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Time-domain simulation of woodwind instruments typically involves the
development of separate discrete-time sub-models for the excitation
mechanism and the resonator. These components have largely been modeled
via digital waveguide or finite-difference time-domain (FDTD) methods. We
present a separate approach based on the modular and energy-based port-
Hamiltonian system (PHS) framework. We recast the three main components of a
woodwind instrument—the single-reed, the bore, and the tonehole—as PHS
models and incorporate novel elements in each derivation. In the beating reed
model, we make use of recent work on energy quadratization to formulate a
linearly implicit scheme of the nonlinear Hunt-Crossley contact force coupled to
a nonlinear Bernoulli flow. In the horn model, we discretize a distributed PHS
representing the horn equation with a generalized symplectic Störmer-Verlet
scheme, verifying previously proposed FDTD schemes. In the tonehole model,
we propose a new low-frequency model of the tonehole and model note
transitions with a switching PHS. The benefit of describing each element as a
PHS is demonstrated by the ability to interconnect all sub-models in a modular
and energy-conserving manner to simulate a complete instrument. Simulations
are performed on a test instrument and the numerical stability of the overall
scheme is demonstrated.
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1 Introduction

Research into time-domain woodwind physical modeling synthesis began to coalesce
with the publication of McIntyre, Schumacher, and Woodhouse’s seminal 1983 article
(McIntyre et al., 1983). In their article, the authors demonstrate an efficient time-domain
approach for modeling different musical instruments including the clarinet. The article also
presents concepts that are found in physical modeling synthesis research to this day,
namely, the subdivision of an instrument into modular components, including a nonlinear
excitation model and a passive resonator model. In a woodwind instrument, these
components correspond to the reed and the instrument bore, respectively. The methods
proposed in McIntyre et al. (1983) were further developed in the field of computer music by
digital waveguide (DWG) synthesis (Smith, 1986; Smith, 1992).

DWG synthesis is one of the most prevalent methods for modeling woodwind and brass
instruments (Välimäki, 1995; Scavone, 1997; van Walstijn and Campbell, 2003; Mignot
et al., 2010). DWG synthesis is based on a discretization of the traveling wave solution of the
one-dimensional wave equation. The result is a digital system composed of delay lines—for
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propagating the traveling waves—and filters, for reflecting waves,
modeling losses, and approximating fractional delay lengths. Reed
dynamics are incorporated by modeling the reed-tip as a mass-
spring-damper system (Scavone and Cook, 1998). The popularity of
the DWGmethod can be attributed to its efficiency and the fact that
the DWG models consist of delay lines and filters that fit naturally
into the framework of digital signal processing (DSP). Another
benefit of the DWGmethod is its modularity. A DWGmodel can be
viewed as an interconnection of simpler component sub-models.

More recently, energy-based numerical simulation techniques
using finite-difference time-domain (FDTD) methods have become
a popular avenue for physical modeling synthesis (Bilbao, 2009).
FDTD methods directly discretize the partial differential equations
(PDEs) governing the physical model. In contrast, DWG methods
rely on a discretization of analytical solutions to a system—as in the
case of modeling wave propagation. This, however, typically limits
the DWG method to modeling cylindrical or conical bore profiles
with further limitations on the stability of the method for convex
bore shapes (Berners, 1999). An approach to modeling bores with
profiles that are C2 smooth is presented in Mignot et al. (2008).
FDTD methods have been used to model the single-reed (Bilbao,
2008), bores with varying cross-sections (Bilbao and Chick, 2013),
and viscothermal losses (Bilbao et al., 2015a; Bilbao and Harrison,
2016). FDTDmethods have been used tomodel brass instruments as
in Harrison-Harsley (2018); Willemsen (2021). Although FDTD
methods are more computationally expensive than scattering
methods for simple one-dimensional systems, they are more
general and flexible making it possible to simulate non-trivial
bore profiles which would not be stable in a DWG
implementation. Given the inherent and desirable nonlinear
behavior of musical instruments, energy-based techniques such as
FDTD methods provide a general framework for the analysis of the
stability of nonlinear numerical schemes. In comparison, analysis of
scattering-based methods is limited by linear time-invariant (LTI)
systems theory.

An alternative general energy-based modeling approach—and
the focus of this article—is the port-Hamiltonian system (PHS)
framework introduced in Maschke and van der Schaft (1993). PHSs
combine energy-based analysis techniques within the Lagrangian
and Hamiltonian framework from classical mechanics with the
network modeling framework from electrical engineering (van
der Schaft, 2006). The PHS framework provides a helpful
procedure for the design and analysis of a continuous-time
physical model as energy conservation is baked into the system
formulation and models can be composed in a modular fashion
(Duindam et al., 2009). PHSs have been primarily used to model
nonlinear audio circuits in the related field of virtual analog (Falaize
and Hélie, 2016a). Regarding physical modeling synthesis, PHSs
have been used to model nonlinear strings (Hélie and Roze, 2016),
electric pianos (Falaize and Hélie, 2017b), the lip-reed mechanism in
brass instruments (Lopes and Hélie, 2016; Lopes, 2016), and a
mobile vocal tract (Wetzel et al., 2019). While the PHS
framework seems ideal for sound synthesis—the method is
modular, energy-based, and formulated to be energy
conserving—it is not without its drawbacks. To guarantee energy
conservation in discrete PHSs, the primary discretization method is
the discrete gradient method (Yalçin et al., 2015; Falaize and Hélie,
2016a). Higher-order methods for discretizing a PHS are discussed

in Müller (2021). The discrete gradient method results in numerical
dispersion, i.e., frequency warping, akin to the bilinear transform
(Harrison-Harsley, 2018). For musical applications, this is
undesirable as frequency warping can affect the tuning of
simulated instruments. It is possible to minimize numerical
dispersion through the careful design of explicit numerical
schemes which are instead conditionally stable. Additionally,
discrete PHSs in physical modelling synthesis are often relegated
to lumped system modeling. Discrete distributed systems for
modeling wave propagation have been handled using DWG
(Lopes and Hélie, 2016) or modal decomposition techniques
(Hélie and Roze, 2016; Falaize and Hélie, 2017b). However,
modal decomposition is only valid for certain boundary
conditions and if a decomposition exists.

