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Regulation of dendritic spines in
the amygdala following sleep
deprivation

Lindsay Rexrode1, Matthew Tennin1, Jobin Babu1,2, Caleb Young1,

Ratna Bollavarapu1, Lamiorkor Ameley Lawson1, Jake Valeri1,2,

Harry Pantazopoulos1,2 and Barbara Gisabella1,2*

1Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS,

United States, 2Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS,

United States

The amygdala is a hub of emotional circuits involved in the regulation of cognitive

and emotional behaviors and its critically involved in emotional reactivity, stress

regulation, and fear memory. Growing evidence suggests that the amygdala plays

a key role in the consolidation of emotional memories during sleep. Neuroimaging

studies demonstrated that the amygdala is selectively and highly activated during

rapid eye movement sleep (REM) and sleep deprivation induces emotional

instability and dysregulation of the emotional learning process. Regulation of

dendritic spines during sleep represents a morphological correlate of memory

consolidation. Several studies indicate that dendritic spines are remodeled during

sleep, with evidence for broad synaptic downscaling and selective synaptic

upscaling in several cortical areas and the hippocampus. Currently, there is a

lack of information regarding the regulation of dendritic spines in the amygdala

during sleep. In the present work, we investigated the e�ect of 5 h of sleep

deprivation on dendritic spines in the mouse amygdala. Our data demonstrate

that sleep deprivation results in di�erential dendritic spine changes depending

on both the amygdala subregions and the morphological subtypes of dendritic

spines. We observed decreased density of mushroom spines in the basolateral

amygdala of sleep deprived mice, together with increased neck length and

decreased surface area and volume. In contrast, we observed greater densities

of stubby spines in sleep deprived mice in the central amygdala, indicating that

downscaling selectively occurs in this spine type. Greater neck diameters for

thin spines in the lateral and basolateral nuclei of sleep deprived mice, and

decreases in surface area and volume for mushroom spines in the basolateral

amygdala compared to increases in the cental amygdala provide further support

for spine type-selective synaptic downscaling in these areas during sleep. Our

findings suggest that sleep promotes synaptic upscaling of mushroom spines

in the basolateral amygdala, and downscaling of selective spine types in the

lateral and central amygdala. In addition, we observed decreased density of

phosphorylated cofilin immunoreactive and growth hormone immunoreactive

cells in the amygdala of sleep deprived mice, providing further support for

upscaling of dendritic spines during sleep. Overall, our findings point to region-

and spine type-specific changes in dendritic spines during sleep in the amygdala,

which may contribute to consolidation of emotional memories during sleep.
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Introduction

Sleep is critical for the regulation of emotional memory

consolidation, and disturbances in sleep and memory processing

along with alterations in dendric spine numbers are widely reported

in people with psychiatric disorders (Ford and Kamerow, 1989;

Krakow et al., 2000; Ohayon and Shapiro, 2000; Krystal et al., 2008,

2016; Dorph-Petersen et al., 2009; Sweet et al., 2009; Murray and

Harvey, 2010; Gruber et al., 2011; Penzes et al., 2011; Duman and

Aghajanian, 2012; Ebdlahad et al., 2013; Germain, 2013; Glausier

and Lewis, 2013; Licznerski and Duman, 2013; Shelton et al., 2015;

Koffel et al., 2016; Dolsen et al., 2017; MacDonald et al., 2017;

Soehner et al., 2017; Forrest et al., 2018; Gisabella et al., 2021).

Sleep is critically involved in strengthening memories (for review

see Stickgold, 2005). However, the morphological and molecular

processes involved in memory consolidation during sleep are

still not well understood. Two non-mutually exclusive theories

have emerged regarding synaptic regulation underlying memory

consolidation during sleep. Studies from Tononi and Cirelli

(2006, 2014) have established the synaptic homeostasis hypothesis

(Tononi and Cirelli, 2006, 2014) which proposes that neurons form

and strengthen synapses during wakefulness as organisms interact

with the environment and encode new memories. During sleep,

when the encoding process is offline, synapses are downscaled to

prevent over-excitation of neurons and improve signal-to-noise

ratio and memory performance (Tononi and Cirelli, 2006, 2014).

Several studies reporting decreases in dendritic spines, synaptic

density, and synaptic markers during sleep in sensory and motor

cortical regions provide support for broad synaptic downscaling

during sleep (Cirelli, 2005; Maret et al., 2011; de Vivo et al., 2017).

An alternate theory originally proposed by Mueller and

Pilzecker and expanded by several groups (McGaugh, 1999)

including more recently by Born and colleagues (Rasch and Born,

2013; Dudai et al., 2015), proposes that selective synapses formed

during the day are selectively tagged and strengthened during

sleep as memory storage is reorganized. Several recent studies

support this theory. For example, evidence that sleep deprivation

impairs memory strength (Vecsey et al., 2009), and results in

decreased dendritic spines (Havekes et al., 2016), supports the

hypothesis that selective synapses are strengthened during sleep.

In addition, in vivo dendritic spine imaging demonstrated that

sleep promotes increases in dendritic spines in selective branches of

motor cortex neurons following motor learning (Yang et al., 2014),

providing further support that sleep strengthens selective synapses

formed during recent learning, even in areas where net synaptic

downscaling during sleep was reported (Maret et al., 2011; de Vivo

et al., 2017).

Despite the growing evidence for synaptic changes during

sleep supporting both downscaling and upscaling theories, very

few studies have examined dendritic spine regulation during sleep

in subcortical areas involved in emotional memory processing.

In our recent study, we observed region- and branch-specific

synaptic downscaling in the hippocampus of adult mice, supporting

the theory of broad but selective synaptic downscaling in this

subcortical region (Gisabella et al., 2020). Furthermore, a recent

electron microscopy study in adolescent mice provides additional

evidence for broad downscaling in this region (Spano et al.,

2019). The amygdala is a key subcortical region involved in

emotional memory processing and sleep. The amygdala is highly

interconnected with the hipppocampus and these two regions work

together during emotional memory processing, with the amygdala

representing a key region critically invovled in stress regulation

and fear memory (Wilensky et al., 2000; Pare et al., 2004; LeDoux,

2007; Rodrigues et al., 2009; Johansen et al., 2011), while the

hippocampus is critical for remembering the spatial context of the

fearful stimulus. Recent evidence indicates that the amygdala is part

of a network together with the hippocampus and prefrontal cortex

involved in fear memory consolidation during sleep (Miyawaki and

Mizuseki, 2022). Furthermore, the central nucleus of the amygdala

(CEA) projects to brainstem REM regulatory regions (Inagaki et al.,

1983; Wellman et al., 2022) and recent evidence demonstrates

that the amygdala actively participates in the regulation of

sleep architecture (Hasegawa et al., 2022). Specifically, dopamine

signaling in the basolateral amygdala (BL) is involved in promoting

the transition fromNREM to REM sleep (Hasegawa et al., 2022). In

comparison, the lateral amygdala (LA) serves as a sensory gateway

to the amygdala, integrating sensory inputs from thalamic and

cortical areas (LeDoux et al., 1990a; Li et al., 1995). Recent studies

suggest that synaptic downscaling occurs specifically during REM

sleep (Li et al., 2017; Zhou et al., 2020), thus the amygdala may

also regulate synaptic processing during sleep through its role in

promoting REM sleep.

