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Introduction: Sleep-disordered breathing (SDB) can range from habitual snoring
to severe obstructive sleep apnea (OSA). A common characteristic of SDB in
children is mouth breathing, yet it is commonly overlooked and inconsistently
diagnosed. The primary aim of this study is to construct a deep learning
algorithm in order to automatically detectmouth breathing events in children from
polysomnography (PSG) recordings.

Methods: The PSG of 20 subjects aged 10–13 years were used, 15 of which
had reported snoring or presented high snoring and/or high OSA values by
scoring conducted by a sleep technologist, including mouth breathing events.
The separately measured mouth and nasal pressure signals from the PSG were
fed through convolutional neural networks to identify mouth breathing events.

Results: The finalized model presented 93.5% accuracy, 97.8% precision, 89% true
positive rate, and 2% false positive rate when applied to the validation data that was
set aside from the training data. Themodel’s performance decreasedwhen applied
to a second validation data set, indicating a need for a larger training set.

Conclusion: The results show the potential of deep neural networks in the analysis
and classification of biological signals, and illustrates the usefulness of machine
learning in sleep analysis.

KEYWORDS

sleep, pediatric sleep, sleep-disordered breathing (SDB), mouth breathing, deep neural
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1. Introduction

Sleep-disordered breathing (SDB) ranges from habitual snoring to severe obstructive
sleep apnea (OSA) (Arnardottir et al., 2021; Óskarsdóttir et al., 2022). OSA is characterized
by an obstruction in the upper airway causing it to close off resulting in repeated breathing
cessations (apneas) or reduced ventilation episodes (hypopneas) during sleep (Quan et al.,
1999). SDB in children is characterized by habitual snoring and upper airway resistance
with OSA events (apneas and hypopneas) in more severe cases. SDB can lead to different
consequences including growth impairment, neurocognitive deficits such as attention-
deficit/hyperactivity disorder, and in rare cases, cardiovascular sequelae (Gottlieb et al.,
2003; Li and Lee, 2009). Prior studies estimate the prevalence of OSA among children to
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be around 1-4% based on parent-reported symptoms from
questionnaires (Lumeng and Chervin, 2008).

Humans generally utilize two breathing modes; nasal breathing
and mouth breathing. Both modes have their advantages and
disadvantages depending on the activity. Nasal breathing is
considered the superior breathing route as it warms up the
air before it enters the lungs, filters away unwanted particles,
and adjusts the humidity of the incoming air (Proctor, 1977;
Koutsourelakis et al., 2006). Mouth breathing, although lacking
the before mentioned properties, is preferable when there is an
increased need for oxygen, i.e., during certain intensities of exercise
(Recinto et al., 2017). Mouth breathing during sleep, however,
is a risk factor for SDB and a common characteristic of SDB
in children (Young et al., 1997; Pacheco et al., 2015). In some
cases, an individual might breathe partially or primarily through
their mouth during parts of their sleep. In OSA patients, this
can be either due to an obstruction of the nasal airway, such
as rhinitis or swollen adenoids and tonsils, or simply by habit
(Pacheco et al., 2015). A study by Pacheco et al. found that
around 50% of the mouth breather population, aged 6–12 years,
were mouth breathers by habit. Furthermore, Lavie et al. studied
the effects of partial and complete mechanical obstruction of
the nasal airway and found a significant increase in the number
of apneas during sleep, the amount of wake after sleep onset,
and the number of arousals associated with non-apneic breathing
disorders with mouth breathing in sleep (Lavie et al., 1983).
Habitual mouth breathers are more likely to have orofacial or
craniofacial abnormalities such as long face, receding chin, open
bite, and a deviated soft palate (Lam et al., 2010; Pacheco et al.,
2015). Children with SDB that have undergone tonsillectomy and
adenoidectomy (T&A) may continue to breathe through their
mouth post operation (Pacheco et al., 2015).Myofunctional therapy
can be performed to correct this breathing pattern to an extent
(Pacheco et al., 2015). Performing a sleep study to confirm the
ceasing of mouth breathing is therefore important.