The primary goal of this article is to present a PHS description of
the three main components of a woodwind instrument: a lumped
single-reed excitation mechanism, a one-dimensional bore model
with variable cross-section based on the horn equation, and a
lumped model of a tonehole. The secondary goal of this article is
to draw similarities between the PHS and FDTD literature, presenting
PHSs in a way that will be familiar to practitioners in the field of
physical modeling synthesis and discretizing them with FDTD
methods. Similar models of the reed, bore, and tonehole have been
proposed based on FDTD methods in Chatziioannou et al. (2019);
Bilbao and Harrison (2016) and DWG methods in van Walstijn and
Scavone (2000), respectively and this article contributes refinements
to these models. We include recent research on energy quadratization
methods (Ducceschi et al., 2021; vanWalstijn et al., 2024b) to design a
linearly implicit scheme for the Hunt-Crossley contact in the reed
system and propose a new low-frequency model of the tonehole that
better approximates frequency-domain models in the literature.
Energy conservation during note transistions is handled by
modeling the tonehole as a switching PHS. We describe the lossy
horn equation model proposed by Bilbao and Harrison (2016) as a
distributed PHS and discretize the lossless wave propagation using the
structure-preserving symplectic Störmer-Verlet method (Hairer et al.,
2000), affirming the scheme used in their article. Furthermore, by
characterizing each individual sub-model as a PHS we are able to
interconnect each element in an energy-conserving and modular
fashion and develop a system for modeling bores with arbitrary
geometries and tonehole placements.

This paper is organized as follows: Section 2 will introduce port-
Hamiltonian systems. Section 3 will discuss FDTD discretization
methods and introduce the discrete gradient and Störmer-Verlet
methods as FDTD methods. Section 4 provides an example of
modeling and discretizing an RLC system model in the PHS
framework. Section 5 will discuss the single-reed excitation
including contact dynamics with the mouthpiece. Section 6 will
present a distributed PHS model of the woodwind bore and Section
7 considers a model of the woodwind tonehole based on a switching
PHS formulation. Section 8 will display simulation results with
Section 9 concluding the article.

2 Port-Hamiltonian systems

Port-Hamiltonian systems (PHSs), introduced in Maschke and
van der Schaft (1993), approach physical modeling through the
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Hamiltonian equations of motion and combine these equations with
network theory. The formalism provides a framework for a
geometric description of models based on the interconnection of
sub-systems through power-conserving interconnections (van der
Schaft, 2006). As a consequence, energy conservation is baked into
the PHS formulation through preservation of a power balance.
Energy-conserving numerical methods—if discretized
properly—will preserve passivity and avoid numerical instability.
The PHS approach uses energy as a lingua franca between domains,
making the framework well-suited for multi-physical simulations.
Musical instruments are inherently multi-physical as the mechanical
actions of the player are transformed into acoustic energy. Musical
instruments are also inherently nonlinear. Nonlinearities such as the
reed contact with the mouthpiece or the slip-stick action of a bowed
string directly affect the perceived timbre of an instrument during
performance (Chaigne and Kergomard, 2016). These reasons
naturally motivate the use of PHSs for modelling musical
systems. In the context of physical modeling, the PHS formalism
is attractive because it provides a general form that can be used to
characterize a variety of physical systems. This continuous-time
formulation can then be discretized in a structured manner to
produce a discrete-time numerical scheme.

In this section, we will review Hamiltonian dynamics and then
the form of finite-dimensional PHSs. Theoretical specifics such as
the definition of a Dirac structure are left out of this review. Instead,
we circularly define Dirac structures as structures that preserve the
power balance and are a consequence of Kirchhoff’s current and
voltage laws. Interested readers are referred to the texts (van der
Schaft, 2006; Duindam et al., 2009) and the tutorial (Hélie, 2022).

2.1 Hamiltonian dynamics

The Hamiltonian equations of motion for a system with N
particles consist of 2N first-order equations

∂tqn � ∂pnH, (1a)
∂tpn � −∂qnH, (1b)

where ∂x is the partial derivative with respect to a general variable x.
Each particle in the system has positions [q1, q2, . . . , qN] and
momenta [p1, p2, . . . , pn] (Goldstein, 1980). H defines the
Hamiltonian—the total energy of the system

H p, q( ) �∑
n

T pn( ) + V qn( ), (2)

where T is the component defining kinetic energy and V is the
component defining potential energy. These components are
dependent on the momentum and position of each particle. The
system described by the Hamiltonian equations is not general.
Notably, damping is omitted. This motivates the use of the more
general PHS framework.

2.2 Port-Hamiltonian systems

Port-Hamiltonian systems describe the interconnection of energy
storage elements, energy dissipating elements, and power conserving

elements using general power-conjugate variables of effort, e, and
flow, f (Duindam et al., 2009). The product of effort and flow variables
is equal to the power of the system, that is, the change in the total
energy over time (∂tH). Effort and flow can be given physical
meaning in electrical systems as voltage and current (Section 4), in
mechanical systems as force and velocity (Section 5), and in acoustic
systems as pressure and volume velocity (Section 6). The effort and
flow variables are related to one another by a set of internal state
variables which is the integral of the effort with respect to time. Taking
the system in Equations 1a, 1b as an example, the state variables are
the positions and momenta of each particle. The efforts are the
gradient of the Hamiltonian with respect to the state variables and
the flow is the time-derivative of each state variable. By the chain rule,
the product of the effort and flows corresponds to power.

A useful representation of a dynamical PHS with state x, input u,
and output y is the input-state-output port-Hamiltonian system
with direct feed-through (Duindam et al., 2009)

∂tx︸�︷︷�︸
f x( )

� J − R( )︸���︷︷���︸
A

∇H x( )︸��︷︷��︸
e x( )

+ G − P( )︸���︷︷���︸
B

u, (3a)

y � G + P( )T︸���︷︷���︸
C

∇H x( ) + M + S( )︸���︷︷���︸
D

u. (3b)

e and f are the state dependent efforts and flows. ∇ is the gradient
operator and J is a skew-symmetric matrix (J = −JT) representing the
energy-preserving interconnection between storage components. R
is a matrix representing dissipative components and must be
positive-definite in a passive system. G encapsulates the
relationship between external ports and the internal states with P
representing the dissipation between external ports and the storage
components. M, also a skew-symmetric matrix, is the energy-
preserving interconnection and S the dissipation between the
input and output ports. The resulting PHS structure consists of a
mixed set of differential and algebraic equations (DAE) (Duindam
et al., 2009). The system in Equations 3a, 3b will also be familiar as
the state-space equations from dynamical systems theory and signal
processing (Kailath, 1980; Smith, 2010). Equation 3a is the state
update equation and Equation 3b is the output equation. If damping,
input, and output variables are omitted, and we define x � [q p]T,
f(x) � ∂tx, and e(x) � ∇H(x) then Equation 3a is equivalent to
Equation 1b.