The amygdala is also critically involved in the regulation

emotional behaviors implicated in psychiatric disorders (Bishop

et al., 2004). For example, schizophrenia (SZ) and post-traumatic

stress disorder (PTSD) display abnormalities in emotional

processing as well sleep disturbances and memory dysfunction

(Frodl et al., 2002; Sah et al., 2003; Benarroch, 2015; Krystal

et al., 2016; Ferrarelli and Tononi, 2017). The amygdala is

hyperactive in PTSD (Bremner et al., 2005) and regulates fear

and stress alterations in sleep (Wellman et al., 2008, 2013, 2016;

Liu et al., 2009). Furthermore, evidence suggests the amygdala

is associated with heightened emotional reactivity in insomnia

disorders (Baglioni et al., 2010, 2014). Studies in humans describe

amygdala hyperreactivity due to sleep loss (Motomura et al., 2017).

Interestingly, altered numbers of dendritic spines, which serve

as morphological representations of encoded memory, are also

consistently reported across several psychiatric disorders (Dorph-

Petersen et al., 2009; Sweet et al., 2009; Penzes et al., 2011; Duman

and Aghajanian, 2012; Glausier and Lewis, 2013; Licznerski and

Duman, 2013; Shelton et al., 2015; MacDonald et al., 2017).

Currently there is no evidence available regarding the

effects of sleep or sleep deprivation on dendritic spines in

the amygdala. Chronic stress studies have shown that dendritic

spines are differentially affected in the amygdala compared to

the hippocampus, with dendritic spine density increasing in

the amygdala but decreasing in the hippocampus following

chronic stress (Vyas et al., 2002). This suggests that memory

consolidation may differentially affect dendritic spine morphology

between these two regions. We tested the hypothesis that sleep

deprivation prevents broad synaptic downscaling in the amygdala.

We used viral vector labeling of dendritic spines combined with

confocal imaging and three-dimensional (3D) analysis in sleep-

deprived and control mice to determine how sleep deprivation
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affects dendritic spines on neurons in the subregions of the

amygdala. Immunohistochemistry and quantitative microscopy

for phosphorylated cofilin (pCoflin), a marker involved in the

dendritic spine downscaling (Cichon et al., 2012; Calabrese et al.,

2014; Havekes et al., 2016; Noguchi et al., 2016) and for growth

hormone (GH), a molecule shown to increase dendritic spines

and fear memory in the amygdala (Gisabella et al., 2016), were

used as a first step in examining the molecular factors involved

in synaptic changes during sleep. Specifically, cofilin is involved in

cleaving actin filaments during dendritic spine downscaling, and

phosphorylation of cofilin decreases its activity (Havekes et al.,

2016). Thus, pCofilin levels are predicted to be inverse to spine

density measures in sleep deprived mice, whereas GHmeasures are

predicted to positively correlate with spine density measures.

Methods

Animals

All mice used in experiments were adult male C57BL/6J mice

(available from Jackson Laboratories, Bar Harbor, ME). Animals

weremaintained on a 12:12 h light-dark cycle with ad libitum access

to water and food. All animal procedures met National Institutes

of Health standards, as outlined in the Guide for the Care and

Use of Laboratory Animals, and all protocols were approved by the

University of Mississippi Medical Center Institutional Animal Care

and Use Committee (IACUC).

Viral vector injection and sleep deprivation

Adult (3–4 months old) male C57BL/6J mice (6 controls, 6

sleep-deprived mice) received bilateral stereotaxic microinjections

of 2 µl of AAV1-CMV-eGFP virus (Vector Biolabs, cat# 7002) in

each hemisphere. This number of animals per group was sufficient

to detect changes in dendritic spines from sleep deprivation in

mice in previous studies from our lab and others (Havekes et al.,

2016; Spano et al., 2019; Gisabella et al., 2020). Injections of the

AAV-GFP virus under the CMV promoter allowed for the labeling

of dendritic branches for spine analysis. The injections targeted

the amygdala (BLA) region (stereotaxic coordinates AP:−1.1,

ML:3.2, DV:4.1). The virus was infused using a Nanofil 35-gauge

stainless steel bevel needle (catalog # NF35BV, World Precision

Instruments, Inc., Sarasota, FL) attached to a 10µl Nanofil syringe

(Hamilton Company, Reno, NV). Hamilton syringes weremounted

in a stereotaxic barrel holder, and the rate of virus delivery was

controlled by an automated syringe pump (Harvard Apparatus,

Holliston, MA). After 6 weeks, animals were divided randomly into

two cohorts of six mice each (6 controls, 6 sleep-deprived mice).

The Pinnacle automated sleep deprivation system (Cat# 9000-

K5-S) which simulates gentle handling was used for 5 h of sleep

deprivation from lights on (6 AM) to 11 AM. This system consists

of a cylindrical housing chamber with a bar that continuously

rotates at 5 rpm and randomly reversed direction every 10–30 s,

which prevents animals from sleeping. All animals were housed in

the cylindrical chambers beforehand to adapt to the environment

and control animals were housed in the same chambers but without

the rotating bar. A researcher visually verified that the bar rotated

at all times and that mice did not use alternative strategies to avoid

the bar and sleep. This system has been established by prior studies

to effectively reduce sleep as measured with EEG recordings in rats

and mice (Hines et al., 2013; Burgdorf et al., 2019; Aguilar et al.,

2020; Yuan et al., 2021). Both control and sleep-deprived mice were

sacrificed at 11 AM (5 h after lights on in the 12:12 light cycle) and

processed for quantification of dendritic spines. This time point 5 h

into the light cycle is identical to previous studies from our lab and

others (Havekes et al., 2016; Gisabella et al., 2020). Brains were then

analyzed for viral vector expression and dendritic spines as in our

published and preliminary studies (Gisabella et al., 2020).

