pixels. Furthermore,

the Xethru X2M200 radar module (Novelda AS, Oslo, Norway)

was used (technical specifications are explained in Section Radar
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TABLE 1 Patient characteristics.

Sample size n 10

GA at birth median (range) 29+ 6 (25+ 1–31+ 2)

Assigned sex at birth %male 70%

Birth weight mean (SD) 1,253 grams (386)

Apgar score median 1/5/10 min 7/9/8

PMA at observation median (range) 31+ 2 (29+ 0–33+ 4)

Sleeping position

Lateral n (%) 7 (70%)

(5 right/2 left)

Prone n (%) 1 (10%)

(head right)

Supine n (%) 2 (20%)

Mode of ventilation

nCPAP n (%) 2 (20%)

nIPPV n (%) 3 (30%)

Optiflow n (%) 2 (20%)

None n (%) 3 (30%)

Medication 24 h before

observation+ during

observation

n (%) Caffeine= 10

Doxapram= 2

Hydrocortison= 1

data acquisition). Both the video camera and the UWB radar

were connected to a standalone laptop next to the incubator. The

UWB radar was placed as far away from the regular walkway as

possible so as to not be disturbed by signals from other people

in the NICU. An overview of the experimental setup is displayed

in Figure 2.

Sleep data acquisition

Sleep observations according to the behavioral sleep

stage classification for preterm infants (BeSSPI) sleep

classification system (de Groot et al., 2022) were used as a

gold standard. All videos were classified by one researcher.

Three sleep-wake stages (AS, QS, or W) were assessed in

1-min periods. This study purposely left out IS, which

is a transitory stage. Finally, the behavioral observers

used the following scales to give a confidence score to

every period that indicated how certain they were in

their classifications:

• 1 = Highly confident that this sleep stage is correct (80–

100% confidence).

• 0 = Relatively confident that this sleep stage is correct (50–

80% confidence).

• −1 = Not confident that this sleep stage is correct (0–

50% confidence).

No smoothing of the data was applied afterward.

Radar data acquisition

The X2M200 radar module can detect ranges from 0.5 to

2.5m in 52 bins with sensitivity ranging from 0 to 9 (Bhagat

and Raj, 2021). With a higher sensitivity, smaller objects can be

distinguished at the cost of more probable false alarms. The radar

pulses can be transmitted in two frequency bands of 6.0–8.5 and

7.25–10.2 GHz. For each bin, baseband data is generated 20 times

per second. The radar antenna has a 7 dB gain with more than 14

dB front-to-back ratio. The current study utilized 52 bins with a bin

length of 0.0388m. Furthermore, a carrier frequency of 7.46 GHz,

a detection zone of 0.4–1m, and a range offset of 0.3m were used.

Subjects were recorded with a sensitivity of either 5 or 9.

Radar data processing

The transmitted radio wave is usually called “reference” and

the received signal is called “echo” (Skolnik, 1980). The way

in which the reference signal is transformed to the echo signal

provides the information necessary to detect a target and its specific

characteristics. In the current study, the received (echo) signal

was decomposed into in-phase and quadrature components (see

Figure 3 for a general overview).

Signals are transmitted using a carrier frequency higher than

the Doppler frequency content of the target. If the carrier frequency

is fc, then the received echo signal—influenced by the Doppler

frequency of the moving target (fd)—can be written as a signal with

lower amplitude A
′
and a phase shift ∅ [dependent on both the

distance between the radar and the target and also on the carrier

frequency (Skolnik, 1980)]:

Secho = A
′

Sin(2π
(

fc ± fd
)

t −∅) (1)

In this formula, the± symbol is used to distinguish between the

approaching or receding target.

After down-conversion (removing the influence of the carrier

signal), the baseband can be extracted. The baseband is the

frequency band containing the message information about the

signal—in our case, the Doppler frequency and speed. To further

analyze the distance and speed of the detected object, any carrier

frequency leakage in the receiver should be detected and omitted.