Defining the total effort E � [∇H(x) u], and flow variables
F � [∂tx − y], we can rewrite Equation 3 as

F � J G
−GT −M[ ]︸�����︷︷�����︸

J

E − R P
PT S
[ ]︸���︷︷���︸

R

E, (4)

where we have the block skew-symmetric matrix J and the block
dissipative matrix R. Due to the property for any skew-symmetric
matrix xTJx � 0, the inner product of efforts and flows expresses the
power balance

〈E, F〉 � ∇HT x( )∂tx︸����︷︷����︸
�∂tH

Energy variation

� uTy︸�︷︷�︸
B

External power

−ET R P
PT S
[ ]E︸�����︷︷�����︸

Q> 0
Dissipated power

. (5)

Equation 5 states that the variation in the total stored energy is
equal to the energy flowing in and out of the system, B, minus the
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energy that is dissipated over the dissipative elements,Q. The system
is passive if the change in stored energy is less than the energy
flowing into and out of the system ∂tH≤ yTu. This holds true if the
dissipative elements satisfy

R � R P
PT S
[ ]≥ 0. (6)

We will also define a conjugate PHS where the variables ∂tx and
∇H(x) are interchanged. The total effort will then be E � [∂tx u]
and the total flow will be F � [∇H(x) − y]. The conjugate can be
seen as a particular case of a hybrid PHS (van der Schaft and
Jeltsema, 2014, Chapter 5) where all the storage efforts and flows
have been interchanged. This form will be seen in Section 6.2. A
hybrid PHS, where one set of efforts and flows have been
interchanged, is used to model the switching PHS tonehole in
Section 7. These alternative representations still maintain the
power balance in Equation 5 as each row in the total effort and
flow corresponding to storage elements is still a set of power-
conjugated variables. Hybrid Dirac structures are used in Müller
and Hélie (2021) along with dedicated solvers based on projection
methods and a Newton iteration.

An important class of Hamiltonian functions are quadratic
Hamiltonians. Quadratic Hamiltonian functions appear
frequently in the systems we are interested in and have the
following form and gradient,

H x( ) � 1
2
xTLx, ∇H x( ) � Lx, (7)

where L is a symmetric matrix. Passivity is guaranteed if L≥ 0. Even
if the Hamiltonian is not quadratic it can be turned into a quadratic
function by a change of variables using energy quadratization
methods (Lopes et al., 2015; Yang, 2016).

3 Discretization

Discretization methods are at the heart of any physical modeling
synthesis algorithm and their design is of great importance. We will
begin this section by first reviewing finite-difference time-domain
(FDTD) methods, adopting the notation used in Bilbao (2009) for
the rest of this article. We will first present the elementary
discretization operators used in the design of numerical schemes
and some useful identities given by Bilbao (2009). Then, we will
present the two discretization methods used in this article. The first
is the discrete gradient method, commonly used in PHS modeling,
and the second is the symplectic Störmer-Verlet method. These
methods are examples of mechanical integrators that preserve either
the discrete energy or the symplectic form of the continuous-time
system (Wendlandt and Marsden, 1997). The symplectic form is
equivalent to the orientated area in state space. Symplecticity is a
characteristic property of Hamiltonian systems and symplectic
integrators are used to maintain this property in a numerical
scheme (Hairer et al., 2000; Sanz-Serna and Calvo, 1994). It has
been observed from numerical experiments (Chatziioannou, 2019)
and backward error analysis (Hairer et al., 2003) that symplectic
schemes provide a good discretization of a system’s dynamics at the
expense of the discrete energy not being an exact sampling of the

continuous-time energy function. Instead, a modified discrete
energy function is conserved. In the physical models proposed in
this article, we will utilize the discrete gradient method in scenarios
where there is nonlinear behavior, for easier control over the
scheme’s stability, (Section 5), or when the behavior of the
system results in minimal numerical dispersion (Sections 6.2, 7).
We will utilize the Störmer-Verlet method where the system is
passive, and numerical dispersion is a concern (Section 6).

3.1 Finite difference operators

We define the following general shift operators applied to a
function of time, t, dimension z, and a general variable s

es+u t, z, s( ) � u t, z, s + Δs( ) � un
l s + Δs( ),

es−u t, z, s( ) � u t, z, s − Δs( ) � un
l s + Δs( ). (8)

Because FDTD methods represent variables at regular discrete
time, t � nΔt, and spatial coordinates, z � lΔz, a shorthand is used
where the temporal and spatial coordinates are absorbed into a
superscript and subscript, respectively. Here, we describe these
operators on a general variable s to highlight that the operators
are not limited to just time and spatial dimensions.

Elemental finite difference operators, represented by the
operator δ approximate continuous-time partial derivatives ∂s.
Some elementary operators are the forward (δs+), backward
(δs−), and centered (δs·) difference operators

∂s ≈

δs+ � 1
Δs

es+ − 1( )

δs− � 1
Δs

1 − es−( )

δs· � 1
2Δs

es+ − es−( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (9)

Of use are the forward (μs+), backward (μs−) and centered (μs·),
which approximate unity,

1 ≈

μs+ � 1
2

es+ + 1( )

μs− � 1
2

1 + es−( )

μs· �
1
2

es+ + es−( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (10)

These operators are useful for collocating variables in
discrete time. Higher-order derivatives can be approximated by
combining these elementary operators.

3.1.1 Helpful identities and inequalities
Working with a general function u, a useful identity used

throughout this article is (Bilbao, 2009)

δt±u( )μt±u � δt±
1
2
u2( ). (11)

This product identity is the core of the discrete gradient method
described in Section 3.2. We have the identities relating
different operators
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δt·u � μt−δt+u � μt+δt−u, (12)
μt+ � 1 + Δt

2
δt+, (13)

μt· � Δtδt· + et−, (14)
and the following product identities

δt·u( )μt·u � δt·
1
2
u2( ), (15)

δt·u( )u � δt+
1
2
u et−u( )( ), (16)

and,

u et−u( ) � μt−u( )2 − Δ2
t

4
δt−u( )2. (17)

The last identity produces the inequality:

u et−u( )≥ − Δ2
t

4
δt−u( ). (18)

3.2 Discrete gradient method

The discrete gradient method is an energy-conserving
discretization method for Hamiltonian systems. It involves the
approximation of the gradient operator by a forward difference
with respect to the state

∇H xn( ) ≈ δx+H x( ) � H xn + Δx( ) −H xn( )[ ] ⊘ Δx, (19)
where δx+ is the forward difference with respect to the state vector x
and ⊘ defines the Hadamard or element-wise division between
vectors. The key to the discrete gradient method is defining Δx as
the difference between the state at successive time steps

Δx � xn+1 − xn. (20)
Defining the inner product as 〈x, y〉 � xTy for two vectors x and

y ∈ RN, the discrete variation in energy is equivalent to the inner
product of the discrete gradient and the forward difference of the
state in time

δt+h � 〈δx+H x( ), δt+x〉, (21)
and the discrete gradient method observes a discrete chain rule. The
presented definition of the discrete gradient is only one particular
definition and other definitions exist (Yalçin et al., 2015).

