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Introduction: The use of the electrodermal activity (EDA) signal for health
diagnostics is becoming increasingly popular. The increase is due to advances
in computational methods such as machine learning (ML) and the availability
of wearable devices capable of better measuring EDA signals. One field where
work on EDA has significantly increased is sleep research, as changes in EDA are
related to di�erent aspects of sleep and sleep health such as sleep stages and
sleep-disordered breathing; for example, obstructive sleep apnoea (OSA).

Methods: In this work, we used supervised machine learning, particularly the
extreme gradient boosting (XGBoost) algorithm, to develop models for detecting
sleep stages and OSA. We considered clinical knowledge of EDA during particular
sleep stages and OSA occurrences, complementing a standard statistical feature
set with EDA-specific variables.

Results: We obtained an average macro F1-score of 57.5% and 66.6%, depending
on whether we considered five or four sleep stages, respectively. When detecting
OSA, regardless of the severity, the model reached an accuracy of 83.7% or 78.4%,
depending on the measure used to classify the participant’s sleep health status.

Conclusion: The research work presented here provides further evidence that,
in the future, most sleep health diagnostics might well do without complete
polysomnography (PSG) studies, as wearables can detect well the EDA signal.
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1. Introduction

Electrodermal activity (EDA) is one of the longest-known and most accessible
physiological signals (Boucsein, 2012). Electrodermal activity reflects changes in skin
potential due to sweating, which, during sleep, has a thermoregulatory function. Eccrine
sweat glands, the sweat glands that are activated during sleep (Boucsein, 2012), are
innervated by the sympathetic nervous system (SNS) only, with no parasympathetic
input (Baker, 2019). Despite this direct connection between EDA and the SNS during the
night, the signal has been so far mostly used in studies of diurnal phenomena. For instance,
it has been used for detecting stress (Zontone et al., 2019), epileptic seizures (Poh et al., 2010),
and students’ emotional engagement in classrooms (Di Lascio et al., 2018).

One of the main reasons for neglecting EDA in sleep studies is the complexity of the
recorded signals. Long-term EDA recordings are susceptible to noise from various sources
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that cause artifacts in the signals, that is, sudden out-of-scale spikes;
the most prominent sources of noise are body movements and
poor skin-to-electrode connection. While in laboratory-controlled
settings it is possible to log the patient’s movements and to
discard those signal segments when analyzing data, in free-living
conditions, it is more difficult to do so. Because removing artifacts
is important, much of the research on EDA signals has focused on
automating their detection. Various methods have been proposed,
often using supervised or unsupervised machine learning (ML)
algorithms (Taylor et al., 2015; Hossain et al., 2022; Subramanian
et al., 2022). Electrodermal activity has been only scarcely and only
recently used for sleep staging or to infer sleep quality (Anusha
et al., 2022; Gashi et al., 2022).

Abnormal sweating patterns may indicate the presence of
various sleep disorders (Broman and Hetta, 1994; Idiaquez et al.,
2022). In this work, we focused on sleep-breathing disorders,
particularly obstructive sleep apnoea (OSA) (Jordan et al., 2014).
Obstructive sleep apnoea causes unexpected SNS activity, resulting
in frequent nocturnal sweating (Arnardottir et al., 2013). Despite
the relationships between EDA and OSA has been studied (Lajos,
2004; Arnardottir et al., 2010), there is still a need for a quantitative
model relating EDA and OSA.

In this paper, we applied supervised ML to EDA data to predict
sleep stages and the presence of OSA. Currently, diagnosing it
requires performing a full polysomnography (PSG) study in a
laboratory setting, followed by manual scoring of the recordings.
This procedure is time-consuming and can lead to atypical sleep
patterns because of the differences between sleeping in a controlled
environment, such as a sleep lab, and sleeping at home (Arnardóttir
et al., 2021). We present an ML-based approach that uses features
extracted from the EDA signal, recorded in a home-setting, to
automatically detect sleep stages and OSA.

2. Materials and methods

We used a set of 60 full-night PSG recordings from participants
in the Sleep Revolution Project (Arnardottir et al., 2022). We
describe the cohort in detail in Table 1. The consent of the National
Bioethics Committee and the Data Protection Authority of Iceland
was granted for this study (VSN-21-070). All participants received
and signed an informed consent for study participation.

