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Objectives: Assess a program of sleep schedule recommendations and

behavior change “nudges” algorithmically selected using passively collected,

longitudinal sleep data. Improvements were primarily measured by sleep

schedule adherence and changes in sleep health (quantified by the

RU_SATED framework).

Methods: This study used a convenience sample of self-screening

volunteers, responding to recruitment emails. Sleep data was gathered with

a commercial under-mattress sensor through three phases: baseline passive

data collection-2 weeks; intervention-4 weeks; maintenance monitoring

passive data collection-8 weeks. The intervention included sleep schedule

recommendations and SMS “nudges,” based on rules and recommendations

derived from the extant literature. A daily sleep-health score (based on

RU_SATED) was derived from passively collected sleep data and daily

self-reports of alertness and sleep quality.

Results: Twenty-six participants (34.92 ± 10.08-years-old; 20M:6F) had

adequate data for analysis. The main findings were: (1) Adherence—defined

as a wake time (WT) within 30min of the recommendation—rates did not

di�er significantly between the three study phases. However, there was a

general decline in adherence over the course of the study, with adherence

rates dropping by about 1.5%/week in a pattern of progressive delay of

WTs. (2) Linear mixed models (LMMs) of individual sleep metrics did not

demonstrate a significant change over the course of the intervention, possibly

due to widely varying, yet relatively healthy, sleep patterns at baseline. (3)

Comparatively, the composite, sleep-health (RU_SATED) score demonstrated

general improvement over the intervention period, in association with higher

rates of WT adherence.

Conclusions: While, in general, adherence to a sleep schedule and

individual dimensions of sleep health did not demonstrate meaningful

improvements during the intervention phase, those individuals that were

more consistently meeting the wake-time schedule recommendation had

associated improvements in their overall sleep-health. As such, this pilot study

demonstrates the feasibility and potential e�cacy among more adherent
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individuals of implementing a sleep wellness coaching framework using

passively collected sleep data and a rule-based coaching infrastructure.

KEYWORDS

coaching, behavior change, sleep, wellness, health

Introduction

Inadequate sleep duration has been declared a public health
epidemic in the United States, with over 1

3 of Americans
not getting the necessary amount of sleep on a nightly
basis (CDC, 2019). On a global scale, a similar proportion
of people aren’t getting sufficient amounts of sleep every
night (Chattu et al., 2018). There are various reasons that
may explain this concerning trend, some of which are
behavioral [e.g., bedtime procrastination due to technology
usage (Chung et al., 2020)]. In order to tackle this pervasive
problem, numerous organizations have attempted to promote
public awareness through publicizing guidelines on sleep
duration recommendations for adult and pediatric populations
(Hirshkowitz et al., 2015;Watson et al., 2015; Paruthi et al., 2016;
Tremblay et al., 2016; World Health Organization, 2019; Ross
et al., 2020).

However, sleep duration alone seems an inadequate
measure of sleep health, given the growing body of evidence
supporting various attributes of daily sleep-wake patterns that
meaningfully associate with functional and health outcomes
(Buysse, 2014). Toward this end, sleep health frameworks,
like the RU_SATED paradigm conceptualized and validated by
Buysse and colleagues (Brindle et al., 2019; Wallace et al., 2021),
can help define healthy sleep akin to other wellness goals, such
as the American Heart Association’s (AHA) weekly exercise
recommendations (Piercy Katrina and Troiano Richard, 2018).
The RU_SATED framework captures 6 dimensions of sleep
health: RoUtine/regularity (consistency of the sleep schedule
from day to day), Sleep quality (perceived and/or objective),
Alertness (ability to remain awake), Timing (when in the 24
hours the sleep period occurs), Efficiency (the match between
sleep opportunity and sleep duration), and Duration (adequacy
of sleep quantity). In this vein, a focus can be placed on
wellness behaviors throughout the day and night that promote
healthy sleep. But, given the complexity of interactions between
daily activities and sleep, as well as needs for individuals
varying widely based on various life factors, applying the
best scientific evidence to each person’s unique circumstances

Abbreviations: ANOVA, analysis of variance; BT, bedtime; GAM,

generalized additive model; LMM, linear mixed model; MSP, midpoint

of the sleep period/midsleep point; SMS, short messaging service; WT,

wake time.

and sleep-health profile poses a significant challenge. This is
underscored by growth of consumer investment in sleep-health-
promoting products, which are focused on addressing issues that
generally don’t fall under the purview of clinical sleep medicine
(Khosla et al., 2018).

Along these lines, various consumer-facing sleep
technologies have sought to help individuals understand
their sleep, often building upon some form of sleep-tracking
technology. Many of these efforts provide a more retrospective
view of sleep data that has resulted in some dissatisfaction
with the lack of guidance (Chen, 2019) on how to achieve
better sleep or, in occasional circumstances, data-driven
sleep impairments, which has been dubbed “orthosomnia
(Baron et al., 2017).” Moreover, behavior change is hard to
initiate and maintain. Meta-analyses have demonstrated that
adherence rates for various health interventions tend to range
from 50 to 80%, with the ability to sustain healthy behaviors
in the long-term failing in 30–60% of cases (Middleton
et al., 2013). Even in instances where individuals are seeking
care for a specific sleep disorder—insomnia—digital clinical
interventions (i.e., cognitive behavioral therapy for insomnia
[CBTi]) tend to garner only about 52% adherence, on average
(Horsch et al., 2015).

Recognizing the prevalence of both sleep complaints
and unrecognized sleep issues that may be detracting
from optimal sleep health (Grandner, 2019), we sought to
perform a pilot study to explore whether sleep coaching
messages based on longitudinally monitored, objective,
sleep-tracking data could help volunteers make changes
to their daily behaviors in order to improve their overall
sleep health. We hypothesized that algorithmically derived
sleep schedule recommendations and “personalized” sleep
coaching messages would (1) result in adherence rates
comparable to other health and wellness interventions and
(2) improve objective measures of sleep in a population
of generally healthy volunteers free of clinically diagnosed
sleep disorders.

Methods

This study was approved by an institutional review board
(IRB), protocol # GH-SBC-001. All participants provided
written, informed consent prior to participation in the study.

Frontiers in Sleep 02 frontiersin.org

https://doi.org/10.3389/frsle.2022.1071822
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Schneider et al. 10.3389/frsle.2022.1071822

Participants

Research participants were recruited as a convenience
sample. Volunteers were sought from within Google LLC via

emails sent to relevant full-time employee listservs. There was no
incentive offered for participation and no punitive consequences
for lack of participation or completion of the study. Interested

TABLE 1 Inclusion and exclusion criteria.