For a quadratic Hamiltonian, the discrete gradient approximates
the continuous-time gradient in Equation 7 via the midpoint rule.
This corresponds to the forward average operator

δx+H xn( ) � 1
2
L xn+1 + xn( ) � μt+Lx

n. (22)

Based on Equation 11, the discrete energy is conserved as

〈δt+xn, μt+, Lxn〉 � δt+
1
2
xn( )TLxn( ). (23)

Any PHS discretized with the discrete gradient method produces
an implicit and unconditionally stable scheme. However, if the
Hamiltonian is quadratic and the resulting scheme is linearly
implicit, an explicit update form can be derived via a linear

system solution. To derive the scheme approximating Equations
3a, 3b, we approximate ∂t with the forward difference in time
Equation 9 and aprapproximate ∇H as described in Equation 22.
The resulting linearly implicit scheme has the following explicit
update and output equations

xn+1 � Adx
n + Bdu

n, (24a)
yn � Cdx

n +Ddu
n, (24b)

with

H � I − Δt

2
AL( )−1, Ad � H I + Δt

2
AL( ), Bd � Δt ·HB, (25a)

Cd � 1
2
CL Ad + I( ), Dd � 1

2
CLBd +D, (25b)

defined based on the matrices in Equations 3a, 3b. Unless the system
parameters are time-varying, the discrete state-space matrices (with
subscript d) can be computed and stored prior to the simulation. In
the case that we have a conjugate PHS system where ∂tx and ∇H are
interchanged, the discrete gradient method results in the
following scheme

Lμt+x
n � Aδt+xn + Bun, (26a)

yn � Cδt+xn +Dun, (26b)
and the explicit update matrices are then

H � A − Δt

2
L( )−1, Ad � H A + Δt

2
L( ), Bd � −Δt ·HB, (27a)

Cd � 1
Δt

C Ad − I( ), Dd � 1
Δt

CBd +D. (27b)

3.3 Störmer-Verlet method

Symplectic methods such as the Störmer-Verlet method are
specifically used to discretize partitioned systems such as those
describing Hamiltonian dynamics. Consider a general non-
autonomous system defined by two variables (q, p) and the input
variable u. q and p are both dependent on a variable x and related to
one another by functions f, g, and the partial derivative with respect
to x

∂xp � f q, p, u( ), ∂xq � g q, p, u( ). (28)

Normally p and q correspond to momentum and position, and
∂tq � p/m. This is not necessarily the case in the general system.
Hairer et al. (2003) describe a Störmer-Verlet scheme for
discretizing general autonomous partitioned systems. We propose
an extension of the method to non-autonomous systems

δx−px+1
2Δx

� 1
2

f qx, px+1
2Δx
, ux( ) + f qx, px−1

2Δx
, ux( )[ ], (29a)

δx+qx � 1
2

g qx+Δx, px+1
2Δx
, ux+1

2Δx
( ) + g qx, px+1

2Δx
, ux+1

2Δx
( )[ ].

(29b)
For linearly damped autonomous systems, the method in

Equations 29a, 29b results in a contraction of symplectic area. In
Chatziioannou (2019) it was found for a mass-spring-damper
system that the contraction of the Störmer-Verlet scheme is a
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Padé approximation to the continuous-time contraction.
Determining if this property holds for the class of all linear non-
autonomous PHSs discretized with the proposed method and if the
proposed method is symplectic in the non-autonomous case is
outside the scope of this article.

The Störmer-Verlet method involves placing one variable, here
p, on an interleaved grid at indices x + 1

2Δx and keeping the other
variable, here q, on the normal grid. Positions between the
interleaved and normal grid are related by the forward or
backward averaging operators. For instance, in the case of the
input variable

ux � μx−ux+1
2Δx
, ux+1

2Δx
� μx+ux, (30)

Equation 29a can be understood to be centered on the normal
grid. As such, the right-hand-side of Equation 29a averages f
evaluated at px+1

2Δx
and px−1

2Δx
with q and u fixed at x.

Conversely, Equation 29b is centered on the interleaved grid. The
traditional three-step form of the Störmer-Verlet scheme is given for
the general method as

px+1
2Δx

� px + Δx

2
f qx, px+1

2Δx
, ux( ), (31a)

qx+Δx � qx + Δx

2
g qx+Δx, px+1

2Δx, ux+1
2Δx

( ) + g qx, px+1
2
, ux+1

2Δx
( )[ ],

(31b)
px+Δx � px+1

2Δx
+ Δx

2
f qx+Δx, px+1

2Δx
, ux+Δx( ). (31c)

The expression in Equations 29a, 29b can be retrieved by shifting
Equation 31c back by Δx and substituting the result into Equation
31a. Computationally, the form in Equations 29a, 29b is more
efficient than Equations 31a, 31b, 31c (Hairer et al., 2003). If
regular grid values are required, Equation 31c can be applied ad
hoc. Unlike the non-general Störmer-Verlet scheme, the general
scheme is not guaranteed to be explicit. If f and g are linear
functions, then the resulting linearly implicit scheme can be
resolved into an explicit update form.

When using the Störmer-Verlet method to discretize a PHS with
a quadratic gradient, we no longer approximate the gradient. The
output equation is untouched save for the addition of temporal
indexes and averaging operators. Consider the quadratic PHS
defined by a generally partitioned version of Equation 4

∂tp
∂tq
−y
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Jp Kpq Gp

−KT
pq Jq Gq

−GT
p −GT

q −M
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ − Rp Rpq Pp

Rqp Rq Pq

PT
p PT

q S

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ Lpp
Lqq
u

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (32)

where Jp and Jq are skew-symmetric matrices. All resistive matrices
are ≥ 0 and Lp and Lq are symmetric matrices arising from the
quadratic Hamiltonian definition. A discretization with the
Störmer-Verlet method produces the following system of
equations. For brevity, we omit temporal indexes. p is located at
times n + 1

2 and q and u are located at times n

δt−p � Jp − Rp( ) Lpμt−p( ) + Kpq − Rpq( ) Lqq( ) + Gp − Pp( )u,
(33a)

δt+q � Jq − Rq( ) Lqμt+q( ) + −KT
pq − Rqp( ) Lpp( ) + Gq − Pq( )μt+u,

(33b)

−y � −GT
p − PT

p( ) μt−Lpp( ) + −GT
q − PT

q( ) Lqq( ) + −M − S( )u.
(33c)

Any system discretized with the Störmer-Verlet method will be
conditionally stable. We will not prove the general case and leave
proofs for specific systems.

3.4 Energy and frequency analysis

Energy analysis is an informative tool that can aid the
understanding of any FDTD scheme. In particular, it can help
one determine if a scheme is conditionally or unconditionally
stable, and—if a scheme is conditionally stable—what are the
necessary criteria for stability. We evaluate the energy balance
using the accumulated energy error, herr, described in (Harrison-
Harsley, 2018; Equation 3.75)

hnerr �
hn+1 − h0 + Δt∑n

m�0 qm − bm( )
�h0�2

, (34)

where h, q and b are the discrete time correlates to the energetic
quantities in Equation 5 and Equation 34 is a discrete-time
integration of said equation. �·�2 denotes the rounding down to
the nearest power of two used to reduce variations to machine
precision. The stability of a scheme is established by deriving the
conditions where hn, qn ≥ 0, ∀n. In an unconditionally stable
scheme this will always be true, but in conditionally stable
schemes the limiting factors must be derived.