Finally, the baseband signal is decomposed into in-phase and

quadrature components (Eaves and Reedy, 2012):

I (in− phase) = LPF{S∗echocos(2π fct)}

= A
′′

cos(±2π fdt −∅) (2)

Q (quadrature) = LPF{S∗echosin(2π fct)}

= −A
′′

sin
(

±2π fdt −∅

)

(3)

Amp (baseband amplitude) =
√

I2 + Q2 = A
′′

(4)

Ph (baseband phase) = Arctan(Q/I) (5)

The Supplementary section provides a detailed explanation of

pulse radar signal acquisition and decomposition into in-phase and

quadrature components.
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FIGURE 1

Schematic general overview of sleep stage classification steps in this research. It starts with recording data and scoring sleep observation scores,

then continues with feature extraction from those down-converted data. Finally, binary classification is applied to see how accurately we can

estimate sleep stages from contactless radar data.

FIGURE 2

Set up of radar while transceiving pulse waves toward and from

preterm infant at neonatology section, children and women

hospital, University Medical Center Utrecht, Netherlands.

Feature extraction

In the previous work of de Goederen et al. (2021), 38 features

were extracted from reconstructed respiratory and motion signals.

In that study, the subjects’ ages ranged from 2 months to 14

years. They found movement features to be the most important for

sleep-wake differentiation, whereas respiration features were most

important to distinguish between active and quiet sleep. Preterm

infants have more immature cardiorespiratory systems (de Groot

et al., 2021) and show other movement patterns during sleep (Bik

et al., 2022). This should therefore be taken into consideration

during feature extraction.

The current research deals with preterm infants—whose sleep

stages are of a more disorganized quality compared to older

children (Davis et al., 2004). Therefore, 10 more features (empirical

mode decomposition (EMD) and phase features, explained below)

were added to help analyze the complexity in the data more

thoroughly. A full list of 48 extracted features is summarized in

Table 2. In all, 13 features came from the motion signal, 29 features

from the respiration rate (RR), and 6 features from the phase of the

received signal. A detailed and more technical description of three

types of feature extraction is available in the Supplementary section.

Movement features
There are 52 bins in the baseband data. Each bin was

mapped to a specific range of detection. Each 60-S period

(equal to observation scoring sampling time) was composed

of 1,200 samples. The baseband data can be converted into

movement signals by subtracting each bin’s signal from consecutive
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FIGURE 3

General schematic of down-conversion of radar signal.

TABLE 2 Feature list and description.

Feature types Category Number

Average (slow and fast) Movement 2

Area (slow and fast) Movement 2

Variance (slow and fast) Movement 2

Information entropy (slow and fast) Movement 2

Fast movement ratio Movement 1

Ratio of EMD Power Movement 4

Multiscale sample entropy with 1 and 2

units of delay in 10 scales

Breathing 20

Sample and approximate entropy Breathing 2

Teager Energy in time and frequency

domains

Breathing 2

Kat’z fractal dimension Breathing 1

Variance and average (whole epoch and 30 S

centered at each epoch)

Breathing 4

Entropy of binary phase Phase 6

samples to omit detected objects that are static. In this regard,

movements in windows of 60 and 1 S were computed as slow

and fast movements, respectively. Entropy, average, and standard

deviation of amplitude signals were combined into movement

features (de Goederen et al., 2021). For further explanation

about converting baseband amplitude signal to movement, see

Skolnik, 2008. In addition, we added the relative power of

15 dynamical modes from EMD of amplitude signals (Zhao

et al., 2016). These groups of EMD features were previously

shown to be effective in improving UWB radar’s detection

algorithms (Diez et al., 2009). In fact, one main advantage of

EMD analysis over Fourier decomposition is that EMD has no

stationary presupposition of the mechanisms that are generating

the signal. So, by these type of features, we could also consider

possible nonstationary process of irregular sleep related respiration

among preterm infants (Zhao et al., 2016). A more detailed

explanation of the EMD algorithm can be found in Flandrin et al.,

2003.

Respiratory features
Respiratory rate is calculated by counting the rise and fall

of chest movements. Therefore, this semi-periodic pattern can

be derived by high resolution UWB radar through proper range

estimation (He et al., 2020). If the radar can distinguish the range

of the chest wall from adjacent moving body parts, the highest

peak in the frequency spectrum of the radar amplitude matrix can

be detected as the true RR frequency component (Kwasniewska

et al., 2019). To do this, the respiratory signal is reconstructed

from the baseband amplitude using pulse Doppler processing

(Bernfeld, 1967). We employed windows of 60 S (1,200 samples)

with an overlap of 95% on amplitude signals. Subsequently,

we formed an amplitude matrix of the following dimensions:

1200∗52 (samples∗bins).