Inclusion criteria

1. Google full-time employee
2. Sleep schedule irregularity
3. Age >18
4. Speak and read English
5. Own a smartphone with texting capability

Exclusion criteria

1. Have more than 2 sleepers in the bed
2. Share bed with children or pets
3. Have an expected use of own bed of < 80% of the time
4. Sleeps on waterbeds or air mattresses
5. History of the following medical conditions: significant cardiopulmonary

disease, significant neurologic disease, significant mental illness,
obstructive sleep apnea, specific sleep disorder as diagnosed by a
physician

6. Current pregnancy or planned pregnancy during the course of the study
7. Unwillingness or inability to comply to actions suggested by the study

(for any reason)

volunteers were asked to complete a screening questionnaire
to determine eligibility for study enrollment, based on the
inclusion/exclusion criteria (Table 1). Because the sleep schedule
recommendation and coaching messages were based on sleep-
related behaviors, individuals with sleep schedule irregularity—
defined as a>1 h difference in bedtime and/or wake time, at least
once a week, on a regular basis—were preferentially recruited.

Study protocol

Individuals participated in the study for a total of 14 weeks
(Figure 1). After providing informed consent, participants set
up the Fullpower Sleeptracker

R©
under-mattress sensor (“the

sensor”) to start passively monitoring their sleep patterns (Ding
et al., 2022). This data was abstracted to a secure spreadsheet for
analysis on a daily basis. Throughout the study, participants did
not have access to their data or the features of the Fullpower
Sleeptracker

R©
app. Participants also received twice daily SMS

messages to survey their perceived sleep quality—Overall, how
was the quality of your sleep last night? “1” (very poor) to
“5” (very good)—and daytime alertness levels—How alert were
you today? “A” (not at all alert) to “E” (most alert); the quality
SMS survey was sent within an hour of usual wake time, in
order to get an accurate reflection on the previous night’s
sleep without the bias of sleep inertia, and the alertness SMS

FIGURE 1

Study design. Following consent, participants had their sleep passively monitored by the Fullpower Sleeptracker
®
for 2 weeks (Baseline phase)

along with twice daily SMS queries. On the 14th day of the study, participants entered the Intervention phase, a 4-week phase in which

automatically generated sleep schedule recommendations—bedtime (BT) and wake time (WT)—and a sleep insight topic and messages were

confirmed by team consensus after review of the collected sleep data. After completion of the Intervention phase, the participants continued

with passive sleep monitoring and twice daily SMS queries for another 8 weeks (Monitoring phase). AI, active intervention; M/W/F,

Monday/Wednesday/Friday; SMS, short messaging system.
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survey was sent about 6 h before usual bedtime, in order to
follow the usual midday, circadian dip in energy levels. This
data was also added to the secure spreadsheet for analysis and
team decision-making.

Entry and exit surveys

At the beginning of the study, and again at the end
of the 14 weeks, participants completed a brief survey
about their age, self-identified sex, general sleep habits (e.g.,
usual bedtime, average sleep duration, etc.), perceived sleep
issues, and sleep goals. The exit survey focused on feedback
regarding the coaching experience (e.g., frequency of SMS,
relevance of content, etc.). Neither survey was used in
the Intervention phase of the study, but the data were
gathered for qualitative feedback on the coaching experience
and, in the case of age and sex, for model adjustment in
quantitative analyses.

Baseline phase

The first 2 weeks of the study included only passive sleep
pattern monitoring and the twice daily SMS text messages.

Intervention phase

Following 2 weeks of sleep pattern and quality/alertness
data collection, participants entered the 4-week intervention
phase. In addition to the ongoing sleep monitoring and
twice-daily SMS surveys, individuals received a sleep schedule
recommendation (recommended bedtime and wake time) and
thrice-weekly sleep coaching messages. The sleep schedule
recommendations were automatically calculated from the
collected data from the previous 14 days. After the research
team (blinded to participant identity) reviewed the sleep
data and approved the sleep schedule recommendation,
the recommended bedtime and wake time were shared
with the participant via SMS and entered into a Google
Calendar, which were associated only to the participant’s
de-identified study ID. The research team also reviewed
the relevant coaching messages that were identified by a
series of rules that automatically analyzed the collected sleep
data (see “Coaching message selection” subsection). Once
the coaching messages were confirmed to be appropriate
by consensus opinion, they were sent via SMS, using
the same platform as the twice-daily survey questions. In
order to standardize and simplify the study process, the
research team met on Monday, Wednesday, and Friday in
order to review the participant data and schedule/coaching
message recommendations.

Monitoring phase

Following the 4-week Intervention phase, participants were
again passively monitored with the under-mattress sensor and
asked to respond to twice-daily SMS survey questions about
their sleep quality and daytime alertness levels.

Sleep schedule recommendation

Each week, the preceding 14 days of data were used
to generate a sleep schedule recommendation. In order to
focus on regularity of the sleep schedule, bedtime and wake
time recommendations were generated from usual bedtimes
and wake times, accounting for the relationship between the
usual sleep duration and nightly sleep opportunity. Prior to
providing recommendations, all schedule recommendations
were reviewed by the research team to ensure adequate
sleep opportunity, based on the participant’s historical data.
If the recommended schedule was deemed inappropriately
short or long, the team would override the recommendation,
instead suggesting a 7- or 9-h sleep period, respectively, in
accordance with generally accepted healthy sleep guidelines for
this demographic (Hirshkowitz et al., 2015; Watson et al., 2015).

Coaching message selection

As part of the study protocol, sleep coaching messages
were generated that helped identify the area of potential
sleep improvement, provide education on basic principles of
sleep-wake physiology, and suggest an action that could be
undertaken to make the intended improvement. This content
was developed based on the extant body of peer-reviewed
scientific literature and covered various concepts (e.g., the
homeostatic sleep drive, the circadian system, etc.). Sleep
improvement areas were identified, based on a number of
evidence-based rules derived from peer-reviewed publications,
professional society guidelines (e.g., American Academy of Sleep
Medicine, National Sleep Foundation, etc.), and general health
and wellness principles that are discussed in public outreach
messages from reputable organizations (e.g., MayoClinic.org).
The sleep improvement areas focused on multiple aspects
of healthy sleep, generally structured around the RU_SATED
paradigm (Buysse, 2014): sleep schedule regularity, sleep quality,
reports of daytime alertness, timing of the main sleep period,
patterns of wakefulness preceding or interrupting the main
sleep period (sleep efficiency, based on the metrics provided
by the under-mattress sensor), and sleep duration. Coaching
messages followed three main templates: an insight template
which describes what aspect of the participant’s sleep needs
improving; an education template which provides context on
why a sleep issue is important; and a suggestion template
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TABLE 2 Example sleep content.