Despite mouth breathing being a most identified characteristic
of SDB in children, the symptoms are often insufficiently
recognized. Mouth breathing in children is typically determined
subjectively by parental report. Pacheco et al. concluded a
combination of two essential tests for determining if a child is
a mouth breather during daytime, the mirror test and the 3
min water retention or lip seal test. A mirror test is performed
by placing a metal plate is below the patient’s nose, against
the nostrils. The patient is then to expire normally, with their
mouth closed, and the area of condensation that appears on the
metal plate is marked and quantified (de Pochat et al., 2011).
A lip seal test is performed by completely sealing the patient’s
mouth with tape for 3 min or until the patient can no longer
continue the test (Pacheco et al., 2015). Breathing during sleep
is typically measured using a thermistor/thermocouple and a
pressure transducer cannula as a part of the polysomnography
(PSG). However, the thermistor/thermocouple typically measures
the combined oronasal breathing and cannot quantify airflow in
a reliable manner, e.g., under-detecting hypopneas (Farre et al.,
1998). It is therefore also not suitable for analyzing mouth
breathing alone (Lavie, 1987; Koutsourelakis et al., 2006). The
pressure transducer typically only measures the nasal breathing,
so mouth breathing is not detected per se. Separate channels
are required to be able to differentiate nasal pressure from oral

pressure, and consequently analyze the mouth breathing signal.
This allows clinical and research studies to measure e.g., the
percentage of the night a child is mouth breathing, as well as
whether the child is breathing partially through the nose andmouth
or only via the mouth (Koutsourelakis et al., 2006).

Inconsistency in the definition of mouth breathing events has
caused high variability of results between studies. Some register
a mouth breathing event when there is an incident of mouth
breathing without the presence of nose breathing while others
consider there to be an event whenever there is mouth breathing,
regardless of the presence of nose breathing (Oeverland et al., 2002).

Traditionally, PSG signals are manually analyzed in 30 s
portions by a sleep expert. This is an expensive and laborious
process (Fischer et al., 2012; Kuna et al., 2013). Additionally, all
manual processes include a human factor with potential errors
and inter-scorer agreement can be low (Younes et al., 2016).
Automating this process would therefore be of great interest to both
decrease manual labor and increase accuracy. Deep neural network
algorithms, such as convolutional neural networks (CNNs) have
been used to both model and analyze biological signals and other
time series data (Sabbatini, 1993; Khezri and Jahed, 2007; Belo et al.,
2017; Ismail Fawaz et al., 2019). Deep learning and deep neural
networks rest on the capability of automatic feature learning from
data instead of hand-crafting features (Phan et al., 2018). CNN
is the cornerstone of deep neural networks and has been used
frequently to analyze different features in sleep recordings (Tsinalis
et al., 2016; Zhang and Wu, 2017; Mikkelsen and De Vos, 2018;
Phan et al., 2018).

The aim of this paper is to construct and validate a deep
learning algorithm able to automatically detect mouth breathing
events in children from PSG recordings.

2. Methods

2.1. Data collection

2.1.1. Participants
The children are participants in the Europrevall/iFAAM study

(“Integrated Approaches to Food Allergen and Allergy Risk
Management”) (Keil et al., 2010; CORDIS, 2016; Grabenhenrich
et al., 2020; Sigurdardottir et al., 2021). As a part of this study in
Iceland, a subset of parents answered a questionnaire 2 years prior
to the current data collection regarding their children.

All children with reported snoring at least three times a week
or witnessed apneas at least once a week were invited to participate
in this study. A subset of children that did not report any snoring
or apneas was invited to participate as a control group, matched
for age and sex. The study was approved by the Ethical Committee
of Landspitali University Hospital and the National Bioethics
Committee of Iceland (#18-206) on December 4th 2018. A written
informed consent was obtained from a parent or legal guardian of
all participants.

2.1.2. Procedure
The data collection was conducted at the Children‘s Hospital

in Reykjavik where each visit took approximately 2 h. Prior to
the visit, the parent/legal guardian answered questionnaires online,
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including the Pediatric Sleep Questionnaire (PSQ) (Chervin et al.,
2000) and the OSA-18 questionnaire (Sistla and Lahane, 2019). At
the beginning of the visit, height and weight were measured. Then,
six subtests of the Wechsler Intelligence Scale for Children (WISC-
IV) (Wechsler, 2003) and the Conners‘ Continuous Performance
Test (CPT) were administered (Conners, 2014). Finally, a PSG was
set up for the participants to sleep with the following night at home
(see details below).

2.1.3. The pediatric sleep questionnaire
The PSQ assesses snoring, sleepiness, inattention and

hyperactive behavior and is used to screen for SDB in children.
Measures of reliability have proven reasonable-to-high for internal
consistency (0.66–0.89) and test-retest reliability (0.66–0.92)
(Chervin et al., 2000).