Tissue processing

Mice were deeply anesthetized with isoflurane and perfused

with 0.1M phosphate-buffered saline (PBS) containing 10%

formalin. Brains were removed and cryoprotected in 30% sucrose

in 0.1M PBS (pH 7.4), then sectioned into coronal 40µm serial

sections using a freezing microtome (American Optical 860,

Buffalo, NY) and stored in 0.1 Molar phosphate buffer with 0.1%

NaAzide. Sections were mounted on gelatin-coated slides and

coverslipped using Dako mounting media (S3023, Dako, North

America, Carpinteria, CA) to quantify dendritic spine density from

images captured using confocal microscopy.

Immunocytochemistry (mouse samples)
Free-floating mouse brain tissue sections were carried through

antigen retrieval in citric acid buffer (0.1M citric acid, 0.2M

Na2HPO4) heated to 80◦C for 30min, and incubated in the rabbit

primary antibody anti-pCofilin (Ser3) (cat#3311, Cell Signaling)

(1:1000 µl) or rabbit anti-GH1 (Protein Tech Lab, cat# 55243-1-

AP) (1:500 µl) for 48 h at 4◦C, and subsequently in biotinylated

secondary antibody (goat anti-rabbit IgG; 1:500; Vector Labs, Inc.

Burlingame, CA), followed by streptavidin conjugated with horse-

radish peroxidase for 2 h (1:5000 µl, Zymed, San Francisco, CA),

and, finally, in nickel-enhanced diaminobenzidine/ peroxidase

reaction (0.02% diaminobenzidine, Sigma-Aldrich, 0.08% nickel-

sulfate, 0.006% hydrogen peroxide in PB). All solutions were made

in PBS with 0.2% Triton X (PBS-Tx) unless otherwise specified.

Immunostained sections were mounted on gelatin-coated glass

slides, dehydrated in a gradient ethanol series, coverslipped, and

coded for blinded quantitative analysis. All sections included in the

study were processed simultaneously within the same session to

avoid procedural differences. Omission of the primary or secondary

antibodies did not result in detectable signal.

Confocal imaging

A Zeiss LSM 880 confocal microscope system interfaced with

Zen imaging software (ZEN 2.3 SP1) was used to acquire 3D image

stacks of dendritic branches from amygdala neurons in sections

from control and sleep-deprived mice. All slides used for confocal

imaging were coded for blind analysis. Images of 40 µm-thick
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sections were acquired, with a z-step of 0.5µm using a 63x oil

immersion objective (numerical aperture 1.4 DIC M27; pixel size,

0.10 × 0.10µm) similar to the method described in our previous

study (Gisabella et al., 2016). For dendritic spine quantification,

confocal microscopy images were analyzed using Neurolucida 360

software with Autospine to measure spine density in the amygdala

cells using an approach previously described (Gisabella et al., 2016).

Dendritic spines were sampled in the Lateral (LA), Basolateral (BL),

and Central (CEA) areas of the amygdala by an investigator who

was blinded to the treatment group. The complex organization of

neurons and their dendritic branches in the amygdala, together

with the variation in injection sites within each animal made

it challenging to follow branches from individual neurons and

to establish sampling strategies. Therefore, we collected confocal

images of all clearly visible viral vector labeled dendritic branches

within the lateral, basolateral, or central nuclei using 25 × 25µm

confocal imaging windows. The minimal viral spread allowed for

the feasibility of this approach. Spine density, shape, and volume

were analyzed using Neurolucida 360 with semiautomated analysis

from 3D confocal image stacks. We quantified the numbers of

mushroom, thin, and stubby spines in each branch segment, and

the spine head diameter and volume of each spine.

Dendritic spine quantification

For dendritic spine quantification, confocal microscopy images

were analyzed using Neurolucida 360 software with Autospine

to measure spine density as described in our previous study

(Gisabella et al., 2016). Spines were grouped into thin spines, stubby

spines, and mushroom spines automatically by the Neurolucida

360 software based on the spine head to neck diameter ratio (1.1),

length-to-head ratio (2.5) mushroom head size (0.35µm), and

filopodia length (3µm) according to previously established criteria

(Rodriguez et al., 2008). Spine density, shape, and volume were

quantified using Neurolucida 360 with semiautomated analysis

from 3D confocal image stacks in an unbiased manner.

Microscopy data collection
In mouse brain samples, serial sections containing the

amygdala were quantified using a Leica microscope interfaced

with Bioquant Nova Prime v6.0, (R&M Biometrics, Nashville,

Tennessee) for pCofilin and using a Zeiss Axioskop 40 interfaced

with StereoInvestigator v2021.1.3 for growth hormone. Borders

of each region were defined according to the Allen Brain Atlas

and traced under 4x magnification. Each traced region was

systematically scanned through the full x, y, and z-axes under 40x

magnification to count each pCofilin immunoreactive (IR) cell and

under 20x magnification to count each GH-IR cell.

Statistical analysis

Densities of dendritic spines were calculated as spines per

dendrite segment length in micrometers. Numerical densities of

pCofilin cells were calculated as Nd =
∑

N /
∑

V where N =

sum of all pCofilin or GH immunoreactive cells counted in each

region for each animal, and V is the volume of each region per

animal, calculated as V=
∑

a • z, where z is the thickness of each

section (30µm) and a is area in µm2. For all statistical tests, the

significance threshold was p ≤ 0.05. Non-paramatric (Wilcoxon-

Mann-Whitney) tests were used to compare population estimates

for control and sleep-deprived groups as data were not normally

distributed, and were followed by Bonferroni post hoc correction.

Box plots were used to depict the data for each group from n = 6

control and n= 6 sleep-deprived animals.

Results

Lower density of basolateral amygdala
dendritic spines in sleep deprived mice

Dendritic spines were quantified from amygdala subregions

including the LA, BL, and CEA (Figure 1). We observed

significantly decreased dendritic spine density in the BL of sleep

deprived mice (p < 0.0005; Figure 1B) compared to the littermates

that were permitted to sleep undisturbed (control mean: 1.76, SD

mean: 1.59, 10.15 % decrease). In comparison, dendritic spine

density was increased in the LA (control mean: 1.39, SDmean: 1.55,

10.88% increase) and CEA (control mean: 1.35, SDmean: 1.55, 13.8

% increase) of sleep deprived mice (Figure 1B). Decreased density

of dendritic spines in the BL was driven by mushroom spines (p

< 0.0001; Figure 1F) (control mean: 0.57, SD mean: 0.50, −13.01

% decrease). In contrast, the increase in dendritic spine density in

sleep-deprived mice in the LA was observed in stubby spines (LA:

p < 0.0004; Figure 1H) (Control mean: 0.17, SD mean: 0.21, 21.05

% increase).