2.1. Instrumentation

Polysomnography (PSG) studies were recorded using A1
devices from Nox Medical (Reykjavik, Iceland). As the traditional
PSG setup does not include EDA recordings, we added a channel
for the EDA signal. A1 devices measured EDA at a sampling
frequency of 200 Hz. For the measurement of the EDA signal, we
used the same technique as in Arnardottir et al. (2010).

2.2. Sleep stage labeling

Sleep experts manually scored the electroencephalogram (EEG)
and determined the sleep stage: wake (W), rapid eye movement

TABLE 1 Dataset content according to the apnoea-hypopnoea index

(AHI) or the oxygen desaturation index (ODI).

Non-OSA Mild OSA Moderate to
severe OSA

Number of participants
(AHI)

19 24 17

Female participants
(AHI)

47.4% 67.0% 29.4%

AHI 2.8± 1.3 10.0± 2.8 24.9± 10.5

BMI 25.8± 3.6 26.0± 3.6 25.8± 3.8

Age 36.2± 10.4 49.6± 14.7 52.0± 14.4

Percentage of epochs
(AHI)

32.1% 39.0% 28.9%

Number of participants
(ODI)

21 26 13

Female participants
(ODI)

42.9% 61.5% 38.5%

ODI 1.5± 2.5 9.0± 2.5 24.1± 7.7

BMI 25.8± 3.8 27.7± 4.5 29.2± 2.8

Age 38.4± 12.4 48.2± 14.8 53.9± 14.0

Percentage of epochs
(ODI)

33.9% 44.7% 21.4%

TABLE 2 Distribution of sleep stages for 4 and 5 stages architectures.

Wake N1 N2 N3 REM

12.2%± 0.1 16.5%± 0.1 32.5%± 0.1 18.2%± 0.1 20.6%± 0.1

Wake Light Deep REM

12.2%± 0.1 49.0%± 0.1 18.2%± 0.1 20.6%± 0.1

We report mean values and standard deviations.

(REM) sleep, sleep stage 1 (N1), sleep stage 2 (N2), and sleep
stage 3 (N3). The scoring procedure was performed according
to the American Academy of Sleep Medicine guidelines (Berry
et al., 2020), using the Noxturnal software (NoxMedical, Reykjavik,
Iceland). In this work, for detection, we considered both the above
mentioned five stages or only four stages, bymerging theN1 andN2
stages and relabeling them as light sleep. Additionally, we relabeled
the N3 stage as deep sleep. The stages that we considered are then
W, light sleep, deep sleep, and REM sleep, as is often done in the
literature (Genzel et al., 2014). We report the distribution of sleep
stages in Table 2.

2.3. Obstructive sleep apnoea labeling

Currently, OSA detection requires either manual scoring of
a full PSG study or a home sleep apnoea testing, and the
evaluation of two parameters: the apnoea–hypopnoea index (AHI)
and the oxygen desaturation index (ODI) per hour of sleep (Berry
et al., 2020). A shortcoming of the AHI is that it does not
quantify one of the main consequences of OSA, which is oxygen
desaturation. For this reason, sleep experts have defined the
ODI value as the number of oxygen desaturation events ≥3%
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FIGURE 1

Di�erent segments of the electrodermal activity (EDA) signal and of the Savitzky-Golay filtered signal from key phases of sleep. (A) Five minutes of
raw and filtered signal during sleep stage 3 (N3). (B) Five minutes of raw and filtered signal during rapid eye movement sleep (REM). (C) EDA events
(raw signal). (D) EDA during an obstructive sleep apnoea occurrence.

or ≥4% divided by the total sleep time (Chung et al., 2012;
Berry et al., 2020). In this work, the sleep experts used 3% as
threshold value.

We obtained a participant’s OSA status from the manual
scoring of PSG. We merged the moderate and severe OSA
conditions to obtain three classes. To define them, we used the
following modified version of the standard guidelines (AASM,
1999):

• Non-OSA: AHI <5,
• Mild OSA: 5≤ AHI <15,
• Moderate to severe OSA: AHI ≥15.

We also classified the samples based on the ODI and computed
the correlation between the two indexes and the EDA signal. Note
that the ranges used for the ODI-based classification are the same as
the ones for the AHI classification (Chung et al., 2012). Each epoch
in an individual’s data sample was labeled as either belonging to a
non-OSA participant, one with mild OSA, or one with moderate to
severe OSA. By epoch, we refer to a 30 s signal window.We adopted
this time length to be consistent with the epochs’ length used by
sleep experts during manual scoring. Note that only seven samples
were classified differently depending on whether we used the AHI
or the ODI. Finally, we present the distribution of non-OSA, mild
OSA, and moderate to severe OSA epochs in Table 1.