2.1.4. Sleep study
All participants had a home PSG study (Nox A1, Nox

Medical, Reykjavik, Iceland) set up by a sleep technologist.
The study included the following sensors: electroencephalogram
(EEG), electrooculogram (EOG), chin and leg electromyogram
(EMG), electrocardiogram (ECG) separate nasal and mouth
pressure transducers (PureFlow, Braebon Medical Corporation,
Ottawa, Canada), thorax and abdomen respiratory inductance
plethysmography (RIP) belts, pulse oximeter, microphone for
snore analysis, electrodermal activity (EDA) and accelerometry
for detection of movements and position. An additional Nox
A1 device was placed on participants to assess the validity of a
new, frontal EEG setup (Kainulainen et al., 2021). The mouth
pressure transducer was connected to the second Nox A1 device
as there is only one pressure channel on each device. PSG
manual annotation was conducted by an expert sleep technologist,
using the latest recommended rules by the American Academy
of Sleep Medicine (version 2.5; 2018). The annotation included
manual validation of automatic snore analysis by listening to
the audible parts of the recording using Noxturnal version
5.1.3.20388 (Nox Medical, Reykjavik, Iceland). In the current
study, additional mouth breathing annotation was conducted by
an expert sleep technologist in order to create a labeled training

set for a deep learning algorithm. Mouth breathing was defined as
significant increase in the amplitude from the baseline of the oral
pressure signal.

2.2. Analysis of polysomnography data

2.2.1. Data extraction
European data format (EDF) files containing the PSG data were

extracted for each subject fromNoxturnal (NoxMedical, Reykjavik,
Iceland). Additionally, manual scorings of mouth breathing events
were extracted from XLSX files obtained from Noxturnal. The
algorithm was then written using Python 3.8.

2.2.2. The algorithm
The algorithm implemented in the current study is based on

the process of manually scoring mouth breathing events. The sleep
technologist conducting the manual scoring for the current study
also relied on the nasal breathing signal, signals of movement and
other artifacts to score mouth breathing. Therefore, both the oral
flow and nasal flow were used as inputs to the model. Figure 1
shows a detailed overview of the model. Figure 2 shows a flowchart
explaining the general structure of the algorithm. The “Load Data”
block in Figure 2 represents the main data extraction portion of
the algorithm. As the two different A1 devices did not have the
exact same internal clock, the data from the two devices first had
to be synchronized. This was accomplished by cross-correlating
the recordings using the Activity signal recorded on both devices,
representing movement. Next, instances of mouth breathing were
read from an Excel file. Then the mouth breathing and nasal
breathing signals were extracted from the EDF files. Both signals
were filtered using a 6th order low-pass filter, mouth breathing with
a cut-off at 2 Hz, and nasal breathing with a cut-off at 1.5 Hz to filter
out noise. The exact cut-off frequencies were chosen through trial
and error based on the findings of Walter and Vaughn (2013). The
ends of the signals that extended beyond the timeline of the other
signal were trimmed off and the remaining signals normalized.
Finally, the mouth breathing and nasal breathing data was cut into
10 s segments with a moving window of 5 s. Each segment was
labeled with its corresponding subject number and registered in a

FIGURE 1

The model flowchart.
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parallel one-hot encoded target vector as either a mouth breathing
event ([1,0]) or not ([0,1]).

FIGURE 2

A flowchart showing the general organization of the algorithm.
CNN, Convolutional neural network.

FIGURE 3

A flowchart displaying the cohort of the current study. f, female; m,
male; n, number of subjects; iFAAM, Integrated Approaches to Food
Allergen and Allergy Risk Management.

A segment was considered a mouth breathing event if ≥ 50%
of it contained mouth breathing, regardless of nasal breathing
happening simultaneously. These segments were then randomized
and the non-dominant class, non mouth breathing, was down-
sampled to 2% of its original size. This was done to increase
the balance between mouth breathing and non mouth breathing
segments, as very few segments contained mouth breathing.
The exact percentage was decided through trial and error. This
resulted in 1941 sample segments (event: 12.6%, no event: 87.4%).
The "Model" block represents the creation, training, testing, and
validation of the model displayed in Figure 1. This was done
using the Keras library in Python 3.8. The model was trained
in 50 epochs with a batch size of 10. A total of 33% of the
samples was reserved for testing, the remaining data was used to
train the model with a validation split of 20%. The randomized
sample sets of 10 s segments were used as inputs. As the mouth
breathing signal can contain intricate patterns, a CNN was chosen
to better identify landmarks specific to mouth breathing events.
Convolutional layers were applied to the fine-grained breathing
signals to learn low dimensional representations and correlate them
with mouth breathing events. Four different filter sizes were chosen
through trial and error for both signals. The filter sizes were 2,
4, 8, and 16. The layer sizes were chosen through an iterative
trial and error process. The outcomes were then flattened. The
output is on a one-hot-encoding format corresponding to the
target vectors. Finally, training and validation accuracy, a confusion
matrix, accuracy, precision, true positive rate, and false positive rate
were computed.