Using the discrete Fourier transform (DFT) of this matrix, the

Doppler frequency at each bin can be found. More specifically,

the DFT of each bin is related to the Fourier expansion by

periodicity equal to the pulse repetition frequency. As a result, the

dominant pattern—which is ideally the RR—corresponds to the

maximum frequency of the amplitudematrix. Time, frequency, and

energy from this vector were computed as respiratory features, as

mentioned in Table 2.

Phase features
Phase of received signal is usually ignored in the pulsed-

Doppler radar analysis because of the destructive effects of

phase noise. However, phase can show the direction of the

target’s movement, which is a very important Doppler-related

characteristic. When considering Equations 2 and 3, one can see

that the derivative of the baseband phase signal corresponds to

whether the target is approaching or receding. In this regard, it

is highly useful to extract from the baseband phase [or tan−1(QI )]

if the phase derivative is positive or negative. In other words, the

positive and negative signs of (unwrapped) phase differentiation

can demonstrate whether a moving target is coming toward or

going away from the receiver. This information (in accordance

with the positive or negative sign of Doppler frequency) may be

lost when solely using the amplitude of the received signal. It is

important to note that we do not consider the magnitude of the

phase, because it is very susceptible to phase noise effects.
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FIGURE 4

Simple schematic of 3-fold feature extraction from baseband data.

To calculate the phase features, we compared phase signs (+ or

-) of the five adjacent bins that were most important for respiratory

reconstruction, which were operationalized as the bins with the

most movements detected. If the phase signs between two bins was

different, this was coded as “1.” If the phase signs between two bins

were the same, this was coded as “0.” The result was a binary vector

that showed the variability in Doppler signs in adjacent bins.

Thus, in each 60-S period, which was equal in length to the

interval of sleep scoring, we coded the variability of Doppler signs

into binary strings using heuristically found windows of 0.25 S. As

the sign of phase differentiation in each bin was compared to the

other three, a total of 6 binary vectors were extracted each minute.

Each binary vector was considered a phase-coded message. Less

repetition of each binary representation (“0” or “1”) in a vector

corresponded to higher entropy (Shanmugam, 1979).

Figure 4 displays the movement, respiratory, and phase feature

acquisition from baseband signal through a block diagram, and

(Shanmugam, 1979) discuses entropy of binary vectors in detail.

Classifier, data pooling and evaluation

To classify sleep stages, the following six frequently used

machine learning classifiers were compared: 1) support vector

machine (SVM), 2) K nearest neighboring (KNN), 3) adaptive

boosting (AdaBoost), 4) naive Bayes (NB), 5) decision tree (DTree),

and 6) linear discriminant analysis (LDA). For a detailed discussion

of each classifier, see Xu (2019). The Gridsearch Package in

MATLAB (R 2016) was used to find the best learning parameters

for each classifier.

Given the unbalanced nature of preterm sleep—with a

presumed bias toward AS—a balanced weighted class approach

was used to train the classifiers (using empirical prior parameters

in MATLAB). To overcome any further biasing effect in the

evaluation of our model performance, balanced accuracy and

Kappa is also reported.

All classifiers were tested on the performance of QS-AS

classification based on 10-fold cross-validation on the pooled data

of 10 subjects. The performance of each classifier was evaluated by

computing the sensitivity, specificity, and area under the receiver

operating curve (AUROC). Furthermore, for each classifier, a

Cohen’s kappa was calculated with the observations that served as

the gold standard. Finally, to show the discriminative power of a

single feature toward the output, feature importance was calculated

for the best classifier.

Results

For a better visualization of raw radar data during the two

stages, Figure 5 is plotted to show the discrimination between two

AS and QS stages. Figure 5 shows raw radar baseband data for the

transition between AS and QS. The displayed data is related to the

bin that has the frequency component with the highest power in

the frequency spectrum. In an ideal noiseless environment, without
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FIGURE 5

Received baseband amplitude of radar in the target detected range

and the related sleep stage scored by video observation.

frequencymodulation of breathing pattern, this bin is capturing the

chest wall pattern.

Patient characteristics

The time of recording was 123 ± 39min for the 10 subjects.