Example insight content (base on evidence of

significant workday-free day sleep schedule di�erences)

Your sleep pattern changes on days off
If you change your sleep schedule by an hour or more on days off, going
back to work can feel like changing timezones. This is sometimes called
“social jetlag.”
When you can, it’s better to stay consistent across the week. Making small
tweaks to your schedule can help you feel more rested in the long run.

Example educational content

Make the most of your days off
Setting your workday alarm on your days off helps you make the most of the
day. But studies also show that a consistent schedule can help you be more
productive during the week, too.

Example suggestion content

Stay true to your workday schedule
If you find it hard to get up on workdays, try getting up at around your
typical wake time of XX:XX on your days off. Sleeping late for 2 days can
affect your body clock for the other 5.

that provides a tip on how they can address a given issue
(see examples of each in Table 2). Participants were given the
messages in a set, where the order of the set was insight,
education, and suggestion. Messages were written and saved in
a database and included in the IRB-reviewed participant-facing
materials. During the intervention phase, message content for
a participant on a given day was selected from the database
based on automated calculation of metrics for each rule and a
system that variably weighted each area, based on the number
of activated rules and degree of deviation from what might be
considered “optimal” for that rule. The research team assessed
the appropriateness of the content selections at their tri-weekly
meetings and scheduled relevant SMS based on discussion and
consensus. Each set was selected to be the most relevant aspect
of sleep for them that particular week, with the next week being
potentially a different set.

Statistical analysis

Given that the main recommendation in the study was for
a bedtime/wake-time routine, overall protocol adherence was
estimated based on frequency of days in which participants had
a wake time (WT) within 30 minutes of the recommended WT.
As there was noWT recommendation during the baseline phase,
the median WT from the entire baseline phase was used as a
surrogateWT target to estimate “adherence” to a regular routine
during that phase. Bedtime was not used because the estimate of
bedtime provided by the sensor does not accurately reflect the
time of getting into bed, but, in most cases, just reflects a time
5min prior to estimated sleep onset. Along these lines, given that
sleep efficiency was calculated from a denominator that does not
reflect true time in bed, the normal range for sleep efficiency was

set at 90–98% (the 10 and 90th percentile of sleep efficiencies
for the entire cohort). Additionally, because of differences in the
way sleep is estimated by the sensor relative to the validation
analyses performed by Brindle and colleagues (Brindle et al.,
2019), the normal range for sleep duration was set at the
recommended 7–9 h for a population with our demographics
(Hirshkowitz et al., 2015; Watson et al., 2015). The midpoint
of the sleep period (MSP) was calculated as the midpoint
from sleep onset to final wake time; the normal range for the
timing and standard deviation of the MSP were used from the
validation study performed by Brindle and colleagues (Brindle
et al., 2019). Because daily sleep quality and alertness questions
inverted responses, validated thresholds (Brindle et al., 2019)
were similarly inverted to define normal vs. not. In addition
to examining the absolute and relative number of individual
metrics in/out of the normal range on a daily basis, an aggregated
daily sleep-health (RU_SATED) (Brindle et al., 2019) score was
calculated for each participant by summing the number of sleep
health metrics that were in the “normal” range, with a minimum
possible score of 0 and maximum of 6.

Categorical variables are presented as percentages, and
continuous variables as mean±standard deviation or median
and interquartile range for non-Gaussian variables, as confirmed
by the Shapiro-Wilk test for normality. Similarly, when
normal distributions of variables were evident, period-to-period
comparisons of continuous variables were performed using
ANOVA (multi-period comparisons), and post hoc pairwise
comparisons were performed with the t-test only in instances
where the ANOVA p-value was below the significance threshold;
otherwise, the Kruskal-Wallis test and post hoc Wilcoxon rank
sum testing were used. χ2 or Fisher’s exact test (when counts
fell below 5 in any category) was used to compare categorical
variables between groups. Pearson coefficients were calculated
to demonstrate magnitude of correlation between relevant
variables. A statistical threshold of α = 0.05 was set, and, when
relevant, Bonferroni correction for multiple comparisons was
performed for each major analysis.

Analyses were performed in the R programming language
(v4.0.4) (R Core Team, 2019). In order to generate aggregated
daily sleep health scores, data were imputed using the mice
package for R (van Buuren and Groothuis-Oudshoorn, 2011),
assuming that missingness was at random. Otherwise, linear
mixed models (LMMs) were fit with the lme4 package (Bates
et al., 2015), due to their relative robustness vis a vis modest
missingness and auto-correlated longitudinal data. The LMMs
were used to model general changes of metrics over the course
of the study after accounting for various potential sources of
confounding: fixed effects for age and sex and random effects
(slope and intercept) for study start date and participant (ID).
In order to roughly model changes in adherence over time,
generalized additive models (GAMs) were used with a penalized
cubic regression spline, which had its penalty modified to shrink
toward zero at high enough smoothing parameters.
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TABLE 3 Comparison of within-participant-averaged RU_SATED metrics over the 3 study phases (2-week baseline, 4-week intervention, 8-week

monitoring).