2.4. Signal pre-processing

From the Noxturnal software environment, we exported
EDA signals using the EDF file format and imported them in
MATLAB R© (MATLAB, 2022) for pre-processing and feature
extraction. We down-sampled the original signal from 200 to 35
Hz to reduce the computational burden, following the guidelines
presented in Braithwaite et al. (2013). We then pre-processed the
original signal to obtain different kinds of data required by our
detection algorithm.

First, because individual sweating patterns lead to significantly
different-looking EDA signals (Boucsein, 2012), we computed the
second-order polynomial best approximating the raw signal and
subtracted it from the raw signal. Second, we applied a seventh-
order Savitzky-Golay filter (Schafer, 2011) to the original signal to
eliminate high-frequency contributions. We also applied a discrete
wavelet transform (DWT) to the original signal. We computed
the approximate and detailed discrete wavelet coefficients and soft
thresholded the detail coefficients to remove possible recording
noise (Coifman and Donoho, 1995). We then subtracted the
Savitzky-Golay filtered signal from the discrete wavelet filtered
signal; we referred to it as diffEDA.

Third, we computed the first and second-order derivatives
of previously described three signals using a differentiator finite
impulse response (FIR) filter. We used this method rather
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TABLE 3 Set of variables extracted from the electrodermal activity (EDA)

signal.

Index Signal Computed features

1–18 EDA
detEDA

Mode, median, maximum of absolute value,
line length, 10th quantile, 75th quantile, singular
value decomposition (SVD) entropy,
non-linear energy, Shannon entropy

19–34 ∂tEDA, ∂2
t EDA

∂tdetEDA,
∂
2
t detEDA

Mean value, variance, median value, numbers
above zero

35–40 EDA
detEDA

Maximum power spectral density (PSD)
estimate, frequency of the maximum PSD
estimate, Fisher’s g (Posada-Quintero et al.,
2016)

41–64 EDA detail
coefficients
decomposition
levels
(DL) 1—4

Maximum, mean, standard deviation, median,
Euclidian norm, normalized numbers above
zero

65–70 EDA
detEDA

Lyapunov exponent, maximum value of the
upper envelope, minimum value of the lower
envelope

71–72 diffEDA Sum of cross-correlation, maximum
convolution value

73–76 EDA Normalized number of event samples,
normalized event energy, normalized number
of storm samples, normalized storm energy

77 Individual Sex

than a finite-differences scheme to prevent noise propagation.
Particularly, we used a 50th-order filter with a passband frequency
of 10 Hz and a stop-band frequency of 12.5 Hz. We disregarded
the transient to avoid including artificial oscillations caused by
applying the filter by discarding N = 50 samples. Note that, we
denoted time derivatives by placing ∂t or ∂

2
t before the signal of

interest; for example, we referred to the second time derivative of
the de-trended signal as ∂

2
t detEDA.

Figure 1 shows the complexity of the EDA signal. We show 5-
min time windows of continuous N3 and REM sleep in Figures 1A,
B, respectively.We then highlight EDA events in Figure 1C. Finally,
we show the EDA signal during an OSA occurrence in Figure 1D.

2.5. Feature extraction and selection

We defined a feature set in the time-domain, frequency-
domain, as well as time-frequency domain (these are wavelet-
related variables) in a process called feature engineering (Verdonck
et al., 2021). In addition to standard statistical features, we used
number and energy content of EDA events and storms, as they
are known to differ for different sleep stages (Sano et al., 2014)
and OSA severity (Arnardottir et al., 2010). Electrodermal activity
events are oscillations of the skin voltage of defined amplitudes
and frequencies. We are particularly interested in the following
three types of oscillations: positive/negative monophasic, biphasic,
and triphasic. Electrodermal activity storms are time windows with
high concentrations of events. The definition of storms has changed
through time (Burch, 1965; Sano et al., 2014), we used an equivalent

definition to the one given by Sano and colleagues, that is, a
timespan of at least 1 min with a minimum of two EDA events.
Particularly, we used the algorithm developed in Piccini et al. (2023)
to detect EDA events and storms. Thereafter, we computed the
normalized number of samples within either an EDA event or
storm, together with their Euclidean norms. Additionally, we added
sex as a categorical feature to complete the set of variables and
normalized the features across individuals. The full feature set is
shown in Table 3.