Subregion and spine type specific increases
in neck length of dendritic spines in sleep
deprived mice

The LA and BL displayed significantly greater neck backbone

length of mushroom spines in sleep-deprived mice vs. control

mice (Figure 2; LA: p < 0.009 and BL: p < 0.0001) (LA: control

mean: 0.88, SD mean: 0.95, 7.70% increase; BL: control mean:

0.88, SD mean: 0.95, 7.70% increase). In comparison, thin spines

displayed increased neck backbone length in sleep deprived mice

in the CEA (Figure 2; p < 0.01) (control mean: 0.78, SD mean:

0.82, 5.00 % increase) and stubby spines displayed greater neck

backbone length in sleep deprived mice in the BL (p < 0.01),

Figure 2E (control mean: 0.35, SD mean: 0.37, 5.56 % increase).

Similar changes were observed regarding head backbone length

(Figures 2F–H). Mushroom head backbone length was greater in

sleep-deprived mice vs. controls in the LA and BL areas (LA: p

< 0.001 and BL: p < 0.0001, Figure 2F) (LA: control mean: 1.15,

SD mean: 1.21, 5.10% increase; BL: control mean: 1.14, SD mean:

1.20, 5.13% increase). Stubby dendritic spines in the BL amygdala

displayed significantly greater head backbone length (p < 0.005,

Figure 2H) in sleep-deprived mice vs. controls (control mean: 0.35,

SD mean: 0.37, 5.56% increase).
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FIGURE 1

Dendritic spines in the basolateral amygdala (BL) are lower in sleep-deprived mice. AAV viral vector was used to label dendritic processes (A).

Decreased density of dendritic spines was observed in the BL amygdala in sleep-deprived mice (nmice = 6; ndendrites = 383) compared to control mice

(nmice = 6; ndendrites = 450) (B). In contrast, density of dendritic spines in the LA of sleep-deprived mice (nmice = 5; ndendrites = 167) was increased in

comparison to control mice (nmice = 5; ndendrites = 105) (B). A similar increase in density was observed in the CEA of sleep-deprived mice (nmice = 5;

ndendrites = 222) compared to control mice (nmice = 5; ndendrites = 239). Representative confocal micrograph of a 10µm branch segment from the BL

of a sleep-deprived mouse (D), with fewer spines than a representative branch segment from a control mouse (C). (E) Representative confocal image

depicting examples of thin, mushroom, and stubby spines. Dendritic spine density was decreased in mushroom spines in the BL of sleep-deprived

mice (nmice = 6; ndendrites = 383) compared to control mice (nmice = 6; ndendrites = 450) (F). Mushroom spines from the LA of sleep-deprived mice

(nmice = 5; ndendrites = 167) were not significantly di�erent from control mice (nmice = 5; ndendrites = 105) (F). Similarly, no di�erences were observed in

CEA mushroom spines from sleep deprived mice (nmice = 5; ndendrites = 222) compared to control mice (nmice = 5; ndendrites = 239). No di�erence in

density of thin spines was observed in the LA of sleep-deprived mice (nmice = 5; ndendrites = 167) compared to control mice (nmice = 5; ndendrites = 105)

(G), or in thin spines from the CEA of sleep-deprived mice (nmice = 5; ndendrites = 222) compared to control mice (nmice = 5; ndendrites = 239) (G).

Similarly, no di�erence was observed in the density of thin spines in the BL of sleep deprived mice (nmice = 6; ndendrites = 383) compared to control

mice (nmice = 6; ndendrites = 450). Increased density of stubby spines was observed in the LA of sleep-deprived mice (nmice = 5; ndendrites = 167)

compared to control mice (nmice = 5; ndendrites = 105) (H). No di�erence was observed in the CEA of sleep-deprived mice (nmice = 5; ndendrites = 222)

compared to control mice (nmice = 5; ndendrites = 239), or in the density of stubby spines in the BL of sleep deprived mice (nmice = 6; ndendrites = 383)

compared to control mice (nmice = 6; ndendrites = 450) (G). Box plots depict values for each group, statistical significance was determined using the

Wilcoxon-Mann-Whitney test with Bonferroni correction for multiple comparisons.

Subregion and spine type specific changes
in spine head and neck diameter in sleep
deprived mice

Decreased spine head diameter was observed in the CEA for

thin (p< 0.0002; Figure 3) and stubby (p< 0.009; Figure 3C) spines

in sleep deprived mice compared to control mice (thin: control

mean: 0.26, SD mean: 0.25, 3.92% decrease; stubby: control mean:

0.61, SD mean: 0.58, 5.04 % decrease). No changes in spine head

diameter were detected in thin or stubby spines the LA or BL and no

changes were observed in mushroom spine head diameters in any

area (Figures 3A–C). In comparison, significantly decreased spine

neck diameter was observed in the mushroom spines in the BL

amygdala (p < 0.0006; Figure 3D) (control mean: 0.14, SD mean:

0.13, 7.41 % decrease), as well as in thin spines in the CEA (thin

spines: p < 0.0002; Figure 3E) (control mean: 0.13, SD mean: 0.12,

8.92% decrease). In contrast, we observed increased neck diameter

in thin dendritic spines located in the LA (p < 0.0002; Figure 3E)

and BL (p < 0.01; Figure 3E) amygdala in sleep deprived mice (LA:

Control mean: 0.12, SD mean: 0.14, 15.38% increase; BL: Control

mean: 0.12, SD mean: 0.13, 8.00% increase).