Metric Baseline
mean±SD or
median [IQR]

Intervention
mean±SD or
median [IQR]

Monitoring
mean±SD or
median [IQR]

Test statistic,
p-value

Post-hoc

RoUtine 0:33 [0:23, 1:02] 0:41 [0:27, 0:54] 0:42 [0:29, 0:55] 0.74, 0.48

Sleep quality 3.57 [3.15, 3.86] 3.62 [3.31, 4.02] 3.69 [3.34, 3.97] 0.31, 0.74

Alertness 3.54 [3.22, 3.82] 3.68 [3.19, 4.13] 3.73 [3.17, 3.88] 0.23, 0.79

Timing 4:02 [3:27, 5:52] 3:51 [3:13, 5:35] 4:16 [3:44, 5:28] 0.22, 0.80

Efficiency 94.6% [93.3%, 96.0%] 95.5% [93.6%, 95.9%] 95.0% [94.5%, 95.8%] 0.21, 0.81

Duration 7.49 [6.99, 8.03] 7.50 [7.20, 7.78] 7.42 [7.01, 7.79] 0.12, 0.88

RU_SATED 3.61 [3.30, 4.13] 4.16 [3.18, 4.39] 3.89 [3.39, 4.17] 0.89, 0.41

For a general sense of this repeated-measures data, each metric was averaged for each participant for each time period and then summary statistics were calculated over the entire cohort.
For participant-level data for each metric, see Supplementary Tables 1–7. Normally distributed variables are expressed as mean±SD and analyzed with ANOVA (and post hoc t-tests, where
appropriate); non-Gaussian variables are expressed as median [IQR] and analyzed with a Kruskal-Wallis test (and post hocWilcoxon rank sum test, where appropriate). Post hoc pairwise
comparisons are only provided when the preceding period-level comparison was statistically significant.

TABLE 4 Aggregate of percentage of time spent in the ideal range, by each participant, for each of the RU_SATED metrics over the 3 study phases

(2-week baseline, 4-week intervention, 8-week monitoring).

Metric Baseline
mean±SD

or median [IQR]

Intervention
mean±SD

or median [IQR]

Monitoring
mean±SD

or median [IQR]

Test statistic,
p-value

Post-hoc
(higher=better)

RoUtine 100.0% [50.0%, 100.0%] 100.0% [74.1%, 100.0%] 87.5% [73.3%, 100.0%] 0.30, 0.74

Sleep quality 52.4%±27.2% 56.9%±24.0% 56.2%±27.3% 0.19, 0.83

Alertness 50.2%±34.0% 58.0%±27.8% 52.7%±31.8% 0.40, 0.68

Timing 21.4% [0.0%, 35.1%] 16.3% [0.0%, 49.1%] 9.2% [1.8%, 25.0%] 0.09, 0.92

Efficiency 96.4% [92.9%, 100.0%] 100.0% [93.6%, 100.0%] 98.1% [95.3%, 100.0%] 0.30, 0.74

Duration 54.8%±21.3% 61.8%±17.4% 57.7%±17.7% 0.90, 0.41

For a general sense of this repeated-measures data, for each metric, the percentage of the period spent in an ideal range (e.g., sleep duration 7–9 h) was calculated for each participant for
each time period and then summary statistics were calculated over the entire cohort. Normally distributed variables are expressed as mean±SD and analyzed with ANOVA (and post hoc

t-tests, where appropriate); non-Gaussian variables are expressed as median [IQR] and analyzed with a Kruskal-Wallis test (and post hocWilcoxon rank sum test, where appropriate). Post
hoc pairwise comparisons are only provided when the preceding period-level comparison was statistically significant.

Results

Population characteristics

Of the 4,010 potentially eligible individuals who were

emailed, 116 completed the screening questionnaire to
determine eligibility for study enrollment, based on the

inclusion/exclusion criteria (Table 1). Because the sleep

schedule recommendation and coaching messages were based
on sleep-related behaviors, individuals with sleep schedule

irregularity—defined as > 1 h difference in bedtime and/or

wake time, at least once a week, on a regular basis—were
preferentially recruited. Of those who remained eligible
following the screening questionnaire, 37 were consented for

participation in the study. Of these, 31 individuals actually
participated in the study, with 1 individual (#19) being
withdrawn before completion of the study due to their lack of
responses to SMS surveys and inability to sleep with the device

for > 80% of nights. Four participants’ data were excluded from
final quantitative analysis due to extrinsic factors that altered
their sleep patterns resulting in an inconsistent ability to adhere
to the protocol throughout the study period: #4 & #7, due
significantly erratic sleep schedules and disruptions potentially
due to hardware issues or external factors; #9 and #18, due to
extreme changes in sleep duration and schedule due to illness
midway through the study. The remaining 26 participants were
included in this analysis.

The participants in this study were younger (34.92 ± 10.08
years old) and predominantly male (20M:6F). Despite an effort
to recruit volunteers with an irregular sleep schedule, the average
standard deviation of the MSP wasn’t very high (Tables 3,
4, Baseline column), particularly in relation to the 1:05min
threshold proposed by Brindle et al. (2019). Additionally, in
relation to the MIDUS II and MIDUS refresher validation
cohorts that Brindle and colleagues used to derive metric
cutoffs, this study’s participants reported being significantly
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FIGURE 2

Wake time (WT) adherence. The di�erences between actual WT and recommended WT are plotted per individual over the course of the study,

with positive values indicating an actual WT after the recommended WT. A generalized additive model (GAM) of the form WT di�erence ∼ study

day was used to estimate any trend in non-adherence and the point at which the group generally was no longer adherent to their individual WT

recommendations, the latter of which was at approximately the 87th day of the study (about 45 days following the end of the intervention). The

shaded region indicates the intervention phase, and the horizontal dashed lines indicate the 30-min bounds around the WT recommendation

that was considered “adherence”. Note that the baseline period of the study had no WT recommendation, so median WT for the entire baseline

period was used as the reference.

less alert and had generally later sleep periods and longer
sleep duration, with higher efficiency (all p-values less than the
Bonferroni-corrected α of 0.008; see Supplementary Table 8).
The longer sleep duration and higher efficiency may have been,
in part, due to the different sleep tracking methods used in
this study.

Adherence

Adherence to the recommended wake time (WT) schedule
was somewhat inconsistent in this cohort (Figure 2). A
shrinkage-penalized, cubic spline, generalized additive model
(GAM) was used to ascertain any trend in WT adherence
over the course of the study. There appeared to be a tendency
toward progressive delay in WT for the cohort as a whole,
with participants “falling out” of the recommendedWT±30min
window by about the 87th day of the study (45 days after
the intervention phase). From another vantage point, looking
at weekly rates of adherence (i.e., proportion of the week
with actual WT within 30 minutes of the recommended WT),
ANOVA suggested that adherence rates differed by study week
[F(13,338) 2.05, p = 0.017], but, due to a large number of post
hoc comparisons for the 14 weeks of the study, no pairwise

TABLE 5 Fixed e�ects of linear mixed model (LMM) of weekly, wake

time (WT)-adherence rates.