Finally, after training and testing the model on the complete
variable set, we investigated whether we could reduce the feature
set dimension by analyzing intra-variable correlation.We identified
correlated features by computing the pairwise Pearson correlation
coefficient r. We then reduced the dimension of the feature set by
retaining only one of the correlated variables. We looked at the
correlation matrix to identify the threshold value rth.

2.6. Training procedure

Sleep stages are not equally distributed during the night,
this asymmetry caused a significant imbalance in our dataset
and affected model performance. To reduce the negative impact
of this effect, we performed synthetic minority oversampling
(SMOTE) (Chawla et al., 2002), that is, we generated artificial
samples for the minority classes to alleviate the bias toward the
most dominant class. We then trained models using the extreme
gradient boosting (XGBoost) algorithm (Chen and Guestrin, 2016),
since a gradient boosting algorithm was recently used in a similar
application with promising results (Gashi et al., 2022).

We applied different validation methods. We either used leave-
one-subject-out (LOSO) validation (Hastie et al., 2009), where we
alternately left out one sample and used the other 59 samples as
training data, or we did as previously and in addition, we trained
the model using randomly selected 25% of the epochs from the
left-out subject’s night (Personalized). We always used the same
seed for reproducibility. After this random sampling, we applied
the SMOTE algorithm to the training data. We evaluated the OSA
model only by means of the LOSO scheme. We did so, because of
the way that we labeled the data for OSA detection, see Section 2.3.

2.7. Evaluation metrics

We computed different measures to evaluate the models’
performances. All indices were obtained using scikit-
learn (Pedregosa et al., 2011). F1 and recall scores were used
to evaluate the sleep staging performances. While F1-score is a
commonly used measure in ML applications, we used the recall
score to account for the significant class imbalance (Gashi et al.,
2022). Recall score is the ratio between true positives and the
sum of true positives and false negatives and, thus, a measure for
the number of relevant objects detected by the algorithm. The
F1-score is the harmonic mean of precision and recall scores and
is used in classification problems with imbalanced datasets, as the
precision score on its own may be misleading. As we dealt with a
multi-class classification problem, we used the macro version of

Frontiers in Sleep 04 frontiersin.org

https://doi.org/10.3389/frsle.2023.1127697
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Piccini et al. 10.3389/frsle.2023.1127697

FIGURE 2

Representation of the lower triangular feature correlation matrix. We denoted the variables by index, as in Table 3.

both parameters; the macro F1-score is the average of all F1-scores,
and the macro recall is the average of all recalls. For the remainder
of the paper, we referred to the macro F1-score and macro recall
value simply as F1-score and recall.

For the OSA model, we used the F1-score and accuracy values.
Accuracy is the ratio between the number of correctly identified
epochs and the total amount of epochs. In addition to these
two measures, we evaluated the three-class algorithm’s ability to
distinguish between non-OSA participants and those with OSA.
To do this, we considered all OSA epochs as equivalent, which
made the classification problem a binary one; we then computed
the accuracy score and referred to it as the adjusted accuracy score.
We did not include the recall for OSA models’ evaluations, as
it deals with all misclassifications in the same way. Particularly,
misclassifications between severe and mild OSA conditions and
between non-OSA and OSA conditions have different clinical
meanings.

2.8. SHapley Additive exPlanations

To evaluate the contribution of each training variable, we used
SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017).

The technique was developed in game theory and only recently
adapted to ML interpretability applications (Lundberg et al., 2018).
To find the SHAP value of the i-th variable, we computed the
predictions for all possible feature combinations with and without
the i-th variable. The SHAP value is then the average of the
contributions of the i-th variable to each prediction (Molnar, 2022).

3. Results and discussion

3.1. Feature reduction

Before presenting the models’ performances, we offer an
analysis of the feature set reduction process; for the sake of
notation, we refer to variables by index, as in Table 3. We identified
three main clusters of correlated variables by looking at the
graphical representation of the correlation matrix (Figure 2). The
first one involves features 1–15, which are statistical measures, in
the time domain, of EDA and detEDA signals. The second one is
a large cluster encompassing features 41–64, variables obtained in
the time-frequency domain. Finally, non-linear features 65–70 also
show meaningful correlation patterns.