Frequency domain analysis is also a helpful tool and is
equivalent to a z-Transform analysis (Bilbao, 2009). Frequency
domain analysis is typically carried out using a frequency domain
ansatz or single frequency solution (un � z � ejωΔt ) and is useful for

FIGURE 1
Series RLC circuit. q represents charge, ϕ represents flux.
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evaluating the effects of numerical dispersion. Frequency domain
analysis, in this manner, is limited to linear systems.

4 Example RLC circuit

An illustrative example of discrete-time PHS modeling is
given by applying the framework towards modeling a series RLC
circuit, shown in Figure 1. The RLC circuit appears throughout
musical acoustics and is an equivalent model to a mechanical
mass-spring-damper system which will be seen in the reed model
(Section 5). Based on Kirchhoff’s voltage and current laws
we have

vS � vR + vL + vC, iS � iR � iL � iC, (35)
and the system is governed by the following differential equation

dtis + 2αis + ω2
0 ∫ isdt � 1

L
vs, (36)

with α � R
2L representing damping in nepers and ω2

0 � 1
LC the

resonant frequency in rads/s. dt is the total derivative with
respect to time. The Laplace domain admittance is

Y s( ) � Is s( )
Vs s( ) �

1
L s

s2 + 2αs + ω2
0

. (37)

To form the PHS description, we first identify the power
conjugate variables within the system. The variables
corresponding to the storage elements are the voltage across and
current through the inductor (vL, iL) and capacitor (vC, iC), the
dissipative variables correspond to the voltage across and current
through the resistor (vR, iR) and the external power variables are the
voltage supplied by the ideal voltage source and the resulting current
through the circuit. Based on Kirchhoff’s circuit laws and Ohm’s
laws, the RLC system can be written as a PHS

iC � dtϕ

vL � dtq
[ ] � ⎛⎝ 0 −1

1 0
[ ]︸���︷︷���︸

J

− R 0

0 0
[ ]︸���︷︷���︸

R

)⎞⎠ iL � ∂

∂ϕ
H q, ϕ( )

vC � ∂

∂q
H q, ϕ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1
0
[ ]︸�︷︷�︸

G

vs � u( ), (38a)

y � is � 1 0[ ]︸��︷︷��︸
GT

iL � ∂

∂ϕ
H q, ϕ( )

vC � ∂

∂q
H q, ϕ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (38b)

The internal state variables are x � [q ϕ]T, the charge on the
capacitor and the flux through the inductor. The total stored energy
in the system is:

H q, ϕ( ) � q2

2C
+ ϕ2

2L
, (39)

and the Hamiltonian is quadratic. Notice that the elements
describing a PHS from Equations 3a, 3b, J, R, and G, arise
naturally from physical laws.

4.1 Numerical schemes for the RLC circuit

We now apply the numerical methods discussed in Section 3 to
the RLC PHS in Equation 4. Two criteria that are compared here are
numerical stability and numerical dispersion. The accuracy of the
two discretization methods is shown in Figure 2 in comparison to
the analytical admittance given in Equation 37. Additionally, the
accumulated energy error Equation 34 and a comparison of
numerical dispersion in the two schemes is shown.

4.1.1 Discrete gradient applied to RLC
The discrete gradient method is applied as described in Section

3. The discrete gradient RLC scheme is given by the
following equations

δt+qn � 1
L
μt+ϕ

n, δt+ϕn � − 1
C
μt+q

n − R

L
μt+ϕ

n − un, (40a)

y � −1
L
μt+ϕ

n. (40b)

The scheme is unconditionally stable by definition of the discrete
gradient method. We have the variation in discrete energy, h, is
related to the energy at the boundary ports b and dissipative ports q

δt+h � b − q, (41)
with the discrete energies being an exact discretization of the
continuous-time quantities,

h � 1
2C

qn( )2 + 1
2L

ϕn( )2, b � unyn, q � R μt+
ϕn

L
( )2

. (42)

For analyzing numerical dispersion, it is sufficient to analyze the
unforced state-update equation, which leads to the
characteristic equation

z2 − 2
1 − ω0Δt

2( )2
ω0Δt
2( )2 + αΔt + 1

z +
ω0Δt
2( )2 − αΔt + 1

ω0Δt
2( )2 + αΔt + 1

� 0. (43)

This can be compared to the analytical characteristic equation
with Rα � e−αΔt and ωn �

((((((
α2 − ω2

0

√
z2 − 2Rα cos ωnΔt( )z + R2

α � 0, (44)
to evaluate the numerical dispersion of the scheme. For the RLC
system, it is possible to adapt the parameters L and C such that the
discretized system has the same characteristic equation as the
analytical system (van Walstijn et al., 2016). This is a
generalization of the “prewarping” procedure used when
discretizing a system with the bilinear transform (Smith, 2010).
The adjusted or prewarped parameters are

L̂ � RΔt

4
1 + 2Rα cos ωnΔt( ) + R2

α

1 − R2
α

,

Ĉ � Δt

R

1 − R2
α

1 − 2Rα cos ωnΔt( ) + R2
α

.

(45)

Figure 2 displays the response with and without prewarping. The
discrete system response will deviate from the analytical response as
ω0 increases in frequency without any prewarping.

Frontiers in Signal Processing frontiersin.org07

Darabundit and Scavone 10.3389/frsip.2025.1519450

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1519450


4.1.2 Störmer-Verlet applied to RLC
The Störmer-Verlet method produces the following RLC scheme

δt−qn+
1
2 � 1

L
ϕn, δt+ϕn � − 1

C
qn+

1
2 − R

L
μt+ϕ

n − μt+u
n, (46a)

yn � −1
L
ϕn. (46b)

The scheme is conditionally stable, but not explicit. The exact discrete
energy is not preserved and instead a modified energy is preserved:

δt+hmod � b − q. (47)
Here,

hmod �
ϕn( )2
2L

+ μt−q
n+1

2( )2
2C

− Δ2
t

8L2C
ϕn( )2, (48)

and

q � R μt+
ϕn

L
( )2

, b � μt+u
n( )μt+yn. (49)

The energetic quantities have been derived by taking the product
of μt+

ϕn

L with the second equation in Equation 46a and using the
definitions in the first equation in Equation 46a, Equation 46b, and
the identities in Equations 12, 16. The modified discrete energy is
guaranteed to be positive if

h≥
1
2L

1 − Δ2
t

4LC
( ) ϕn( )2. (50)