The dataset contained a bias toward AS, as was expected. Therefore,

only periods with a high confidence score (>0) were used for

AS classification.

Patient characteristics are presented in Table 1. No infants

received phototherapy. All infants received caffeine at 8 am as part

of routine care. Observation times occurred between 9 am and

7 pm.

Classification results

The classes were biased in count in favor of AS by

a ratio of 2.8:1. After pooling all data, the input matrix

consisted of 48 features and 577 tags (60 S observations), which

resulted in an input matrix of 48∗577 that was used to test

the classifiers. Table 3 lists the best learning parameters for

each classifier.

Figure 6 depicts the accuracy and Kappa of the six machine

learning approaches on binary classification of sleep stages

(AS/QS). The AdaBoost classifier had the best performance (83%).

Furthermore, Figure 6A shows the positive effect of the added

features on accuracy compared to the original 38 features (GF; de

Goederen et al., 2021). Figure 6B shows that the outcomes are still

the best for 48 features of AdaBoost for Kappa (which is more

robust to imbalanced class distribution than accuracy).

Table 4 provides performance metrics of the best classifier

(AdaBoost). Finally, Table 5 lists the most dominant features

for the AdaBoost classifier. This confirms that both EMD and

TABLE 3 Best learning parameters for each classification method

obtained by GridSearch.

Model Best parameters

SVM {‘Kernel’: Linear};{‘ Box constraints ’=0.072}; {‘Solver’:

SMO};{‘ Kernel scale ’=1}; {‘Decision function shape’:

Ovo}

Naive Bayes {‘Kernel’: Normal – ‘Width’=0.028}

Adaptive Boosting {‘Number of learning cycles’=479};{’Learning rate’=

0.8}; {‘ Minimum Leaf Size’=4};{‘Max Splits’=58}

Discriminant {‘Discriminant type ’: Linear };{‘Gamma’=

0.07};{‘Delta’=0.002}

K-nearest neighbors {‘Distance weight’: Squared inverse};{‘Number of

Neighbors ’=12}; {‘NS method: Exhaustive};{‘Break ties

’: Smallest}

Decision Tree {‘Number of nodes’=9 };{‘Split criterion’: Deviance};{‘

Minimum Leaf ’=14};{‘Max Splits’=7}

phase features possess informative aspects of sleep stages of

preterm infants.

Classification performance

Because the classification is imbalanced, we should be careful

about reporting accuracy itself. Imbalanced train datasets are

potentially able to lead to high accuracy, while the lower frequent

labels are highly misclassified. For example, if an algorithm would

classify every sleep stage, as in our sample, it would still reach an

accuracy of 64%.

To be sure this was not the case in our results, both sensitivity

and specificity were incorporated in further outcome measures

(e.g., balanced accuracy, which is the average of sensitivity and

specificity). The ROC curve for the AdaBoost classifier is displayed

in Figure 7. These results show that the classifier worked well, and

that misclassification was not inclined toward quiet sleep.

Discussion

We investigated the feasibility of an UWB radar module

to unobtrusively and continuously measure sleep stages in 10

preterm infants between 29 and 34 weeks PMA admitted to the

NICU. Six machine learning classifiers were extensively tested.

Although preterm sleep data is inherently imbalanced—showing

more AS than QS—moderate-to-high accuracy was reached. Using

an AdaBoost classifier, AS and QS could be detected in preterm

infants, with a performance reaching a Cohen’s kappa of 0.54 and a

balanced accuracy of 81%.

To train the classifiers, features were extracted from the

amplitude and phase of the down-converted radar data.

Respiration was reconstructed from the movement signal.

This approach resulted in three feature classes: movement,

reconstructed respiration, and phase. In our study, the movement

features were found to be most important for binary sleep

stage differentiation.
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FIGURE 6

Outcomes of the six machine learning algorithms (GF are the general 38 features utilized in de Goederen et al., 2021). (A) Classification accuracy. (B)

Kappa.

The findings were in accordance with de Goederen et al.

(2021), also who showed that AdaBoost was the best performing

machine learning algorithm for classifying sleep stages in children

using UWB radar data. While they showed movement features

to be more important than respiratory features in sleep-wake

stage classification, the respiratory features were most important

to differentiate between sleep stages. In contrast, the current study

identified movement as the most important feature for sleep stage

classification, as opposed to respiratory-based features.