After setting rth = 0.8, we reduced the number of correlated
variables. We decided which feature to eliminate as follows: first,
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TABLE 4 Optimized feature set for the sleep staging models, rth = 0.8.

Signal Computed features

EDA Mode, maximum of absolute value, line length, singular
value decomposition (SVD) entropy, non-linear
energy, Lyapunov exponent, maximum power spectral
density (PSD) estimate, frequency of the maximum
PSD estimate, Fisher’s g (Posada-Quintero et al., 2016)

detEDA Mode, maximum of absolute value, line length, singular
value decomposition (SVD) entropy, non-linear
energy, Lyapunov exponent, requency of the maximum
PSD estimate, Fisher’s g (Posada-Quintero et al., 2016)

∂tEDA Mean, variance, median, number above zero

∂
2
t EDA Mean, median

∂tdetEDA Mean, median

∂
2
t detEDA Median

EDA detail
coefficients
decomposition
levels
(DL) 1–4

Median, normalized numbers above zero

diffEDA Sum of cross-correlation, maximum convolution value

EDA Normalized number of event samples, normalized
event energy, normalized number of storm samples,
normalized storm energy

Individual Sex

we computed the correlation coefficients between the i-th feature
and the remaining ones, then we eliminated the j-th feature, if
ri,j > rth, where ri,j is the Pearson correlation coefficient between
the i-th and the j-th variables and j > 1. We started at i = 1.
In this way, we obtained a reduced set of 40 features, which we
present in Table 4.We opted not to decrease further the rth-value, as
the resulting feature set did not present any significant clusters, see
Figure 3. Also, lower values of rth may result in worse classification
performances.

3.2. Interpretation of sleep staging

We summarized the models’ performances in Table 5, where
the F1-scores and recall values are reported. Our results suggest a
need for personalized models (Óskarsdóttir et al., 2022). A possible
explanation for the relatively poor performance is that different
brain regions can be in different sleep stages at the same time.
For instance, sweat glands’ activation signals and, thus, EDA, are
generated in the hypothalamus (Rothhaas and Chung, 2021), while
the EEG, used to manually label sleep stages, measures neocortex
activity, and it is known that the two brain areas can be in different
sleep stages (Guthrie et al., 2022). However, personalizing the
LOSO-based model with a small number of epochs from the left-
out sample dramatically improves the algorithm, see also Figures 4,
5, which show confusion matrices normalized such that the sum of
each row equals one.

By looking at the confusion matrix in Figure 4B, we concluded
that the personalized model cannot characterize the N1 sleep
stage using only EDA. Furthermore, N1 detection appeared

to be a cumbersome task even when other ML methods
and other signals were used, such as EEGs, electrooculograms
(EOGs), and electromyograms (EMGs) (Chambon et al., 2018;
Korkalainen et al., 2019). A similar disagreement in determining
the sleep stage was also found when comparing different manual
scorings (Magalang et al., 2013). However, the detection of slow
wave sleep (SWS) phases, that is, deep sleep and N3 stage, and REM
sleep phases worked well for both models. This was expected, since
these are the phases with the most distinct EDA patterns. Notably,
by looking at Figure 4B, we can conclude that, based on EDA, the
N3 stage is more similar to the N2 stage than any other sleep stage.

Finally, we offer a graphical interpretation of the sleep staging
model, trained on the reduced dataset, through the SHAP values of
the 20 most influential variables, see Figure 6. It is worth noting
that both models considered the number of EDA events to be
highly relevant for N3 stage, see Figure 6. The models also predict
a significant relationship between EDA storms and REM sleep.
Indeed, it is known that EDA activity increases in the third cycle
of REM sleep (Boucsein, 2012).

3.3. The need for personalization in sleep
staging

Several physiological considerations support the need for
personalization in EDA-based sleep staging. Nocturnal sweat, the
principal cause of changes in skin electrical properties, is secreted
to lower the core body temperature (CBT) (Baker, 2019). However,
the thermoregulation process depends on a large number of factors,
for example, age, BMI, sex, skin hydration, eccrine sweat gland
concentration, and environmental conditions (Speakman, 2018;
Grosiak et al., 2020; Yanovich et al., 2020). All the factorsmentioned
significantly impact sweat and, consequently, the EDA signal.
Furthermore, the latter is also affected by subject-dependent brain
dynamics.