For the discrete energy to remain positive Δt ≤ 2
(((
LC

√
or,

equivalently, f0 ≤ fs

π with 2πf0 � ω0. The characteristic equation
for the unforced scheme is

z2 + ω0Δt( )2 − 2
1 − αΔt

z + 1 + αΔt

1 − αΔt
� 0. (51)

4.1.3 Comparison of different schemes
The RLC PHS was discretized with the discrete gradient

method, with and without prewarping, and the Störmer-Verlet
method. Results are shown in Figure 2. The system parameters are
ω0 � 2π10 kHz and α � 0.15ω0. The sampling rate is fs � 48 kHz.
A high center frequency was chosen to test the accuracy of the
schemes near the Nyquist limit. Both systems were used to process
an impulse response 4,096 samples long. The stability of both
schemes is demonstrated in the secondary plot comparing the
accumulated energy error for the first 512 samples. There is no
variation in the accumulated energy error following the initial
transient response. Regarding accuracy, the discrete gradient
method with prewarping (DG-W), performs the best. However,
with no a priori of the system’s behavior, the Störmer-Verlet
method (SV) performs slightly better than the discrete gradient
method with no prewarping (DG). This result is further reinforced
by comparing the frequency warping of f0 for the discrete gradient
and the Störmer-Verlet schemes using Equations 43, 51,
respectively, over the range of stability for the Störmer-Verlet
scheme. As shown on the right of Figure 2, generally, the Störmer-
Verlet scheme has less frequency warping than the discrete
gradient scheme below 12 kHz but the frequency warping
increase dramatically as ω0 nears the limit of the stability
criteria. Regarding memory and computational costs, we must
store prior values of un to compute μt+u

n and the average must also
be computed. Both schemes require a linear system inverse and the
general Störmer-Verlet scheme is not explicit.

FIGURE 2
Top: admittance response of RLC PHS discretized with the discrete gradient (DG), discrete gradient with prewarping (DG-W), and Störmer-Verlet
(SV) methods with a sampling rate of 48 kHz. The simulations are compared to the analytical response. Bottom: accumulated energy error for the DG
scheme and SV scheme over the first 512 samples. Both display errors withinmachine precision, however, only the DG scheme conserves energy exactly.
Right: Comparison of frequency warping of f0 for the Störmer-Verlet and discrete gradient methods. All simulations were run for 4,096 samples.
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5 The single reed model

The reed excitation mechanism acts as a blown closed pressure-
controlled valve at the inlet of the woodwind bore (Fletcher, 1993).
The reed model is nonlinear, an essential trait that produces steady
oscillations from a continuous excitation (Chaigne and Kergomard,
2016). We will present a simple single-degree-of-freedom lumped
model of the reed, a classical approach found in Backus (1963);
Scavone (1997); van Walstijn and Avanzini (2007), among many
others. The single reed has been modeled as a cantilever bar by
Avanzini and van Walstijn (2004) and as a two-dimensional thin
plate in Chatziioannou (2010). However, with a mind towards
limiting computational complexity, only a lumped model is
considered here.

A model of the single-reed consists of two nonlinear
interactions: the reed contact with the lay called “beating”, a
characteristic of single-reed instruments, and the nonlinear
Bernoulli flow through the reed channel (Chaigne and
Kergomard, 2016). We model the beating effect using the Hunt-
Crossley impact model, previously utilized in Chatziioannou and
van Walstijn (2012), and extend recent work on energy
quadratization methods in musical acoustics (Bilbao et al., 2015b;
Ducceschi et al., 2021; van Walstijn et al., 2024b) to develop a
linearly implicit scheme. The system is modeled using the PHS
framework. The PHS approach—not including contact dynamics,
but including a turbulence model and 2D flow–was applied to
modeling the lip-reed in brass instruments (Lopes and Hélie,
2016). In this section, we will first discuss the governing
equations in the lumped reed model and then present a complete
PHS description of the system. We will then derive discrete
nonlinear and linear implicit schemes based on the discrete
gradient method. Coupling the reed model to the bore model
will be discussed later on in Section 8.

5.1 PHS model of the reed with
contact dynamics

A lumped reed model aims to capture the behavior at the tip of the
reed. We model the reed as a mass-spring-damper system which is a
mechanical analogy of the RLC circuit presented in Section 4. The
system is based on the position y as seen in Figure 3. y � 0 is the
equilibrium position of the reed once the player has positioned their
embouchure (the position andmechanical properties of the player’s lips),
yl is the displacement from equilibrium to the mouthpiece lay, and yc is
the displacement at which theHunt-Crossley contact force begins to take
effect. The lumped reed system is governed by the following equation:

md2
t y +mγdty + ky − fc h( ) � SrpΔ, pΔ � pm − pin. (52)

m, γ, and k are the effective mass, damping, and stiffness of the reed,
which are affected by the player’s embouchure. Sr is the effective
reed area, also determined by the player’s embouchure, and SrpΔ is
the external force due to the pressure difference across the reed
channel (van Walstijn and Avanzini, 2007). pm is the upstream
pressure supplied by the player and pin is the pressure at the
interface with the instrument bore. fc is the Hunt-Crossley
contact force and is a function of compression: h � y − yc. It is

important to note that yc is not equivalent to yl, as shown in
Figure 3. yc has been empirically found to be a factor around 0.4 −
0.6 times the displacement yl (Chatziioannou and van Walstijn,
2012; Chatziioannou et al., 2019). The contact force is defined as,

fc h( ) � −∂hVc h, t( ) − γc∂tVc h, t( ) � −∂hVc 1 + γc∂th( ), (53)
with γc the contact damping and Vc the contact potential energy,

Vc h, t( ) � kc
α + 1

h t( )[ ]α+1+ . (54)

kc represents the contact stiffness and α≥ 1 is the contact power-law
exponential. These parameters may be determined via the material
parameters of the colliding objects (van Walstijn et al., 2024b) or
through inverse modeling (Chatziioannou et al., 2019). The binary
relationship between contact and no-contact is determined by the
operator [·]+ where

h[ ]+ � max 0, h( ). (55)
The Hunt-Crossley model can be interpreted as a parallel

combination of a nonlinear spring and damper that resists the
incursion of one object into another.