β SE t-value df p-value

Study Week −0.015 0.0028 −5.41 1 <0.05

Age 0.0057 0.0034 1.69 1 0.09

Sex (F=1) 0.083 0.082 1.02 1 0.31

Fixed effects from the LMMof weekly,WT-adherence rates. Themodel explained aminor
portion of the variance in adherence rates: R2

marginal = 0.09; R2
conditional = 0.39.

significance was observed. Therefore, linear mixed models were
used to model the changes in adherence rates over time,
accounting for self-correlation on repeated measures, inter-
individual differences, and occasional missing data points. In
general, after adjusting for potential confounders (age and
sex) as well as start date and inter-individual differences (with
random effects), there was a significant main effect for the week
of study, which suggested an approximately 1.5% reduction
in weekly WT adherence rates over the course of the study
(Table 5). As expected, weekend schedule adherence was the
lowest and mid-week adherence was the highest [F(6,175) 5.05,
p = 8.28∗10−5; Tue and Wed > Mon, Thu, Fri > Sat >

Sun, by post hoc Tukey’s honestly significant difference testing]
(Figure 3).
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FIGURE 3

Box-and-whisker plots of adherence rates by weekday. Aggregated wake time (WT) adherence rates, by day of the week. For the

box-and-whisker plots: the middle line represents the median, box ends represent 25 and 75th percentiles, and whiskers extend to at most

1.5*IQR beyond the hinge.

Adherence was also explored based on how many
consecutive days individuals were able to wake within
30min of the recommended WT. There was a significant
difference in the length of the longest duration of adherence
per individual between phases of the study [F(2,50) 3.64,
p = 0.03], with the intervention phase having longer streaks
than the baseline phase on post hoc analysis (5.23 ± 3.73
vs. 3.73 ± 1.51 days, respectively; t(24) 2.40, p = 0.024)
(Supplementary Figure 1). In order to explore the relationship
between duration of adherence with subjective reports
of alertness and sleep quality, LMMs that accounted for
linear and quadratic relationships between length of each
participant’s longest continuous adherence (“streak”) revealed
no statistically significant main effects of adherence length
(Supplementary Figures 2, 3).

Sleep health metrics

Consistent with the study phase comparisons in Tables 3,
4, none of the LMMs separately exploring changes in the 6
RU_SATED metrics demonstrated a main effect for the study
day (all p-values >0.05), after adjustment for fixed effects of age
and sex, and allowing for random slopes and intercepts based on
start date and per participant (Table 6). The models’ fixed effects
explained, at most, a modest 22% of the variance in the metrics,
with the only significant effect demonstrating that older age,
expectedly, associated with an earlier sleep period (β = 5-min
earlier MSP per year, p < 0.01). Moreover, the aggregate models’
magnitudes of change over the intervention phase—from day
14 to day 42—weren’t substantial: 16min, 19 s increase in the
standard deviation of the MSP; 0.18 point improvement in sleep
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TABLE 6 Fixed e�ects for linear mixed models (LMMs) of changes in RU_SATED metrics over the first 6 weeks of the study.

Metric Study Day Age Sex (F=1) R2
marginal

R2
conditional

Modeled
@d14

Modeled
@d42

Modeled
1

RoUtine 00:00, p= 0.57 −00:00, p= 0.04 −00:01, p= 0.87 0.07 0.44 0:50:25 1:06:44 0:16:19

Sleep quality 0.01, p= 0.11 0.01, p= 0.65 0.44, p= 0.09 0.03 0.27 3.50 3.68 0.18

Alertness 0.01, p= 0.06 0.00, p= 0.95 0.17, p= 0.59 0.02 0.39 3.47 3.76 0.30

Timing −00:00, p= 0.47 −00:05, p<0.01 00:30, p= 0.51 0.22 0.81 4:30 AM 4:25 AM −0:04:18

Efficiency 0.0%, p= 0.85 0.0%, p= 0.17 1.5%, p= 0.06 0.01 0.13 94.66% 94.56% −0.10%

Duration 0.00, p= 0.78 0.00, p= 0.80 0.09, p= 0.79 0.00 0.20 7.55 7.52 −0.03

The LMMs include adjustments for the following: fixed effects for age and sex and random effects for start date and participant. There were no significant main effects for day of study, after
model adjustment, and the models’ fixed effects generally explained little of the variance (R2

marginal 0.00–0.22) in the metric over the time of the study. For context on the model predictions,
an “averaged individual” (34.92 years old and 23.08% female) was used to estimate each metric at the start (day 14) and end (day 42) of the intervention phase, and the approximate
magnitude of change over the course of the intervention was expressed as the difference between the end and start of the 4-week intervention phase (Modeled 1).

quality perception; 0.30 point improvement in daytime alertness
perception; 4min, 18 s earlier timing ofMSP; 0.10% reduction in
sleep efficiency; and an 18min reduction in sleep duration.

Because the sleep patterns of the participants were so diverse,
it was felt that the individual metrics were possibly not an
adequate reflection of changes in sleep health resulting from
the intervention. As such, for the first 6 weeks of the study
(2 baseline weeks and 4 intervention weeks), we performed
an analysis of changes in a daily RU_SATED score that was
calculated from imputed data (to ensure a full score could
be calculated), in which 1 point was added for each metric
in the prespecified ideal range, for a maximum possible score
of 6 points. After adjusting for fixed effects of age and sex,
and allowing for random slopes and intercepts based on
start date and per participant, there was a significant, but
modest daily improvement in the aggregate RU_SATED score
over the course of the study (β = 0.02 point improvement
per day, p = 1.90∗10−13), which translates to a 0.56-point
improvement over the 4 weeks of the intervention phase, in
general (Figure 4). Of note, the majority−15/28 (58%)—of the
participants demonstrated an improvement in their overall sleep
health over the course of the intervention.

Given the high degree of variability in both adherence rates
and RU_SATED score changes, an analysis was performed to
explore whether adherence to the WT recommendation over
the 4-week intervention phase correlated with the change in
RU_SATED score over this same time period. As demonstrated
in Figure 5, there was a moderate positive correlation between
adherence rate and RU_SATED score change (ρ = 0.54,
p= 0.004).

Qualitative analysis

Upon completion of the intervention phase, participants
were given a survey on their experience. Of the 26 responses to
the question “To what degree did you feel the insights provided

were useful to you?” 8% selected very useful, 72% selected
somewhat useful, and 20% selected not at all useful.