2.3. Secondary model validation

To further validate the model, ten additional PSG recordings
were manually scored. The oral and nasal pressure data were
processed similarly to the training data. The data were filtered and
split into 10 s segments that were fed to the model. The output
was compared to the manual annotation. The accuracy, precision,
true positive rate, and false positive rate were also computed for
this analysis.

3. Results

3.1. The study cohort

A total of 116 children from the iFAAM cohort successfully
participated in a PSG study (60 children who had reported snoring
and 56 controls). Twenty of which were manually annotated for
mouth breathing events, 10 for the model training and 10 for

TABLE 1 Demographic characteristics of the overall cohort and sub-cohorts.

Cohort Age [years] M [n] F [n] BMI Snore% AHI ODI Arousal index

Total (n = 116) 12.0 (0.8) 77 39 20.5 (3.6) 2.5 (6.3) 0.7 (0.9) 0.7 (1.1) 7.1 (2.6)

Training and validation (n = 10) 12.0 (0.9) 6 4 22.8 (4.2) 6.0 (9.5) 1.31 (1.3) 1.0 (1.1) 8.3 (4.4)

Secondary validation (n = 10) 11.0 (0.7) 8 2 21.3 (3.1) 2.8 (4.2) 0.6 (0.3) 0.5 (0.3) 7.5 (3.8)

Values are presented as mean (std) where relevant. M, Male; F, Female; BMI, Body mass index; AHI, Apnea-hypopnea index; ODI, Oxygen desaturation index.

Frontiers in Sleep 04 frontiersin.org

https://doi.org/10.3389/frsle.2023.1082996
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Sturludóttir et al. 10.3389/frsle.2023.1082996

the secondary analysis. Figure 3 shows a flowchart displaying the
collection of the study cohort and Table 1 presents the demographic
characteristics of the cohort. As 20 studies were annotated for
mouth breathing, the resulting participants were 20 children, 6
girls and 14 boys, aged 10–13 years. The first 10 children were
hand picked based on snoring and/or OSA values observed in the
recordings, 5 of which were controls. The parents of the remaining
10 children had reported snoring in the OSA-18 questionnaire. The
latter 10 were used in the secondary validation of the model.

3.2. The model

3.2.1. Model inputs
Figure 4 shows examples of three typical scenarios of samples

fed to the model. Blue lines represent mouth breathing, while
orange lines represent nasal breathing. Figure 4A shows a typical
nasal breathing segment where the nasal breathing shows its
typical peaks and the mouth breathing signal is muted noise
only. Figure 4B shows a typical mouth breathing segment. Here
the mouth breathing follows its typical pattern, while the nasal
breathing is absent as the subject is breathing exclusively through
the mouth. Figure 4C shows a mixture of the two, i.e., oronasal
breathing. This type of segment is classified as mouth breathing
in the current study as all indications of mouth breathing were
considered f interest. Note that these three examples only showcase
themost typical patterns found in the data. Other variations present
in the recordings, as well as artifacts, e.g., due to movement, were
also presented to the model.

3.2.2. Model analysis
During the development of the model, a trial training run of

100 epochs showed a plateauing of the learning curve around 45
epochs. Therefore, 50 total epochs were chosen for the final model.
The confusion matrix obtained from testing the model on the
validation data is displayed in Figure 5. It shows that the model
is highly accurate at classifying the validation data, although 6%
of actual events are incorrectly classified as “no event.” Statistical
parameters describing the quality of the model are presented in
Table 2, along with the corresponding parameters obtained for the
secondary validation data set of 10 subjects.

The performance of the model decreased significantly when
met with data from new recordings. The precision of the model
decreased from 93.8 to 22.1%, and the true positive rate decreased
from 98.1 to 54.4%.

4. Discussion

Mouth breathing is a clinically valuable signal to assess during
sleep. Yet, it is typically not included in a standard PSG study as it
lacks a standardized measurement method and a reliable method
for automation of event detection. This paper presents a method
for measuring mouth breathing in pediatric sleep studies using
separate nasal and oral pressure transducers, as well as a method
for automating the detection of events using a deep learning

FIGURE 4

Examples of 10 s segments fed to the model. (A) Typical nasal
breathing, (B) typical mouth breathing, (C) a mixture of mouth and
nasal breathing. Blue: oral pressure. Orange: nasal pressure. *The
signals have been filtered as described in Section 2.2.

algorithm. This paper is the first, to the authors knowledge, to
attempt automating the detection of mouth breathing events.
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FIGURE 5

The confusion matrix obtained for the trained model. Values are
proportional.