It is not straightforward to decide which personal subset of
epochs to choose, as different EDA patterns arise in different parts
of the night; for example, EDA events are more frequent in REM
sleep during the last sleep cycle (Boucsein, 2012), while rarer in
other REM sleep periods. Furthermore, differences in sleep cycle
duration caused by age and OSA condition, among other factors,
may hinder the beneficial effect of the algorithm’s personalisation.
Because of this, we opted for a fixed-seed random-pick approach.

3.4. Interpretation of the OSA model

To evaluate the models’ ability to distinguish between non-OSA
persons and those with either mild or moderate to severe OSA, we
used average values of the accuracy score, the F1-score, and the
adjusted accuracy score. We also evaluated a binary classification
problem, where participants either had OSA or not, for which we
refrained from calculating the adjusted accuracy score. We present
the results as we did for the sleep staging models in Table 6. They
show that OSA severity determined through the EDA signal rather
follows the classification obtained by using the ODI rather than
the AHI. A possible explanation for this behavior is how the ODI
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FIGURE 3

Correlation matrix for the reduced feature set. Variables are denoted by index, as in Table 3.

TABLE 5 Summary of sleep staging performance for, both, four stages, and five stages classification.

No. stages rth Leave-one-subject-out Personalized

Macro F1-score Macro recall score Macro F1-score Macro recall score

Five stages 0.8 27.3% 32.4% 57.5% 58.0%

Four stages 0.8 32.8% 39.7% 66.6% 66.9%

value divides the participants. Looking at Table 1, we observed that
while both the indexes found themean age to increase with theOSA
severity, in ODI classification BMI values also increased with OSA
severity. Lower BMI values have been associated with lower mean
temperature values, (Waalen and Buxbaum, 2011), which may
result in less need for thermoregulation. Consequently, simpler
sweating patterns may be observed, which are better learned by the
algorithm.

In Figures 7, 8, we used the SHAP values to present the effect of
each variables on the different classification problem. Both three-
class models choose normalized storm samples as one of the most
significant variables, which relates well to the literature (Arnardottir
et al., 2010).

3.5. Feature selections comparison

Out of the 77 extracted variables, only eight appear in
all models’ top 20 most important features. They are EDA
mode, ∂tEDA variance, detEDA mode, EDA maximum power
spectral density (PSD) estimate, EDA frequency of the maximum
PSD estimate, ∂tEDA normalized numbers above zero, detEDA
frequency of the maximum PSD estimate, and biological sex.
The seven numerical variables are computed from two signals,
that is, raw and de-trended EDA and the derivative of the raw
signal; this subset is composed of variables spanning multiple
domains, particularly time, frequency, and EDA-specific. This
variety confirms the need to consider different dynamical behaviors
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FIGURE 4

Normalized confusion matrices when we consider five sleep stages and use the reduced feature set. (A) Leave-one-subject-out (LOSO). We trained
the algorithm without including data from the left out participant. (B) Personalized model. In addition to the 59 participants training set, we used
randomly picked 25% epochs of the test participants.

FIGURE 5

Normalized confusion matrices when we consider four sleep stages and use the reduced feature set (A) Leave-one-subject-out (LOSO). We trained
the algorithm without including data from the left out participant. (B) Personalized model. In addition to the 59 participants training set, we used
randomly picked 25% epochs of the test participants.

and EDA-related phenomena when using this signal. The most
common specific feature is the number of EDA storm samples,
which is amongst the top 20 most important features for all
models, except for the two-class ODI-based OSA classification
problem. However, in the latter problem, normalized storm
energy is considered a relevant feature. Works trying to relate
EDA and OSA are scarce and based mainly on subjective
night sweats reports (Nigro et al., 2022). Although it is well-
established that OSA symptomatology includes abnormal sweating
episodes (Arnardottir et al., 2010, 2013), there needs to be more
understanding of the relationship between OSA and EDA events
and storms. Our work concludes that evaluating EDA storms, their
lengths or energies, is more decisive in detecting OSA, particularly
severe expressions, than evaluating EDA events. This conclusion
holds for OSA classifications based on both AHI and ODI severity.