Spine subtype and amygdala region
specific changes in surface area and
volume in sleep deprived mice

Decreased dendritic spine surface area was observed in the BL

in sleep deprived mice compared to control mice for mushroom

spines (p < 0.0001; Figure 4) (control mean: 5.39, SD mean:
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FIGURE 2

Di�erential changes in neck backbone and head backbone length dendritic spines in sleep deprived mice. Neurolucida 360 was used to obtain

measures of dendritic spine neck backbone length and head backbone length from confocal images. The diagram (A, B) depicts neck backbone

length measured as the distance from the insertion point to the center of the spine head minus the head radius and anchor radius (A). Head

backbone length is measured as the distance from the insertion point to the center of the spine head minus the anchor radius (B). Neck backbone

length was significantly greater in mushroom spines from the LA of sleep-deprived mice (nmice = 5; nspines = 1,339) compared to control mice (nmice

= 5; nspines = 1,217) (C). A similar increase was observed in the BL of sleep-deprived mice (nmice = 6; nspines = 3,143) compared to control mice (nmice

= 6; nspines = 5,385) for mushroom spine backbone length (C). No significant di�erence was observed for neck backbone length of mushroom spines

in the CEA of sleep deprived mice (nmice = 5; nspines = 1,543) compared to control mice (nmice = 5; nspines = 1,768). In comparison, neck backbone

length in thin spines was not altered in the LA of sleep-deprived mice (nmice = 5; nspines = 2,525) compared to control mice (nmice = 6; nspines = 2,046)

or in the BL of sleep-deprived mice (nmice = 5; nspines = 5,645) compared to control mice (nmice = 5; nspines = 9,079). Neck backbone length was

increased in thin spines from the CEA in sleep-deprived mice (nmice = 5; nspines = 3,207) compared to control mice (nmice = 5; nspines = 3,449) (D).

Neck backbone length was greater in stubby spines from the BL of sleep deprived mice (nmice = 6; nspines = 1,343) compared to control mice (nmice =

6; nspines = 2,230). No di�erence in neck backbone length was observed in the CEA of sleep-deprived mice (nmice = 5; nspines = 878) compared to

control mice (nmice = 5; nspines = 871) (E), or in stubby spines in the LA of sleep-deprived mice (nmice = 5; nspines = 618) compared to control mice

(nmice = 5; nspines = 469). Similar changes were observed for head backbone length measures, with increased length in mushroom spines from

sleep-deprived mice vs. controls in the LA and BL areas and for stubby spines in the CEA (F–H). Box plots depict values for each group, statistical

significance was determined using the Wilcoxon-Mann-Whitney test with Bonferroni correction for multiple comparisons.

5.05, −6.51% decrease). In comparison, increased surface area was

observed in sleep deprived mice for mushroom spines located

in CEA (p < 0.0001; Figure 4A) (control mean: 5.45, SD mean:

6.46, 16.97 % increase). Decreased dendritic spine head volume

was observed specifically in mushroom spines in sleep deprived

mice in the BL amygdala (p < 0.0001; Figure 4D) (control mean:

0.57, SD mean: 0.53, −7.27 % decrease). In contrast, spine volume

was significantly increased in sleep deprived mice in mushroom

spines in the CEA (p < 0.0001; Figure 4D) (control mean: 0.62,

SD mean: 0.69, 10.69 % increase) and stubby spines in the

CEA (p < 0.002; Figure 4F) (control mean: 1.79, SD mean: 2.10,

15.94% increase).

Lower densities of pCofilin and growth
hormone immunoreactive cells in sleep
deprived mice

Sleep-deprived mice displayed significantly lower density of

pCofilin immunoreactive cells in the LA and BL amygdala nuclei

compared to control mice (LA: p < 0.05 and BL: p < 0.03,

Figure 5A). In comparison, no significant changes in density of

pCofilin IR cells was detected in the CEA (Figure 5). A similar

decrease was observed for densities of GH IR cells in the LA of

sleep deprived mice (Figure 5D). No changes were detected for GH

densities in the BL or CEA (Figure 5D).
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FIGURE 3

Di�erential changes of head and neck diameter across dendritic spine types during sleep. Mushroom spine head diameter was not significantly

di�erent between sleep-deprived and control mice in the LA (Control: nmice = 5; nspines = 1,217; SD: nmice = 5; nspines = 1,339), BL (Control: nmice = 6;

nspines = 5,385; SD: nmice = 6; nspines = 3,143) or CEA (Control: nmice = 5; nspines = 1,768; SD: nmice = 5; nspines = 1,543) (A). Thin spine head diameter

was selectively decreased in the CEA of sleep-deprived mice (Control: nmice = 5; nspines = 3,449; SD: nmice = 5; nspines = 3,207) (B), with no significant

di�erences in the LA (Control: nmice = 5; nspines = 2,046; SD: nmice = 5; nspines = 2,525) or BL (Control: nmice = 6; nspines = 9,079; SD: nmice = 6; nspines

= 5,645) (B). A similar selective decrease was observed for stubby spines in the CEA (Control: nmice = 5; nspines = 871; SD: nmice = 5; nspines = 878),

with no significant changes in the LA (Control: nmice = 5; nspines = 469; SD: nmice = 5; nspines = 618) or BL (Control: nmice = 6; nspines = 2,230; SD: nmice

= 6; nspines = 1,343) (C). Spine neck diameter was significantly lower in mushroom spines in the BL of sleep deprived mice, with no changes in

mushroom spines in the LA or CEA (D). In contrast, neck diameter for thin spines was significantly greater in the LA and BL of sleep-deprived mice

and lower in the CEA (E). Neck diameter for stubby spines was not altered (F). Box plots depict values for each group, statistical significance was

determined using the Wilcoxon-Mann-Whitney test with Bonferroni correction for multiple comparisons.

Discussion

Our results point to region and spine type specific dendritic

spine changes during sleep in the amygdala. In summary, we

observed evidence for selective strengthening of mushroom spines

in the BL amygdala during sleep together with downscaling of thin

and stubby spines in the LA and CEA regions. Despite several

studies describing the effects of sleep deprivation in cortical areas

and in the hippocampus (Yang et al., 2014; Havekes et al., 2016;

Spano et al., 2019; Gisabella et al., 2020), our findings represent

the first evidence for the effect of sleep deprivation on dendritic

spines in the amygdala. Several lines of evidence point to a key

role of the amygdala in sleep and emotional memory processing.

For example, the amygdala is selectively activated during rapid

eye movement sleep (REM) and is involved in consolidation of

emotional memories (Goldstein and Walker, 2014; Genzel et al.,

2015; Murkar and De Koninck, 2018). Furthermore, studies in

human subjects indicate that REM sleep is essential for next-day

social and emotional memory functioning (Goldstein and Walker,

2014). In particular, sleep is involved in regulating emotional

reactivity, and amygdala function is dysregulated in sleep deprived

subjects (Yoo et al., 2007), with sleep loss consistently contributing

to emotional instability (Horne, 1985; Dinges et al., 1997). Taken

together, our findings suggest that our evidence for upscaling in

the BL amygdala may reflect the role of this area in consolidation

of emotional memory during sleep through strengthening of

mushroom spines typically associated with more stable, long-term

memories, which may represent the convergence of sensory inputs

with emotional valence in this area.