The deep learning algorithm presented in this study resulted in
high model accuracy when predicting on new data from the same
subjects as were used to train the model. However, when predicting
on data from new subjects, the model performed worse. The results
of the current study imply that there is a possibility of a wider
application of deep learning methods in sleep analysis in general,
and for predicting mouth breathing events in sleep recordings of
children in particular. By automating the analysis of signals and
other observed parameters, the analytic process required for each
sleep recording is reduced.

Koutsourelakis et al. (2006) researched mouth breathing and
snoring in adults with SDB free of nasal obstruction. They found
that OSA patients spent more time than snorers breathing only
through the mouth or partially. They also found a positive
correlation between the proportion of mouth and oronasal
breathing and OSA severity. Our paper demonstrates the potential
for clinically measuring and diagnosing mouth breathing.

Moreover, our paper utilized the pressure transducer of the
A1 device to measure oral flow instead of the flawed oronasal
thermistor (Lavie, 1987; Koutsourelakis et al., 2006). For diagnostic
purposes, this method was found to be a functional way of
measuring mouth breathing.

A limitation of the current study is the small size of the data
set that represented mouth breathing. Despite many hours worth
of data, sampled by overlapping a sliding window, a great majority
did not represent mouth breathing events. Manual scorings of more
subjects with a high number of mouth breathing events would
potentially reduce the over-fitting of the model and allow the model
to become increasingly familiar with a wider variety of samples, and
thereby increase the usability and accuracy of the algorithm. This
became prominent in the secondary validation of the model where
precision and true positive rate of the model decreased significantly
when met with data from never before seen recordings.

Another limitation, and a source of possible development of
the current model, is the lack of precision when estimating the
total time spent mouth breathing. Each segment contained 10
s, and was classified as mouth breathing only if it contained
≥50% mouth breathing. This means that each observed incident
of mouth breathing should last somewhere between 5 and 10 s.
A more precise method would be to look at mouth breathing

TABLE 2 Statistical analysis of the obtained model.

Validation (n = 10) Secondary
validation (n = 10)

Accuracy 96.0% 97.7%

Precision 93.8% 22.1%

True positive rate 98.1% 54.4%

False positive rate 5.9% 1.8%

Sensitivity 97.9% 54.4%

Specificity 94.2% 98.2%

as a regression problem or increase the number of classes, for
example separating into 0–25%, 26–50%, 51–75%, and 76–100%.
Another interesting approach would be to investigate the function
of long short-term memory (LSTM) layers on longer segments. A
confined attempt to use LSTM layers wasmade in the current study,
but it did not show greater success than what could be achieved
without it (data not shown). Also, as the device used only had
one pressure transducer, two separate measurement devices needed
to be used and the signals synchronized afterwards, as separate
oral and nasal breathing assessment is not a current standard in
sleep measurements. Therefore, future studies assessing whether
mouth breathing can be predicted from traditional PSG sensors
are needed.

5. Conclusion

This paper illustrates how deep learning algorithms can
be applied to automatically detect mouth breathing events
from PSG recordings limiting the tedious work of manual
scoring. In this particular study, the focus was on learning
from the mouth breathing of children with and without
SDB symptoms. The final model performed very well when
analyzing unknown parts of the same recordings as were
used to train the model. The performance decreased when
the model was presented with data from never before seen
recordings. Future work could include adding a larger set
of scored data with a higher number of cases with mouth
breathing, to further investigate the use of LSTM layers, and to
expand the use of the algorithm to other signals recorded in
a PSG study.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Data is kept safe as per the ethical
agreement. Requests to access these datasets should be directed to
ernasifa@ru.is.

Ethics statement

The studies involving human participants were reviewed and
approved by Ethical Committee of Landspitali University Hospital

Frontiers in Sleep 06 frontiersin.org

https://doi.org/10.3389/frsle.2023.1082996
mailto:ernasifa@ru.is
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Sturludóttir et al. 10.3389/frsle.2023.1082996

and the National Bioethics Committee of Iceland (#18-206) on
December 4th 2018. A written informed consent was obtained from
a parent or legal guardian of all participants.