A second nonlinearity within the reed model is the flow through
the reed channel. We assume a steady, simple, and quasi-stationary
Bernoulli flow model (Chaigne and Kergomard, 2016; Sec. 10.3.1.1)

uf � sign pΔ( )Sj y( ) (((((2 pΔ
∣∣∣∣ ∣∣∣∣
ρ

√
, Sj y( ) � w yl − y[ ]+. (56)

Sj(y) is the variable jet-area approximated by a rectangular surface
with jet-width w. The steady Bernoulli flow model is found in
Scavone (1997); van Walstijn and Avanzini (2007); Chatziioannou
et al. (2019), among many others. It is likely pertinent to consider an
unsteady flow model as was done by Lopes and Hélie (2016).
However, we compensate for the simplified model by including a
pumping flow,

ur � Srdty, (57)
that considers the contribution of reed motion to the flow. It was
observed in Lopes and Hélie (2016) that the inclusion of a pumping
flow is necessary for the model to be physically realistic and energy
conserving. We now present a complete PHS description of the reed
system based on Equations 52, 53, 56, 57, and denote momentum ],
reserving p for pressure variables

dt

]
y

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸��︷︷��︸
fr

� ⎛⎝ 0 −1 −1
1 0 0

1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�����︷︷�����︸
Jr

−
mγ + γc∂hVc 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸��������︷︷��������︸
Rr

)⎞⎠ ∂]T r � dty

∂yVr � ky

∂hVc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸������︷︷������︸
er

+
Sr −Sr
0 0
0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦︸����︷︷����︸
Gr

pm

pin
[ ], (58a)

um

uin
[ ] � GT

r er + uf

−uf
[ ]. (58b)

um and uin are the upstream and downstream volume velocities
associated with pm and pin, respectively. The total stored energy of
the system in Equations 58a, 58b is
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Hr � ]2

2m︸�︷︷�︸
T r

+ k
y2

2︸�︷︷�︸
Vr

+Vc. (59)

It is worth noting that the flow out of the reed model uin �
−(ur + uf) is negative in contrast to earlier literature due to sign
conventions in defining the PHS. This is rectified when coupling the
system with the woodwind bore. The pumping flow produced byGT

r

is a direct result of the PHS framework as the pumping flow
complements the external forces due to pΔ. It is not immediately
clear that the system in Equation 58 maintains an energy balance
due to the nonlinear contact damping and Bernoulli flow. Following
the derivation in Bilbao et al. (2015b) and Chatziioannou et al.
(2019), we can demonstrate passivity by taking the inner product of
the flows and efforts in Equation 58a

〈er, fr〉 � ∂tHr

� −mγ ∂]T( )2︸����︷︷����︸
Qr

− γc∂hVc( ) ∂]T( )2︸������︷︷������︸
Qc

+〈er,Gr pm pin[ ]T〉,
(60)

and identifying Qr as the damping due to the lumped reed model
and Qc as the damping due to the contact force. Qc is non-negative
as ∂hVc is non-negative by definition. To simplify the last product in
Equation 60, the inner product of Equation 58b is taken with
[pm pin]T resulting in the following energetic quantities

〈er,Gr pm pin[ ]T〉 � pinuin + pmum − pmuf + pinuf,
� pinuin + pmum︸������︷︷������︸

Br

− ufpΔ︸��︷︷��︸
Qf

. (61)

Br is the power flowing through the boundaries and Qf is the
dissipation due to the Bernoulli flow through the reed channel
equal to

Qf � Sjsign pΔ( ) ((2
ρ

√
pΔ
∣∣∣∣ ∣∣∣∣1/2 · pΔ � Sj

((
2
ρ

√
pΔ
∣∣∣∣ ∣∣∣∣3/2 ≥ 0. (62)

The dissipation due to the Bernoulli flow is guaranteed to be non-
negative by pΔ � sign(pΔ)|pΔ| and sign(x)2 � 1. Restating the
energy balance of the system,

∂tHr � Br − Qr +Qc +Qf( )︸�������︷︷�������︸
≥ 0

, (63)

the system in Equations 58a, 58b maintains an energy balance as all
the dissipative terms and Hr are all guaranteed to be non-negative.

5.2 A nonlinear implicit scheme

We discretize the system in Equations 58a, 58b using the discrete
gradient method and obtain Equation 64 by approximation of the time
derivative and gradients. This results in a pair of implicit nonlinear
equations in both the state-update equation (due to the Hunt-Crossley
force) and the output equation (due to the Bernoulliflow).Wewill focus
on the state-update equation and the discretization of the output
equation will be left to Section 8. We are particularly concerned
with the discrete-time transcendental equation:

δt+]n � −kμt+yn − δh+Vn
c 1 + γcμt+

]n

m
( )( ) − γmμt+

]n

m
( ) + SrpΔ,

(64)
which corresponds to the discretized form of the first line in Equation
58a. It is helpful here to introduce an intermediary variable:

ξ � hn+1 − hn � yn+1 − yn � Δtδt+y. (65)
We apply the property in Equation 13 to replace δt+]n and μt+y

n

with factors of μt+]
n and δt+yn, respectively. Then, we utilize the

discretized form of the second line in Equation 58a,

δt+yn � μt+
]n

m
, (66)

and Equation 65 to rewrite the transcendental equation as a function
whose root is equal to ξ

F ξ( ) � ξ − ξp + 1
a0
δh+Vn

c 1 + γc
Δt

ξ( ) � 0, (67)

with

ξp � 1
a0

SrpΔ + an1( ), (68a)

a0 � 2m
Δ2
t

+ k

2
+ mγ

Δt
, (68b)

an1 �
2
Δt
]n − kyn. (68c)

ξp represents the solution to ξ in the absence of the contact force.
We approximate δh+Vc using the definition of the discrete gradient
in Equation 19,

F ξ( ) � ξ − ξp + 1
a0

Vc ξ + hn( ) − Vc hn( )
ξ

1 + γc
Δt

ξ( ). (69)

FIGURE 3
Left: Diagram of the single reed and mouthpiece. Right: A lumped model of the reed including the Hunt-Crossley contact force.
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This equation can be solved using a Newton-Raphson iteration
with a guaranteed solution due to the convexity of F(ξ) (Bilbao et al.,
2015b). Division by ξ can prevent convergence and a more
numerically robust definition of F(ξ) and ∂ξF(ξ) can be
produced following the procedure in van Walstijn et al. (2024b).
After ξ has been derived, the next states ]n+1, yn+1, and hn+1 can be
updated based on ξ via

]n+1 � 2m
Δt

ξ − ]n, (70a)
yn+1 � ξ + yn, (70b)
hn+1 � ξ + hn. (70c)

The discrete Hamiltonian and dissipated energy terms associated
with this scheme are

hr �
]n( )2
2m

+ k
yn( )2
2

+ hc, hc � Vc hn( ), (71a)

hr � mγ + γc∂hVc hn( )( ) μt+
]n

m
( )2. (71b)

5.3 A linearly implicit scheme

Explicit and linearly implicit schemes representing Hertzian
contact dynamics have been derived using energy quadratization
strategies in Ducceschi et al. (2021) and van Walstijn et al. (2024b).
Explicit Hunt-Crossley contact dynamics were recently presented in
vanWalstijn et al. (2024a). Energy quadratization has also been used
in the discretization of nonlinear port-Hamiltonian systems (Lopes
et al., 2015). Invariant energy quadratization (IEQ) (Zhao et al.,
2016) and scalar auxiliary variable (SAV)methods (Shen et al., 2018)
apply a change of basis to the energy function by representing the
energy with a quadratic variable. For single-variable problems, as
treated here, the methods are equivalent. We will only quadratize the
contact potential, leaving the other energies untouched. The contact
potential is now defined based on an auxiliary state σ with energy Vσ ,