Di�erential e�ects of sleep deprivation on
basolateral amygdala vs. lateral and central
amygdala spines

We observed differential effects of sleep deprivation between

amygdala nuclei. The selective decrease of mushroom spine density

in the BL of sleep deprived mice, together with the increased neck

length and decreased surface area and volume of these spines

all point to upscaling in the BL during sleep. This is in sharp

contrast to reports of synaptic downscaling during sleep reported

in cortical regions and in the hippocampus (Cirelli, 2005; Maret

et al., 2011; de Vivo et al., 2017; Spano et al., 2019; Gisabella

et al., 2020). The specificity of these changes for mushroom spines

supports strengthening of spines associated with long termmemory

storage during sleep. Furthermore, shorter spine neck length (as

measured by head backbone length and neck backbone length) for

mushroom spines in the BL of control mice provides additional

support for synaptic upscaling, as shorter neck length is associated

with faster synaptic transmission and greater synaptic strength

(Araya et al., 2014). Similarly, greater spine surface area and volume
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FIGURE 4

Dendritic spine surface area and volume di�erences between sleep-deprived and control mice. Dendritic spine surface area was significantly lower in

mushroom spines from sleep-deprived mice in the BL compared to control mice (Control: nmice = 6; nspines = 5,385; SD: nmice = 6; nspines = 3,143)

(A). Spine surface area was significantly greater in mushroom spines from sleep-deprived mice in the CEA (Control: nmice = 5; nspines = 1,768; SD:

nmice = 5; nspines = 1,543), and no di�erences were observed for mushroom spine surface area in the LA (Control: nmice = 5; nspines = 1,217; SD: nmice

= 5; nspines = 1,339) (A). Thin spine surface area was not significantly altered in the LA (Control: nmice = 5; nspines = 2,046; SD: nmice = 5; nspines =

2,525), CEA (Control: nmice = 5; nspines = 3,449; SD: nmice = 5; nspines = 3,207) or BL (Control: nmice = 6; nspines = 9,079; SD: nmice = 6; nspines = 5,645)

(B). The surface area of stubby spines was significantly greater in spines from the CEA (Control: nmice = 5; nspines = 871; SD: nmice = 5; nspines = 878)

of sleep-deprived mice, with no di�erences observed from stubby spines in the LA (Control: nmice = 5; nspines = 469; SD: nmice = 5; nspines = 618) or

BL (Control: nmice = 6; nspines = 2,230; SD: nmice = 6; nspines = 1,343) (C). Spine volumes displayed largely similar changes, with significantly lower

volume in the BL and greater volume in the CEA for mushroom spines in sleep-deprived mice (D), no significant di�erence in thin (E), and greater

volume of stubby spines in the CEA of sleep-deprived mice (F). Box plots depict values for each group, statistical significance was determined using

the Wilcoxon-Mann-Whitney test with Bonferroni correction for multiple comparisons.

in mushroom spines in the BL point to synaptic upscaling during

sleep, as greater spine volume and surface area is associated with

synaptic strength and density of glutamate receptors (Harris and

Stevens, 1989; Noguchi et al., 2005; Kopec et al., 2007; Borczyk

et al., 2019). Spine neck diameter is reported to be a key indicator of

synaptic transmission as narrow neck diameters impede molecular

diffusion from the spine head to the dendrite (Noguchi et al.,

2005; Adrian et al., 2014, 2017). Furthermore, spine neck diameter

has been reported to be positively correlated with spine head

volume (Arellano et al., 2007). Our observed decrease of neck

diameter in mushroom spines in the BL amygdala of sleep deprived

mice suggests that spine neck diameter increases in these spines

during sleep, thus contributing to enhanced diffusion and synaptic

strength. Similar changes were observed for neck diameters of thin

spines in the CEA, pointing to synaptic strengthening in this area.

In contrast, our findings in the LA and CEA point to synaptic

downscaling in these areas. Greater densities of thin and stubby

spines in sleep deprived mice in these regions indicate that

downscaling selectively occurs in these two spine types. Greater

neck diameters for thin spines in the LA and BL of sleep deprived

mice suggests decreased diffusion for these spines during sleep, and

thus weakened synaptic transmission. What may be behind these

region-specific effects of sleep deprivation on amygdalar dendritic

spines? Differential connectivity may contribute to the divergent

effect of sleep deprivation between the BL vs. the LA and CEA areas.

The LA receives sensory inputs from thalamic and cortical areas,

serving as the sensory gateway to the amygdala (LeDoux et al.,

1990a; Li et al., 1995). In comparison, the BL receives multimodal

sensory inputs (LeDoux et al., 1990b; Uwano et al., 1995; Maren

et al., 1996; Wilensky et al., 1999; LeDoux, 2000; Lucas et al., 2016;

Hintiryan and Dong, 2022) as well as dopaminergic input from the

VTA (Lutas et al., 2019; Tang et al., 2020), and noradrenergic input

from the locus coeruleus (McCall et al., 2017), as well as input from

the LA (Pitkanen et al., 1995). In turn, the BLA sends information

to several areas including the CEA (Tovote et al., 2016; Hintiryan

and Dong, 2022), the medial prefrontal cortex (McDonald, 1992;

Cunningham et al., 2002; Cheriyan et al., 2016), the orbitofrontal

cortex (Lichtenberg et al., 2017), the nucleus accumbens (Stuber

et al., 2011; Wang et al., 2020). It is also the amygdala region that

sends the largest amount of projections to areas CA1 and CA3

of the hippocampus (Benes and Berretta, 2000; Pitkanen et al.,

2000). Within this context, our data suggest that synapses in the

LA potentially formed from sensory information encoded during

wakefulness are broadly downscaled during sleep, whereas synapses

in the BL, where multimodal sensory information converges with

information from areas involved in contextual representations and

reward processing to form long-lasting representations (LeDoux

et al., 1990b; Maren et al., 1996; Wilensky et al., 1999; LeDoux,

2000), are upscaled during sleep. These upscaled synapses in the

BL may in turn contribute hard-wire contextual and multimodal

sensory information with fear or reward response processes,

resulting in heightened fear, anxiety or addiction related behaviors.