Discussion

Here we present the results of a pilot study of a personalized
behavior change intervention focused on improving sleep in the
general population, through a 4-week program of sleep schedule
(bedtime and wake time) recommendations and SMS-based
insights and suggestions. While there were not statistically
significant or meaningful changes in the individual sleep metrics
derived from the RU_SATED framework, over the 4-week
intervention, there was a general trend in improvement of
overall sleep health of the cohort, as quantified by an aggregate
RU_SATED sum score. This overall improvement over the
course of the intervention was evident in the majority of
participants, and was significantly associated with adherence to
the recommended schedule.

Regarding the improvement in the overall sleep health score,
a 0.56-point improvement reflects a >9% improvement in the
absolute score—which has a maximum of 6 points. According
to the analyses performed by Brindle and colleagues, for each
1-point improvement in the sleep health metric, there is an
approximately 10% reduction in cardiometabolic morbidity (OR
[95% CI] = 0.901 [0.814–0.997], p = 0.043) (Brindle et al.,
2019). As such, if the general improvements realized by the end
of the end of the intervention phase were sustained long-term,
this would imply a roughly 5% improvement in cardiometabolic
morbidity for the cohort, on average, relative to when they
started the study.

While efforts were made to prioritize volunteers who could
benefit from sleep schedule stabilization, it was evident that
there wasn’t significant schedule irregularity in the cohort at
baseline (Tables 3, 4). Moreover, adherence to a consistent wake
time on weekends was lowest (Figure 3), which is concordant
with the usual sleep patterns of many individuals (Walch
et al., 2016; Åkerstedt et al., 2019). Even though the rates
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FIGURE 4

Linear mixed model of RU_SATED score change over the first 6 weeks of the study. Aggregate model and individual models of changes in the

RU_SATED sum score over the first 6 weeks-2 baseline and 4 intervention—of the study. RU_SATED scores were calculated using imputed data,

to address missingness, and models were adjusted for age and sex as fixed e�ects, as well as allowing for random slopes/intercepts based on

start date and participant ID.

FIGURE 5

Correlation between wake time-adherence rate and RU_SATED score over the 4-week intervention change.
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of adherence to the wake time recommendation were quite
variable over the 4-week intervention phase (median adherence
50% of days, range 22–86%), it’s worth noting that the
schedule adherence during this period was generally higher than
during the monitoring phase. Reasonable adherence is further
supported by the longer consecutive adherence periods during
the intervention phase of the study, relative to the baseline
phase (5.23 ± 3.73 vs. 3.73 ± 1.51 days, respectively; t(24) 2.40,
p= 0.024) (Supplementary Figure 1). Additionally, there was an
approximately 1.5% reduction in general adherence rates per
week over the course of the study, resulting in a progressive delay
of participants’ general wake times to at least 30-minutes later
than the recommendation by about the 45th day following the
intervention. As such, it’s important to note that the participant
experience in the study was meant to resemble a real-world
implementation of periodic, data-derived sleep schedule and
behavior-change nudges rather than a specific program that is
focused on treating a given condition to a therapeutic endpoint.
Even in specific digital health interventions—from medication
administration to insomnia treatment to weight loss—adherence
rates tend to be consistent with those observed in this study
(Fenerty et al., 2012; Horsch et al., 2015; Jacobs et al., 2017).
Additionally, while causality cannot be inferred from the design
of this study, it was observed that higher rates of adherence were
correlated with improvement in overall sleep health over the
intervention phase (ρ = 0.54, p = 0.004). Taken together, these
findings suggest that algorithmically generated sleep behavior
nudges and schedule recommendations can result in reasonably
sustained sleep schedule adherence, which is associated with
improvements in a holistic measure of sleep health.

Limitations

There are a number of limitations to this study, the
most notable of which is the fact that there was no control
group and the study spanned an artificial change in daily
routines related to the implementation of social-distancing
and work-from-home policies related to the SARS-Cov2
pandemic (first participant started 2/28/2020, last participant
finished 1/1/2021). In order to address potential confounding,
models accounted for random effects of study start date.
Moreover, these findings may not be generalizable to the
general population, given that these individuals were generally
younger and disproportionately male, in addition to having
sleep patterns that are not reflective of the population at
large (Walch et al., 2016; Jaiswal et al., 2020; Jonasdottir
et al., 2021; Kocevska et al., 2021). Furthermore, given the
convenience sampling method of volunteer participation, there
may have been a bias in the population of individuals who
participated in this study (e.g., those with an interest in sleep
or dissatisfaction with their current sleep patterns). However,
these concerns are likely mitigated by the fact that individuals

who are inclined to engage with such a sleep, behavior-
change program are likely to skew younger and may be
searching for ways in which to improve their sleep. Another
consideration in interpreting these findings is that the modest
sample size may have been inadequately powered relative to
our a priori estimates, given the wider variation and generally
healthier sleep baseline of this population (contributing to
smaller effect sizes), particularly in comparison to the cohorts
used to derive and validate the RU_SATED metrics (Brindle
et al., 2019). Fortunately, the aggregated RU_SATED metric
somewhat accounts for individual differences in sleep patterns
that may not be directly comparable, and the linear mixed
models used also help adjust for between-individual differences.
Additionally, by fully automating the algorithmic determination
of coaching messages and sleep schedule recommendations
(i.e., removing consensus review), sample sizes can greatly
increase in future studies. Finally, due to resource limitations
and time constraints, the coaching messages were scheduled on
a Monday–Wednesday–Friday cadence that may have resulted
in messages that lacked salience at the time of receipt. Larger-
scale studies of a more automated framework could test
various aspects (timing, frequency, etc.) that influence message
effectiveness and schedule adherence.

Future directions

While this study was designed to assess the feasibility of an
automated sleep behavior change coaching infrastructure, the
involvement of human oversight clearly limited the scalability
of such an approach. However, with a fully automated sleep
health program, it is possible to reach countless individuals
seeking to understand and improve their sleep (potentially
making good on the promise of sleep-tracking technologies
Chen, 2019). This is particularly important considering the
fact that the field of sleep medicine is already struggling to
address the abundance of sleep disorders (Thomas et al., 2016;
Collen et al., 2020), leaving most individuals without the need
for clinical condition management to search on their own
for guidance on how to make improvements toward better
sleep. As a result individuals may end up mistakenly acting
on the preponderance of sleep health misinformation (Robbins
et al., 2019) or even developing a sleep disorder as a result of
insufficient understanding of how to use their sleep tracking data
(Baron et al., 2017). As such, having a robust automated sleep
coaching infrastructure could empower the average individual
with evidence-based, personalized insights and actions derived
from their own sleep data.