A possible explanation for this discrepancy is the immature

cardiorespiratory systems of preterm infants (de Groot et al., 2021).

Furthermore, in infants, AS is characterized by a high level of

motor activity, whereas QS is characterized by motor quiescence

(Bik et al., 2022), while children have already developed muscle

paralysis during REM sleep (Anders et al., 1995; Ferber, 1995).

Finally, chest wall movements are subtle in preterm infants and

can hardly dominate the baseband amplitude matrix pattern.

More specifically, these small movements have only a small effect

on the overall signal, even when they are extracted separately.

Nevertheless, respiratory features were shown to have a clear

complementary role in predicting sleep stages for our cohort, as

performance improved when respiratory features were used in

the classifier.

One new insight from this study is the importance and

benefit of incorporating both the phase of received signal (through

phase features) and it’s nonstationary nature (by EMD). As

shown in Table 5, EMD makes the 2nd and phase the 5th

most important feature in sleep classification. So, the amount

of irregularity in respiration of preterm infants needs to also

be scrutinized both by detection of directionality of chest

movement (by phase feature) and its nonstationary patterns

(by EMD features).
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TABLE 4 AdaBoost performance on the 48 features as the best result.

Parameter Value

F1-Score 0.89

Balanced accuracy 0.81

AUC ROC 0.82

Cohen’s Kappa 0.54

TABLE 5 Normalized weight of 5 dominant features.

Feature Normalized importance
weight

Slow movement average 1

EMD feature of slow movement 0.533

Slow Movement average 0.375

Fast movement area 0.292

Phase entropy (between two bins with

most movements)

0.291

FIGURE 7

ROC curve for the Adaptive Boosting classification.

The current study reached a Cohen’s kappa of 0.54 and balanced

accuracy of 81%. Although de Goederen et al. (2021) did obtain

a higher Cohen’s kappa when distinguishing sleep from wake, this

was not the case when distinguishing between REM, non-REM, and

wake. Research by Lee et al. (2021) used UWB radar to classify

sleep/wake states in 4 (near) term infants. In these older infants,

they reached a slightly lower overall performance compared to our

research, with a Cohen’s kappa of 0.49 and an overall accuracy

of 75.2%.

Similar to our study, Lee et al. (2021) foundmovement to be the

most important feature in this algorithm. However, they identified

moremovement during sleep (e.g., a muscle twitch or startle during

AS) as the cause of discrepancies, for example, when the stage was

identified as sleep by the gold standard and as wake by the radar.

It is important to note that Lee et al. distinguished between sleep

and wake, while the current study only distinguished between AS

and QS.

Limitations

The UWB radar picks up on any moving objects within range.

This can be a limitation, as people’s movement around the device

might cause unwanted signals. In our cohort, we did not perform

any radar measurements during clinical care.

Secondly, the classifiers that we compared in this study were

all trained to differentiate between AS and QS. The choice to not

include waking activity was based on low availability of periods

spent awake (1 out of 400 1-min epochs on average for 10 cases).

However, when preterm infants are awake, behavior is relatively

similar to AS (Bik et al., 2022). Despite this limitation, a QS/non-

QS distinction allows researchers to distinguish a sleep state trend,

which can be used as a proxy marker of brain development and to

steer future care (Moghadam et al., 2022).

Finally, the current algorithm is only useable in a specific age

range (29–34 weeks PMA). However, preterm infants older than 28

weeks PMA are thought to benefit the most from the advantages

of continuous bedside sleep stage classification. Before 28 weeks

of PMA, sleep stages have often not been clearly consolidated yet

(Mirmiran et al., 2003; Dereymaeker et al., 2017; Bourel-Ponchel

et al., 2021; Georgoulas et al., 2021) and between 29 and 34 weeks

PMA, most of the NICU care is elective and can be adjusted to

behavioral needs.

Future perspectives

In the current research, four EMD and six phase features

were added to the selection used by de Goederen et al. (2021).

Future research could investigate the useability of other features to

improve classification in infants and children. The added value of

EMD suggests that dynamic variations of the radar may deserve

some investigation. Furthermore, the added value of phase features

suggests that the directionality of the Doppler and breathing

dynamics may be a starting point for future research.