Author contributions

JS contributed to the study design, data analysis, interpretation
of the results, and wrote the first draft of the manuscript. EA,
MÓ, and AI contributed to the study design, selection of data
analysis methods, and writing of the manuscript. SigrS and MS
contributed to the data analysis and provided insights into scoring
of pediatric sleep studies. HH-S, SiguS, and MC contributed with
medical expertise to the pediatric cohort, contributed to the data
interpretation, and writing of the manuscript. All authors have
reviewed the manuscript critically and accepted the paper in
its entirety.

Funding

This work was supported in part by the Icelandic Centre for
Research through NordForsk (NordSleep) under Project 90458, in
part by the Landspitali University Hospital Science Fund (2019-
2020) under Grant A-2019-061 and Grant A-2020-045, in part by
the European Commission through the 6th Framework Program

within the collaborative research initiative EuroPrevall under Grant
FOOD-CT-2005-514000 and the 7th Framework Program within
the collaborative Project iFAAM under Grant FP7-KBBE-2012-6

and Grant 312 147; in part by the Icelandic Birth Cohort Centre,
Landspitali University Hospital Science Fund; and in part by
the GlaxoSmithKline Iceland. The authors declare that this study
received funding from GlaxoSmithKline Iceland. The funder was
not involved in the study design, collection, analysis, interpretation
of data, the writing of this article, or the decision to submit it
for publication.

Acknowledgments

The authors would like to thank the participants in the study
wholeheartedly.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Arnardottir, E. S., Islind, A. S., and Óskarsdóttir, M. (2021). The future of
sleep measurements: a review and perspective. Sleep Med. Clin. 16, 447–464.
doi: 10.1016/j.jsmc.2021.05.004

Belo, D., Rodrigues, J., Vaz, J. R., Pezarat-Correia, P., and Gamboa, H. (2017).
Biosignals learning and synthesis using deep neural networks. Biomed. Eng. Online 16,
115–115. doi: 10.1186/s12938-017-0405-0

Chervin, R. D., Hedger, K., Dillon, J. E., and Pituch, K. J. (2000). Pediatric
sleep questionnaire (psq): validity and reliability of scales for sleep-disordered
breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 1, 21–32.
doi: 10.1016/S1389-9457(99)00009-X

Conners, C. K. (2014). Conners’ Continuous Performance Test, 3rd Edn. Toronto:
Conners Cpt 3.

CORDIS (2016). Integrated Approaches to Food Allergen and Allergy risk
Management. Available online at: https://cordis.europa.eu/project/id/312147 (accessed
on June 30, 2022).

de Pochat, V. D., Alonso, N., Mendes, R. R., Cunha, M. S., andMenezes, J. V. (2011).
Nasal patency after open rhinoplasty with spreader grafts. J. Plastic Reconst. Aesthetic
Surg. 65, 732–738. doi: 10.1016/j.bjps.2011.11.059

Farre, R., Montserrat, J. M., Rotger, M., Ballester, E., and Navajas, D. (1998).
Accuracy of thermistors and thermocouples as flow-measuring devices for detecting
hypopnoeas. Euro. Resp. J. 11, 179–182. doi: 10.1183/09031936.98.11010179

Fischer, J., Dogas, Z., Bassetti, C. L., Berg, S., Grote, L., Jennum, P., et al. (2012).
Standard procedures for adults in accredited sleep medicine centres in europe. J. Sleep
Res. 21, 357–368. doi: 10.1111/j.1365-2869.2011.00987.x

Gottlieb, D. J., Vezina, R. M., Chase, C., Lesko, S. M., Heeren, T. C., Weese-
Mayer, D. E., et al. (2003). Symptoms of sleep-disordered breathing in 5-year-old
children are associated with sleepiness and problem behaviors. Pediatrics 112, 870–877.
doi: 10.1542/peds.112.4.870

Grabenhenrich, L., Trendelenburg, V., Bellach, J., Yürek, S., Reich, A., Fiandor,
A., et al. (2020). Frequency of food allergy in school-aged children in eight

european countries–the europrevall-ifaam birth cohort. Allergy 75, 2294–2308.
doi: 10.1111/all.14290

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019).
Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33,
917–963. doi: 10.1007/s10618-019-00619-1

Kainulainen, S., Korkalainen, H., Sigurdardottir, S., Myllymaa, S., Serwatko, M.,
Sigurdardottir, S., et al. (2021). Comparison of eeg signal characteristics between
polysomnography and self applied somnography setup in a pediatric cohort. IEEE
Access 9, 110916–110926. doi: 10.1109/ACCESS.2021.3099987