Conclusions

Our findings demonstrate reasonable adherence to
and, when more adherent, improvement associated with a
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sleep wellness coaching framework focused on providing
sleep schedule recommendations and coaching insights
derived from continuously collected sleep-tracking data
in a sample of healthy volunteers sleeping in their natural
environment. Importantly, there was a general trend
toward overall “better” sleep (as quantified by the total
RU_SATED score), with the majority (58%) of the cohort
demonstrating improvement despite starting at an already
healthy baseline. This suggests that users of such an
approach can make improvements to their sleep, based on
automated, algorithmic analysis of their longitudinally collected
sleep data.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by Advarra. The patients/participants
provided their written informed consent to participate in
this study.

Author contributions

LS, AB, JT, and AJ contributed to conception and
design of the study. LS and AJ organized the database.
LS, CC, and ZA performed the statistical analysis. LS
wrote the first draft of the manuscript. All authors
contributed to manuscript revision, read, and approved
the submitted version.

Acknowledgments

The authors would like to thank our excellent software
engineers, Jie Gu and Xiaojun Ping, who helped in the
implementation of the anonymized study messaging
infrastructure. The authors would also like to thank the
Gtrials team, including Alfredo, who provided the essential
support in consenting and communicating with participants
throughout the study. Additionally, various members of the
Google Health clinical research and legal teams helped provide
valuable feedback and guidance throughout the study design
and management stages, including Lourella Palao, Alejandra
Maciel, and Marissa Urban.

Conflict of interest

LS, AB, CC, JT, and AJ are employees of Alphabet, Inc. ZA is
an employee of Pacific Biosciences.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
frsle.2022.1071822/full#supplementary-material

References

Åkerstedt, T., Ghilotti, F., Grotta, A., Zhao, H., Adami, H. –O., Trolle-Lagerros,
Y., et al. (2019). Sleep duration and mortality - Does weekend sleep matter? J. Sleep
Res. 28, e12712. doi: 10.1111/jsr.12712

Baron, K. G., Abbott, S., Jao, N., Manalo, N., and Mullen, R. (2017).
Orthosomnia: are some patients taking the quantified self too far? J. Clin. Sleep
Med. 13, 351–354. doi: 10.5664/jcsm.6472

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting
Linear Mixed-Effects Models Using lme4. J. Stat. Softw. Articles 67, 1–48.
doi: 10.18637/jss.v067.i01

Brindle, R. C., Yu, L., Buysse, D. J., and Hall, M. H. (2019). Empirical derivation
of cutoff values for the sleep health metric and its relationship to cardiometabolic
morbidity: results from the Midlife in the United States (MIDUS) study. Sleep 42,
zsz116. doi: 10.1093/sleep/zsz116

Buysse, D. J. (2014). Sleep health: can we define it? Does it matter? Sleep 37, 9–17.
doi: 10.5665/sleep.3298

CDC (2019). Data and Statistics. Available online at: https://www.cdc.gov/sleep/
data_statistics.html (accessed September 12, 2022).

Chattu, V. K., Manzar, M. D., Kumary, S., Burman, D., Spence, D. W., Pandi-
Perumal, S. R. (2018). The global problem of insufficient sleep and its serious public
health implications. Healthcare (Basel) 7, 1. doi: 10.3390/healthcare7010001

Chen, B. X. (2019). The Sad Truth About Sleep-Tracking Devices and Apps. The
New York Times (published on July 17, 2019).

Chung, S. J., An, H., and Suh, S. (2020). What do people do before going to
bed? A study of bedtime procrastination using time use surveys. Sleep 43, zsz267.
doi: 10.1093/sleep/zsz267

Collen, J. F., Wickwire, E. M., Capaldi, V., and Lettieri, C. (2020). Losing sleep!
Are we missing the future of sleep medicine? J. Clin. Sleep Med. 16, 473–474.
doi: 10.5664/jcsm.8404

Ding, F., Cotton-Clay, A., Fava, L., Easwar, V., Kinsolving, A., Kahn, P., et al.
(2022). Polysomnographic validation of an under-mattress monitoring device in
estimating sleep architecture and obstructive sleep apnea in adults. Sleep Med,. 96,
20–27. doi: 10.1016/j.sleep.2022.04.010

Fenerty, S. D., West, C., Davis, S. A., Kaplan, S. G., and Feldman,
S. R. (2012). The effect of reminder systems on patients’ adherence

Frontiers in Sleep 12 frontiersin.org

https://doi.org/10.3389/frsle.2022.1071822
https://www.frontiersin.org/articles/10.3389/frsle.2022.1071822/full#supplementary-material
https://doi.org/10.1111/jsr.12712
https://doi.org/10.5664/jcsm.6472
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/sleep/zsz116
https://doi.org/10.5665/sleep.3298
https://www.cdc.gov/sleep/data_statistics.html
https://www.cdc.gov/sleep/data_statistics.html
https://doi.org/10.3390/healthcare7010001
https://doi.org/10.1093/sleep/zsz267
https://doi.org/10.5664/jcsm.8404
https://doi.org/10.1016/j.sleep.2022.04.010
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org


Schneider et al. 10.3389/frsle.2022.1071822

to treatment. Patient Prefer. Adherence 6, 127–135. doi: 10.2147/PPA.
S26314

Grandner, M. A. (2019). Chapter 2 - Epidemiology of insufficient sleep and poor
sleep quality. in Sleep and Health, ed. M. A. Grandner (Cambridge, MA: Academic
Press), 11–20.

Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O.,
DonCarlos, L., et al. (2015). National Sleep Foundation’s sleep time duration
recommendations: methodology and results summary. Sleep Health 1, 40–43.
doi: 10.1016/j.sleh.2014.12.010

Horsch, C., Lancee, J., Beun, R. J., Neerincx, M. A., and Brinkman, W.-P.
(2015). Adherence to technology-mediated insomnia treatment: a meta-analysis,
interviews, and focus groups. J. Med. Internet Res. 17, e214. doi: 10.2196/jmir.4115

Jacobs, S., and Radnitz, C., and Hildebrandt, T. (2017). Adherence as a predictor
of weight loss in a commonly used smartphone application. Obes. Res. Clin. Pract.
11, 206–214. doi: 10.1016/j.orcp.2016.05.001

Jaiswal, S. J., Quer, G., Galarnyk, M., Steinhubl, S. R., Topol, E. J., Owens, R.
L. (2020). Association of sleep duration and variability with body mass index: sleep
measurements in a large us population of wearable sensor users. JAMA Intern.Med.
180, 1694–1696 doi: 10.1001/jamainternmed.2020.2834

Jonasdottir, S. S., Minor, K., and Lehmann, S. (2021). Gender differences in
nighttime sleep patterns and variability across the adult lifespan: a global-scale
wearables study. Sleep 44. doi: 10.1093/sleep/zsaa169

Khosla, S., Deak, M. C., Gault, D., Goldstein, C. A., Hwang, D., Kwon, Y.,
et al. (2018). Consumer sleep technology: an American Academy of sleep medicine
position statement. J. Clin. Sleep Med. 14, 877–880. doi: 10.5664/jcsm.7128

Kocevska, D., Lysen, T. S., Dotinga, A., Koopman-Verhoeff, M. E., Luijk,
M. P. C. M., Antypa, N., et al. (2021). Sleep characteristics across the
lifespan in 1.1 million people from the Netherlands, United Kingdom and
United States: a systematic review andmeta-analysis.Nat. Hum. Behav. 5, 113–122.
doi: 10.1038/s41562-020-00965-x

Middleton, K. R., Anton, S. D., and Perri, M. G. (2013). Long-term
adherence to health behavior change. Am. J. Lifestyle Med. 7, 395–404.
doi: 10.1177/1559827613488867

Paruthi, S., Brooks, L. J., D’Ambrosio, C., Hall, W. A., Kotagal, S., Lloyd, R. M.,
et al. (2016). Recommended amount of sleep for pediatric populations: a consensus
statement of the American Academy of sleep medicine. J. Clin. Sleep Med. 12,
785–786. doi: 10.5664/jcsm.5866

Piercy Katrina, L., and Troiano Richard, P. (2018). Physical Activity
Guidelines for Americans From the US Department of Health and

Human Services. Circ. Cardiovasc. Qual. Outcomes 11, e005263.
doi: 10.1161/CIRCOUTCOMES.118.005263

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Available online at: https://www.R-project.org/ (accessed on February 10, 2015).

Robbins, R., Grandner, M. A., Buxton, O. M., Hale, L., Buysse, D. J., Knutson,
K. L., et al. (2019). Sleep myths: an expert-led study to identify false beliefs about
sleep that impinge upon population sleep health practices. Sleep Health 5, 409–417.
doi: 10.1016/j.sleh.2019.02.002

Ross, R., Chaput, J-P., Giangregorio, L. M., Janssen, I., Saunders, T. J., Kho,
M. E., et al. (2020). Canadian 24-hour movement guidelines for adults aged
18-64 years and adults aged 65 years or older: an integration of physical
activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 45, S57–S102.
doi: 10.1139/apnm-2020-0467

Thomas, A., Grandner, M., Nowakowski, S., Nesom, G., Corbitt, C., Perlis,
M. L. (2016). Where are the behavioral sleep medicine providers and where
are they needed? a geographic assessment. Behav. Sleep Med. 14, 687–698.
doi: 10.1080/15402002.2016.1173551

Tremblay, M. S., Carson, V., Chaput, J-P., Gorber, S. C., Dinh, T.,
Duggan, M., et al. (2016). Canadian 24-hour movement guidelines for
children and youth: an integration of physical activity, sedentary behaviour,
and sleep. Appl. Physiol. Nutr. Metab. 41, S311–S327. doi: 10.1139/apnm-20
16-0203

van Buuren, S., and Groothuis-Oudshoorn, K. (2011). Mice: multivariate
imputation by chained equations in R. J. Stat. Soft. Articles 45, 1–67.
doi: 10.18637/jss.v045.i03

Walch, O. J., Cochran, A., and Forger, D. B. (2016). A global quantification
of ‘normal’ sleep schedules using smartphone data. Sci Adv 2, e1501705.
doi: 10.1126/sciadv.1501705

Wallace, M. L., Yu, L., Buysse, D. J., Stone, K. L., Redline, S., Smagula, S.
F., et al. (2021). Multidimensional sleep health domains in older men and
women: an actigraphy factor analysis. Sleep 44, zsaa181. doi: 10.1093/sleep/zs
aa181

Watson, N. F., Badr, M. S., Belenky, G., Bliwise, D. L., Buxton, O. M., Buysse, D.,
et al. (2015). Recommended amount of sleep for a healthy adult: a joint consensus
statement of the American Academy of sleep medicine and sleep research society.
Sleep 38, 843–844. doi: 10.5665/sleep.4716

World Health Organization (2019). Guidelines on Physical Activity, Sedentary
Behaviour and Sleep for Children Under 5 Years of Age Geneva, Switzerland: World
Health Organization), 33.

Frontiers in Sleep 13 frontiersin.org

https://doi.org/10.3389/frsle.2022.1071822
https://doi.org/10.2147/PPA.S26314
https://doi.org/10.1016/j.sleh.2014.12.010
https://doi.org/10.2196/jmir.4115
https://doi.org/10.1016/j.orcp.2016.05.001
https://doi.org/10.1001/jamainternmed.2020.2834
https://doi.org/10.1093/sleep/zsaa169
https://doi.org/10.5664/jcsm.7128
https://doi.org/10.1038/s41562-020-00965-x
https://doi.org/10.1177/1559827613488867
https://doi.org/10.5664/jcsm.5866
https://doi.org/10.1161/CIRCOUTCOMES.118.005263
https://www.R-project.org/
https://doi.org/10.1016/j.sleh.2019.02.002
https://doi.org/10.1139/apnm-2020-0467
https://doi.org/10.1080/15402002.2016.1173551
https://doi.org/10.1139/apnm-2016-0203
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1126/sciadv.1501705
https://doi.org/10.1093/sleep/zsaa181
https://doi.org/10.5665/sleep.4716
https://www.frontiersin.org/journals/sleep
https://www.frontiersin.org

	Pilot study of personalized sleep-coaching messages to promote healthy sleeping behaviors
	Introduction
	Methods
	Participants
	Study protocol
	Entry and exit surveys
	Baseline phase
	Intervention phase
	Monitoring phase
	Sleep schedule recommendation
	Coaching message selection
	Statistical analysis

	Results
	Population characteristics
	Adherence
	Sleep health metrics
	Qualitative analysis

	Discussion
	Limitations
	Future directions
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