4. Conclusion and future work

The presented work aimed at detecting sleep stages and
OSA severity using only the EDA signal. Recently, Anusha and
colleagues presented an ML algorithm for identifying the sleep
stage of the hypothalamus, the brain region directly responsible
for thermoregulation during sleep (Anusha et al., 2022), while,
Gashi and colleagues presented a similar algorithm based on
EDA that is able to detect wake/sleep stages and high/low sleep
quality (Gashi et al., 2022). Latter algorithms are based on
self-reported annotations. Despite these significant results, more
research on the relationship between EDA and neocortex activity
is needed. Our work is the first one, in which neocortex sleep
stages are predicted solely based on EDA. In the first part of
this research work, we presented a sleep staging algorithm that is
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FIGURE 6

SHapley Additive exPlanations (SHAP) values of the sleep staging model trained using the leave-one-subject-out (LOSO) scheme and the reduced
feature set. (A) Four sleep stages: wake (W), light sleep, deep sleep, rapid eye movement (REM) sleep. (B) Five sleep stages: wake (W), sleep stage 1
(N1), sleep stage 2 (N2), sleep stage 3 (N3), rapid eye movement (REM) sleep.

TABLE 6 Results for obstructive sleep apnoea (OSA) detection, based on the apnoea-hypopnoea index (AHI) or on the oxygen desaturation index (ODI).

OSA structure rth Mean accuracy score Macro F1-score Adj. accuracy score

AHI—non-OSA vs. OSA 0.8 75.7% 65.6% –

ODI—non-OSA vs. OSA 0.8 82.0% 67.7% –

AHI—Three groups 0.8 54.8% 32.9% 78.4%

ODI—Three groups 0.8 54.8% 32.9% 83.7%

FIGURE 7

SHapley Additive exPlanations (SHAP) values of the obstructive sleep apnoea (OSA) detection model based on apnoea-hypopnea index (AHI) values
and the reduced feature set. (A) Three-class classification problem: participants with no, mild, or moderate to severe OSA. (B) Binary classification
problem: non-OSA participants and those with OSA.

particularly accurate in detecting those sleep stages, where specific
EDA patterns are known to occur, which are N3 and REM sleep.
In the second part, we focused on OSA detection. By using the
EDA signal, we distinguished non-OSA participants from those
with OSA with reasonable accuracy.

Our work has three main limitations. The first one is
that the raw signal was recorded at 200 Hz, an unattainable
sampling frequency for current wearables. However, the signal
was significantly downsampled, to 35 Hz, before it was handled.
Since EDA events occur in the frequency band [0.25–3 Hz]
for endosomatic recordings, like the ones used in this study,
further downsampling might potentially be performed without a

significant loss of information, which we leave for future work.
The second limitation is that the sleep staging algorithm requires
a certain amount of individual data manually scored by a sleep
expert. While this prevents the sleep staging model from being
user-independent and, thus, might limit its use in wearables, in
clinical studies, requiring only a small part of the signal to be
manually scored significantly saves time and cost. Moreover, our
work adds to the body of evidence on how crucial it is to include
knowledge about sleep processes in ML models. A final limitation
is the participants’ significant ranges in age and BMI within
a relatively small sample size. While the participants’ diversity
ensured to obtain general models, it also prevented the algorithm
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FIGURE 8

SHapley Additive exPlanations (SHAP) values of the obstructive sleep apnoea (OSA) detection model based on oxygen desaturation index (ODI) values
and the reduced feature set. (A) Three-class classification problem: participants with no, mild, or moderate to severe OSA. (B) Binary classification
problem: non-OSA participants and those with OSA.

from learning patterns specific to a particular group, for example,
individuals of the same biological sex and of similar age. Future
studies may overcome this last limitation by using a more selected
cohort or by considering the body temperature signal, therefore
addressing the differences inmean body temperature due to various
aspects such as age, sex, and BMI.

To improve on the reported results, in the future, we will also
include additional signals obtainable through wearables, such as
acceleration and skin temperature. Doing so might reduce the need
for individual tuning of the algorithm and allow it to identify other
sleep stages more accurately. More precise sleep staging based on
data obtained from wearables will allow the estimation of more
advanced sleep parameters used in sleep diagnostics, such as total
sleep time and sleep efficiency. Finally, since the algorithm labels
each epoch as “non-OSA” or “OSA-prone,” it will be possible to
track a potential onset or worsening of sleep-disordered breathing.
By adequately characterizing the development of OSA symptoms,
it will be possible to define a threshold that will lead to suggesting
to seek professional advice when exceeded.
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