Keil, T., McBride, D., Grimshaw, K., Niggemann, B., Xepapadaki, P., Zannikos,
K., et al. (2010). The multinational birth cohort of europrevall: background, aims and
methods. Allergy 65, 482–490. doi: 10.1111/j.1398-9995.2009.02171.x

Khezri, M., and Jahed, M. (2007). Real-time intelligent pattern
recognition algorithm for surface emg signals. Biomed. Eng. Online 6, 45–45.
doi: 10.1186/1475-925X-6-45

Koutsourelakis, I., Vagiakis, E., Roussos, C., and Zakynthinos, S. (2006). Obstructive
sleep apnoea and oral breathing in patients free of nasal obstruction. Eur. Respir J. 28,
1222–1228. doi: 10.1183/09031936.00058406

Kuna, S. T., Benca, R., Kushida, C. A., Walsh, J., Younes, M., Staley, B., et al.
(2013). Agreement in computer-assisted manual scoring of polysomnograms across
sleep centers. Sleep 36, 583–589. doi: 10.5665/sleep.2550

Lam, D. J., Jensen, C. C., Mueller, B. A., Starr, J. R., Cunningham, M. L.,
and Weaver, E. M. (2010). Pediatric sleep apnea and craniofacial anomalies: a
population-based case-control study. Laryngoscope 120, 2098–2105. doi: 10.1002/lary.
21093

Lavie, P. (1987). Rediscovering the importance of nasal breathing in sleep
or, shut your mouth and save your sleep. J. Laryngol. Otol. 101, 558–563.
doi: 10.1017/S0022215100102245

Lavie, P., Fischel, N., Zomer, J., and Eliaschar, I. (1983). The effects of partial and
complete mechanical occlusion of the nasal passages on sleep structure and breathing
in sleep. Acta Otolaryngol. 95, 161–166. doi: 10.3109/00016488309130930

Frontiers in Sleep 07 frontiersin.org

https://doi.org/10.3389/frsle.2023.1082996
https://doi.org/10.1016/j.jsmc.2021.05.004
https://doi.org/10.1186/s12938-017-0405-0
https://doi.org/10.1016/S1389-9457(99)00009-X
https://cordis.europa.eu/project/id/312147
https://doi.org/10.1016/j.bjps.2011.11.059
https://doi.org/10.1183/09031936.98.11010179
https://doi.org/10.1111/j.1365-2869.2011.00987.x
https://doi.org/10.1542/peds.112.4.870
https://doi.org/10.1111/all.14290
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1109/ACCESS.2021.3099987
https://doi.org/10.1111/j.1398-9995.2009.02171.x
https://doi.org/10.1186/1475-925X-6-45
https://doi.org/10.1183/09031936.00058406
https://doi.org/10.5665/sleep.2550
https://doi.org/10.1002/lary.21093
https://doi.org/10.1017/S0022215100102245
https://doi.org/10.3109/00016488309130930
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Sturludóttir et al. 10.3389/frsle.2023.1082996

Li, H.-Y., and Lee, L.-A. (2009). Sleep-disordered breathing in children. Chang
Gung. Med. J. 32, 247–257.

Lumeng, J. C., and Chervin, R. D. (2008). Epidemiology of pediatric obstructive
sleep apnea. Proc. Am. Thorac. Soc. 5, 242–252. doi: 10.1513/pats.200708-135MG

Mikkelsen, K., and De Vos, M. (2018). Personalizing deep learning
models for automatic sleep staging. arXiv preprint arXiv:1801.02645.
doi: 10.48550/arXiv.1801.02645

Oeverland, B., Akre, H., and Skatvedt, O. (2002). Oral
breathing in patients with sleep-related breathing disorders.
Acta Otolaryngol. 122, 651–654. doi: 10.1080/000164802320
396349

Óskarsdóttir, M., Islind, A. S., August, E., Arnardóttir, E. S., Patou, F., Maier,
A. M., et al. (2022). Importance of getting enough sleep and daily activity data
to assess variability: longitudinal observational study. JMIR Format. Res. 6, e31807.
doi: 10.2196/31807

Pacheco, M. C. T., Casagrande, C. F., Teixeira, L. P., Finck, N. S., and de
Araújo, M. T. M. (2015). Guidelines proposal for clinical recognition of mouth
breathing children.Dental Press J. Orthod. 20, 39–44. doi: 10.1590/2176-9451.20.4.039-
044.oar

Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., and De Vos, M. (2018).
Joint classification and prediction cnn framework for automatic sleep stage
classification. IEEE Trans. Biomed. Eng. 66, 1285–1296. doi: 10.1109/TBME.2018.28
72652