Evidence for increased BL activation during REM sleep supports

this hypothesis (Corsi-Cabrera et al., 2016; Hasegawa et al., 2022).
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FIGURE 5

Lower density of pCofilin and GH immunoreactive cells in the amygdala of sleep deprived mice. Sleep-deprived mice displayed significantly reduced

numerical density of pCofilin immunoreactive cells in the lateral and basolateral amygdala nuclei, but not in the central nucleus compared to control

mice (A). Representative 5x and 40x images of pCofilin labeling in the amygdala from control (B) and SD mice (C). 40x magnification inserts depict

pCofilin labeling in the BL. Decreased density of GH immunoreactive cells was also detected in the LA of sleep deprived mice (D), but not in the BL or

CEA. Representative 5x and 40x images of GH labeling in the amygdala from control (E) and SD mice (F). 40x magnification inserts depict GH labeling

in the LA. Scale bars in yellow = 100µm for 5x images, 50µm for 40x inserts. All graphs reflect the mean for each group with n = 6 control and n = 6

sleep-deprived animals. Bar graphs depicting mean and 95% confidence interval of the density of immunoreactive cells. Each dot represents the

value for an individual mouse calculated as density of immunoreactive cells per area (cells/mm2).

Furthermore, the BL amygdala is at the hub of interconnected

circuits activated during the replay of emotional memories during

sleep (Chen and Wilson, 2017; Girardeau et al., 2017; Miyawaki

and Mizuseki, 2022), suggesting that re-activation of BL synapses

promotes strengthening of emotionally significant information in

this region during sleep while broader sensory inputs in the LA

are downscaled to make space for new connections, similar to the

downscaling reported in cortical areas and the CA1 hippocampus

(Cirelli, 2005; Maret et al., 2011; de Vivo et al., 2017; Spano et al.,

2019; Gisabella et al., 2020). Sensory information in the LA that

is transferred to long-term storage may occur in selective sets of

synapses and/or may be transferred to the BL or other areas during

sleep. Sleep deprivationmay also allowmore thin and stubby spines

to form in response to additional environmental stimuli during

the extended waking period, particularly in the LA. These excess

spines may contribute to increased impulsivity and risk-taking

behavior reported in subjects with decreased sleep (Demos et al.,

2016; Brunet et al., 2020).

Association of cofilin activity with
decreased basolateral amygdala spines in
sleep deprived mice

We analyzed neurons expressing pCofilin as a first step in

examining molecular pathways that may be involved in dendritic

spine changes in sleep deprived mice. Cofilin is modulated by

synaptic plasticity (Chen et al., 2007; Pontrello et al., 2012) and is

localized in the postsynaptic density where it is believed to function

as a key regulator of actin dynamics regulating spine morphology

and spine length (Andrianantoandro and Pollard, 2006; Hotulainen

et al., 2009). Previous studies suggest that suppression of cofilin

activity by phosporylation is important for the stabilization of

mature spines, as this prevents cofilin from participating in

downregulating these spines by cleaving spine actin filaments (Shi

et al., 2009). Furthermore, a recent study demonstrated that 5 h

of sleep deprivation results in reduced phosphorylation of cofilin

in the hippocampus, which results in greater cofilin activity and

in turn enhanced (Havekes et al., 2016). In turn, suppressing

cofilin activity prevented the sleep deprivation induced reduction

of dendritic spines in the hippocampus (Havekes et al., 2016). Our

data showing decreased density of pCofilin neurons in the BL and

LA areas of sleep deprived mice indicate increased cofilin activity

in sleep deprived mice. Taken together with decreased density of

mushroom spines in the BL, this suggests that cofilin activity is

enhanced in sleep dperived mice due to reduced phosphorylation

of cofilin, and this promotes cofilin cleavage of actin filaments in

spines, contributing to synaptic downscaling. Reduced density of

pCofilin in the LA area despite decreased spine density in this

region may point to subtype specific changes in dendritic spines

that are not detected in our broad sampling. Future studies into

memory trace specific and neuronal subtype specific dendritic spine

changes will provide insight into this process.
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FIGURE 6

Summary of dendritic spine changes during sleep in the mouse amygdala. The diagram represents a summary of the working hypothesis of dendritic

spine changes during sleep in the mouse amygdala based on our data from sleep deprived mice. Spine densities for each region are indicated by the

branch with multiple spines in the upper part of each panel, and spine morphological subtypes are indicated by corresponding shapes (thin, subby,

mushroom) in each panel. Mushroom, thin, and stubby spines in the BL are upscaled during sleep through increased spine density and

corresponding decreases in neck diameter, neck length, and increased volume. In comparison, thin and stubby dendritic spines in the LA and CEA are

largely downscaled during sleep through decreased spine density along with more selective changes in neck and head properties.

Contrasting e�ects of sleep deprivation on
amygdalar vs. hippocampal spines

Our observed effects of sleep deprivation on dendritic spines

in the BL are opposite to our previous observations in the

hippocampus (Gisabella et al., 2020). Specifically, these results

suggest that dendritic spines are broadly downscaled in the

hippocampus during sleep but are instead strengthened in the

basolateral amygdala. A closer examination points to a complex

regulation of dendritic spines in both regions, however. In our

previous study focused on sector CA1 of the hippocampus,

the effects of sleep deprivation on hippocampal spines were

region and branch specific (Gisabella et al., 2020). Studies

from other groups also point to hippocampal subregion and

branch specific changes, with evidence for upscaling of spines

during sleep in the dentate gyrus and in the very distal apical

branches of CA1 neurons (Raven et al., 2019; Bolsius et al.,

2022). Similarly, our findings in the amygdala point to region

and spine type specific changes, with evidence for upscaling of

mushroom and stubby spines in the BL and downscaling of

thin and stubby spines in the LA and CEA (Figure 6). These

region-specific differences between the hippocampus and amygdala

may reflect differential connectivity of these areas and their

roles in sleep processes as well as memory replay during sleep.

Stress is a factor that may contribute to differences between

the amygdala and hippocampus. Chronic stress differentially

effects on dendritic spines in these regions, with decreased spines

in the hippocampus and increased spines in the basolateral

amygdala (Vyas et al., 2002). This suggests that there are

underlying molecular processes behind dendritic spine regulation

between these areas that are involved in sleep as well as

stress response.

In addition, sleep deprivation may serve as a stressor itself.