Moreover, in this study, we have not applied any specific feature

selection method on our data. The reason for this is the different

outcomes of various feature selection methods. For this study,

the main goal was to show how feature extraction from UWB

radar can be helpful in sleep stage prediction among preterm

infants. Also, methods like AdaBoost are more robust to feature

selection changes, so we used machine learning algorithms to find

the dominant features. One interesting idea for future works on

this study is to see how different feature selection methods affect

classification outcomes.

Additionally, we can use our algorithm on a larger sample

size to see how it works for leave-subject-out cross-validation. In

this way, we can tune our model to be more subject-independent

and generalized. There is also the option of adding infants with

more wake states to check the feasibility of our features in multi-

class analysis.

In our study, unlike to de Goederen et al. (2021), the

movement features were found to be most important for binary

sleep stage differentiation. This shows that respiratory features

for preterm infants are not completely illustrating their sleep

stages. An important factor that should not be overlooked is

the occurrence of periodic breathing among preterm infants,
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which can cause movements due to fast and shallow breaths

(Dereymaeker et al., 2017). Although this pattern of respiratory-

related motion typically lasts no more than 10 S (Mirmiran

et al., 2003), which is shorter than the duration of each of our

labeled tags, it can produce frequency harmonics larger than

the peak frequency considered as a respiratory periodic pattern.

However, the duration of periodic breathing is shorter than 18%

of the duration of slow-movement related features, including

the three most dominant movement features (slow movement

average and variance, and EMD of slow movement). Therefore,

it is unlikely that periodic breathing will significantly affect

these features.

An interesting topic for future research will be to explore

the sensitivity of shorter tag durations (less than the 60-S

epochs that we chose) of sleep classification to the higher

frequency harmonics of periodic breathing. More specifically, it

may be interesting to assess the possible trade-off between the

minimum resolution time of possible sleep stage classification

and the dominance of the monochromatic frequency pattern

of respiratory rate for sleep stage classification. One may

expect that the time resolution (time length of each sleep

stage tag) of smaller values might need a multi-tone analysis

of respiratory rate extraction to prevent a disproportionate

influence of periodic breathing on sleep classification. However, the

boundaries and thresholds for epoch length should be a topic of

future investigations.

An important aspect of neonatal sleep stage classification is

defining the “gold standard.” In this paper, the manual BeSSPI

system has been applied for scoring sleep because it is the

first validated behavioral scoring system for preterm infants.

It must be noted that usually, the computer-based automated

sleep scoring systems lead to a broader range of Cohen’s kappa

scores (0.6 to 0.95) than human scoring systems for machine

learning classification algorithms (Penzel and Conradt, 2000;

Louis et al., 2004; Hamida and Ahmed, 2013). Among the

human based manual sleep classification systems for preterm

infants, Cohen’s kappas range between 0.31 (Brazelton) and

0.96 (Prechtl) (Bik et al., 2022). Future work could explore

how our algorithm performs when based on other sleep

assessment methods that could be used in preterm infants–such

as EEG (Ansari et al., 2018).

The AdaBoost classifier is highly viable to noise bias in the

data (Cao et al., 2012). However, when comparing the AdaBoost

results to the other classifiers, the AdaBoost results excel on

every index. This demonstrates that noise did not have a major

disruptive effect on the data and sleep prediction, possibly because

all subjects were relatively stable and undisturbed during recording.

Therefore, any available noise is probably due to motion artifacts–

which provide information about the behavioral state of the infant.

Nevertheless, it will be interesting to evaluate the sensitivity of

sleep classification by radar to the peripheral noise in the NICU

(e.g., due to people walking by or opening the incubator) in

future research.

Finally, we believe that future research should look into

combining different unobtrusive monitoring data to optimize

classification accuracy. It is worth investigating if adding data from

video, heart rate, and other modalities to radar signals can improve

sleep assessment of preterm infants.

Conclusions

The current research showed that it seems feasible to

distinguish active from quiet sleep stages in preterm infants

in a clinical neonatal intensive care setting using UWB radar

data. Classification using radar data can reach a high balanced

accuracy, despite the inherent imbalance in the data. Significant

features from respiratory and movement signals improved sleep

stage classification accuracy compared to a previously published

algorithm. Considering further potential improvements that can be

made, UWB radar is a very promising tool for continuous non-

obtrusive sleep stage detection in preterm infants in the neonatal

intensive care unit.
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