Proctor, D. F. (1977). The upper airways. I. Nasal physiology and defense of the
lungs. Am. Rev. Respir. Dis. 115, 97–129. doi: 10.1164/arrd.1977.115.1.97

Quan, S., Gillin, J. C., Littner, M., and Shepard, J. (1999). Sleep-related breathing
disorders in adults: recommendations for syndrome definition and measurement
techniques in clinical research. Editorials. Sleep 22, 662–689. doi: 10.1093/sleep/22.
5.667

Recinto, C., Efthemeou, T., Boffelli, P. T., and Navalta, J. W. (2017). Effects of nasal
or oral breathing on anaerobic power output and metabolic responses. Int. J. Exerc. Sci.
10, 506–514.

Sabbatini, R. (1993). “Neural networks for classification and pattern recognition of
biological signals,” in Proceedings of the 15th Annual International Conference of the
IEEE Engineering in Medicine and Biology Societ (San Diego, CA: IEEE), 265–266.

Sigurdardottir, S. T., Jonasson, K., Clausen, M., Lilja Bjornsdottir, K., Sigurdardottir,
S. E., Roberts, G., et al. (2021). Prevalence and early-life risk factors of school-age
allergic multimorbidity: the europrevall-ifaam birth cohort. Allergy 76, 2855–2865.
doi: 10.1111/all.14857

Sistla, S. K., and Lahane, V. (2019). Osa 18 questionnaire: tool to evaluate quality
of life and efficacy of treatment modalities in pediatric sleep disordered breathing
due to adenotonsillar hypertrophy. Indian J. Otolaryngol. Head Neck Surg. 74, 1–8.
doi: 10.1007/s12070-019-01757-0

Tsinalis, O., Matthews, P. M., Guo, Y., and Zafeiriou, S. (2016). Automatic sleep
stage scoring with single-channel eeg using convolutional neural networks. arXiv
preprint arXiv:1610.01683. doi: 10.48550/arXiv.1610.01683

Walter, R. N., and Vaughn, B. V. (2013). Low frequency filtering of nasal pressure
channel causes loss of flow limitation. Neurodiagn J. 53, 58–62.

Wechsler, D. (2003).Wechsler Intelligence Scale for Children, 4th Edn. San Antonio,
TX: The Psychological Corporation.

Younes, M., Raneri, J., and Hanly, P. (2016). Staging sleep in polysomnograms:
analysis of inter-scorer variability. J. Clin. Sleep Med. 12, 885–894.
doi: 10.5664/jcsm.5894

Young, T., Finn, L., and Kim, H. (1997). Nasal obstruction as a risk
factor for sleep-disordered breathing. J. Allergy Clin. Immunol. 99, S757-S762.
doi: 10.1016/S0091-6749(97)70124-6

Zhang, J., andWu, Y. (2017). A newmethod for automatic sleep stage classification.
IEEE Trans. Biomed. Circ. Syst. 11, 1097–1110. doi: 10.1109/TBCAS.2017.2719631

Frontiers in Sleep 08 frontiersin.org

https://doi.org/10.3389/frsle.2023.1082996
https://doi.org/10.1513/pats.200708-135MG
https://doi.org/10.48550/arXiv.1801.02645
https://doi.org/10.1080/000164802320396349
https://doi.org/10.2196/31807
https://doi.org/10.1590/2176-9451.20.4.039-044.oar
https://doi.org/10.1109/TBME.2018.2872652
https://doi.org/10.1164/arrd.1977.115.1.97
https://doi.org/10.1093/sleep/22.5.667
https://doi.org/10.1111/all.14857
https://doi.org/10.1007/s12070-019-01757-0
https://doi.org/10.48550/arXiv.1610.01683
https://doi.org/10.5664/jcsm.5894
https://doi.org/10.1016/S0091-6749(97)70124-6
https://doi.org/10.1109/TBCAS.2017.2719631
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org

	Deep learning for sleep analysis on children with sleep-disordered breathing: Automatic detection of mouth breathing events
	1. Introduction
	2. Methods
	2.1. Data collection
	2.1.1. Participants
	2.1.2. Procedure
	2.1.3. The pediatric sleep questionnaire
	2.1.4. Sleep study

	2.2. Analysis of polysomnography data
	2.2.1. Data extraction
	2.2.2. The algorithm

	2.3. Secondary model validation

	3. Results
	3.1. The study cohort
	3.2. The model
	3.2.1. Model inputs
	3.2.2. Model analysis


	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