Although our method of sleep deprivation mimicking gentle

handling is designed to minimize stress, sleep deprivation itself is

a stressor by nature. Thus, the effects of sleep deprivation may

reflect, in part, the effect of stress on dendritic spines. However,

our observed effects of sleep deprivation on dendritic spines in

the amygdala (Figure 6) and hippocampus (Gisabella et al., 2020)

overall are opposite to the reported effect of chronic stress on

dendritic spines in these regions (Vyas et al., 2002). Similarly,

our observed decreased density of GH immunoreactive cells in

the LA of sleep deprived mice is in contrast to the increased

GH expression reported in the amygdala following chronic stress

(Meyer et al., 2014). Specifically, chronic stress was reported to

increase dendritic spines in the amygdala, whereas our data shows
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that sleep deprivation results in downscaling of dendritic spines

in this region. This suggests that sleep is involved in synaptic

upscaling of mushroom spines in the basolateral amygdala. This

synapse promoting effect of sleep in the amygdala may potentially

associated with effects of slow wave sleep in this region, as

this stage is more predominant in the first half of the inactive

period whereas REM sleep is more prevalent in the latter half

(Lacroix et al., 2018). Furthermore, SWS and sleep are involved in

promoting memory consolidation processes (Stickgold et al., 2000;

Miyamoto et al., 2017). Our findings consisting of spine type and

region-specific upscaling or downscaling suggests that our results

reflect complex effects of sleep that utilize overlapping molecular

pathways which may also be utilized for dendritic spine regulation

during stress.

Relevance to psychiatric disorders

Several lines of evidence point to the involvement of synaptic

alterations in the amygdala in memory consolidation and sleep

disturbances in psychiatric disorders including PTSD and mood

disorders (Ross et al., 1989; Leibenluft et al., 1996; Colombo

et al., 1999; Bremner et al., 2000; Frodl et al., 2002; Drevets,

2003; Jackson et al., 2003; Lange and Irle, 2004; Harvey et al.,

2005; Armitage, 2007; Benedetti et al., 2007; Raskind et al.,

2007; Thompson et al., 2008; Karolewicz et al., 2009; Tottenham

et al., 2010; Harb et al., 2012; McCarthy et al., 2012, 2013, 2016,

2019; Bunney and Bunney, 2013; Burton et al., 2013; Li et al.,

2013; McClung, 2013; Palagini et al., 2013; Medina et al., 2014;

Brownlow et al., 2015; Bunney et al., 2015; Pagani et al., 2016;

Pantazopoulos et al., 2017, 2018; Nudell et al., 2019). Our data

suggesting that mushroom spines in the amygdala are upscaled

during sleep is in line with preclinical studies suggesting that

sleep deprivation early on after a traumatic experience may

alleviate the strength or consolidation of traumatic memories

that contribute to development of PTSD (Wagner et al., 2006;

Kuriyama et al., 2010; Cohen et al., 2012). In our previous

studies, we demonstrated that chronic stress increases ghrelin-

growth hormone signaling (Meyer et al., 2014) and in turn

growth hormone expression increases dendritic spine density in

the amygdala and predisposes amygdala neurons to encode fear

memories (Gisabella et al., 2016), suggesting that stress may

increase dendritic spines in this region in part through elevated

growth hormone expression. In turn, chronic stress in rodents

results in decreased dendritic spines in the hippocampus in

comparison to increased spines in the amygdala, suggesting that

growth hormone may be involved in this process (Vyas et al.,

2002) and that the approach of sleep deprivation following a

traumatic experience may alleviate the strength of the traumatic

memory by disrupting the upscaling of dendritic spines in the BL

that may be involved in consolidation of the traumatic memory.

However, our data also suggests that sleep deprivation would

increase dendritic spines in the LA and in the CEA, a key

area involved in fear response output signaling. This suggests

that sleep, in part, may contribute to resilience to stress by

downscaling spines in these areas. Our evidence suggesting that

mushroom spines in the BL are upscaled during sleep also

suggests that sleep disturbances in schizophrenia may interfere

with this process and contribute to synaptic alterations in this

disorder. Several studies have reported decreases in sleep spindles

together with memory consolidation deficits in patients with

schizophrenia (Ferrarelli et al., 2007; Manoach et al., 2010, 2014).

Furthermore, recent report points to altered diurnal molecular

expression rhythms in the brain of subjects with SZ (Seney et al.,

2019). In turn, deficits in the synaptic molecule synaptophysin,

and in the synapse stabilizing structures perineuronal nets have

been reported in the amygdala of subjects with schizophrenia

(Pantazopoulos et al., 2010, 2015; Varea et al., 2012). Sleep and

circadian rhythm disturbances in this disorder may thus contribute

to impairment in emotional memory consolidation processes in

this region differentially from the enhancement of emotional

memories in PTSD.

Limitations

The lack of dendritic branch and segment specific analysis

in our study represents an important limitation. The complex

organization of neurons and their dendritic branches in the

amygdala compared to other regions made it challenging to

follow branches from individual neurons and to establish sampling

strategies. Neurons and their respective dendrites in other regions

such as the hippocampus or cortex are organized in layers, resulting

in reduced overlapping of dendritic processes that allows for

more selective sampling. However, this was not possible in the

amygdala. However, obtaining information regarding dendritic

spines measures in this region in sleep-deprived animals using

viral vector labeling in 3-dimensional quantification was important.

Therefore, we analyzed all clearly visible viral vector labeled

dendritic branches in our samples. Lack of cell type specificity

for the dendritic spines sampled is another potential limiting

factor in understanding how dendritic spines may be altered

during sleep in specific populations of excitatory and inhibitory

neurons in the amygdala. Our current study represents a broad

overview of dendritic spine changes in sleep deprived animals

in this region, similar to prior studies from several groups

that examined spines in broad neuronal populations rather than

selective neuronal subtypes (Maret et al., 2011; Raven et al., 2018,

2019; de Vivo et al., 2019; Spano et al., 2019; Gisabella et al.,

2020). Future studies will focus on cell type specific and memory

trace specific changes in amygdalar dendritic spines in sleep-

deprived mice.

Conclusion

Overall, our data represent the first study describing

the effect of sleep deprivation on dendritic spines in the

amygdala and provide insight into the morphological

changes of dendritic spines during sleep in this region.

Future studies into the molecular pathways underlying

these region and spine type specific changes may provide

insight into the consolidation of emotional memories

during sleep and how this process may be affected in

psychiatric disorders.
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