Vσ � 1
2
σ2, (72)

and h is related to the new state by the function f(·) with σ � f(h).
This substitution is viable here as the given energy function is non-
negative (Shen et al., 2018). ∂hVc and ∂th are defined relative to the
auxillary state by,

∂hVc � g σ, ∂tσ � g ∂th, (73)
where g is the gradient variable equal to ∂hf(h),

g �
((((((((((((((
1
2
kc α + 1( ) h[ ]α−1+

√
. (74)

Applying Equation 73 to the PHS in Equations 58a, 58b we
derive a new PHS with elements

Jσ �
0 −1 −g
1 0 0
g 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, Rσ �
mγ + γc gσ 0 0

0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (75a)

and efforts and flows,

eσ �
∂]T r

∂yVr

∂σVσ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, fσ � dt

]
y
σ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (75b)

The total stored energy in the system is now

Hσ � T r + Vr + Vσ . (75c)

Following Ducceschi et al. (2021), we discretize the system by
placing σn+1

2 on the interleaved n + 1
2 time step such that σn+1

2 is an
independent time series. As a result of the interleaved step, we have
an increase in memory requirements as we must store the states σn+1

2

and σn−1
2. We use the following approximations in our discretization

∂σVσ ≈ μt·σ
n+1

2, ∂hVc � gσ ≈ gnσn−
1
2, (76a)

∂tσ ≈ δt·σn+
1
2 � gnδt+yn, (76b)

where gn is a discretization of Equation 74. Using Equation 76a, the
discrete form of Equation 67 is rewritten as

F ξ( ) � ξ − ξp + 1
a0
gnμt·σ

n+1
2 + σn−

1
2

γc
Δt

ξ( ) � 0, (77)

and ξ can be solved using the property in Equation 14 and
Equation 76b

ξ � ξp − gn

a0
σn−

1
2

1 + gn

a0
gn + γc

Δt
σn−1

2( ). (78)

As discussed by Ducceschi et al. (2021) and van Walstijn et al.
(2024b) the value of gn must be chosen so that the sign of the force is
consistent and artifacts related to the contact energy are non-zero in
the absence of contact. The former issue is handled by setting gn to
have the same sign as σn−1

2. This also ensures that the contact
damping coefficient, γcg

nσn−1
2, is always positive. The latter issue,

pertaining to non-zero contact energy in the absence of contact, is
derived via the discretized form of the second equation in Equation
73 for σn+3

2 � 0. As a result, gn is defined as

gn �
−1
2
σn−

1
2

ξp
, hn < 0

sign σn−
1
2( ) ((((((((((((((

1
2
kc α + 1( ) hn[ ]α−1+

√
, hn ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (79)

Following van Walstijn et al. (2024b), a third branch would be given
by determining under what conditions, in Equation 78, ξ � ξp.
However, in the authors’ experiments it was found that including
this condition produces an undesirable transient when ξ is
preemptively set to ξp and so a third branch is omitted from the
model presented here. Finally, σ can be updated using Equation 76b

σn+
3
2 � σn−

1
2 + 2gnξ. (80)

The discrete variation in energy associated with the linearly
implicit scheme is derived using the properties of Equations 12, 15

δt+hnσ � δt+ μt−
σn+

1
2( )2

2
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (81a)

with σ replacing hnc in Equation 71a. The discrete dissipated energy
is now
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qnσ � mγ + γcg
nσn−

1
2( ) μt+

]n

m
( )2. (81b)

In Figure 4, we compare the hysteretic compressive behavior
associated with the Hunt-Crossley contact force for the nonlinear
and linearly implicit schemes with different initial velocities. As can
be seen, the linearly implicit scheme follows the behavior of the
nonlinear implicit scheme but does not match it exactly due to how
the energy quadratized PHS is discretized. The accuracy decreases
with increasing velocity.

6 Woodwind bore model

The woodwind bore can be modeled in one-dimension as a pipe
with a varying cross-sectional area. Viscothermal losses are
incorporated according to the model of Zwikker and Kosten
(1949). We represent these losses in our model using the
network synthesis method proposed in Bilbao et al. (2015a). A
PHS formulation of the Webster-Lokshin model which
approximates viscothermal losses with various simplifications was
proposed in Gorrec and Matignon (2013). We will summarize the
frequency domain description of the lossy horn equation, then
present a PHS representation of a network synthesis
approximation of the viscothermal losses and the overall system.
To reduce frequency warping, we will discretize the system with the
Störmer-Verlet method. In the absence of losses, the resulting
scheme is exactly the scheme presented in Bilbao and Harrison
(2016) though derived from a different perspective.

6.1 Frequency-domain description of the
horn equation

We consider a tube of varying circular cross-sectional area of length
L defined on the domain L � 0≤ z≤L where z is the symmetric axis
down the length of the bore. A frequency domain model including the
effects of viscothermal losses is (Caussé et al., 1984; Keefe, 1984)

∂zP + jω
ρ

S z( )U + ZvU � 0, (82a)

∂zU + jω
S z( )
ρc2

P + YtP � 0. (82b)

Here, P and U are the Fourier transforms of pressure and
volume velocity, respectively. These equations are the first-order
form of the horn equation (Chaigne and Kergomard, 2016). Instead
of modeling P and U directly, we will apply a change of variables,

Ψ � S z( )
ρc2

P, ϒ � ρ

S z( )U, (83)

producing the equivalent system

∂z
ρc2

S z( )Ψ( ) + jωϒ + Zv
S z( )
ρ

ϒ � 0, (84a)

∂z
S z( )
ρ

ϒ( ) + jωΨ + Yt
ρc2

S z( )Ψ � 0. (84b)

Ψ and ϒ are the underlying state variables related to pressure
and volume velocity, respectively.

Zv and Yt are frequency dependent functions encapsulating
viscous and thermal losses and are defined as (Caussé et al., 1984;
Bilbao and Harrison, 2016)

Zv � jω
ρ

S z( )
Fv

1 − Fv
, Yt � jω

S z( )
ρc2

γ − 1( )Ft, (85)

with

Fv � 2
J1 ηv( )
ηvJ0 ηv( ), Ft � 2

J1 ηt( )
ηtJ0 ηt( ) (86a)

ηv � r z( )
(((
jω

clv

√
, lv � μ

ρc
, (86b)

ηt � r z( )
(((
jω

clt

√
, lt � lv

Pr
. (86c)

γ is the ratio of specific heats. J0(·) and J1(·) are zeroth and first-order
Bessel functions of the first kind. r(z) is the radius at each position z, c is
the speed of sound, and lv and lt are the viscous and thermal boundary
layer thicknesses. μ is first coefficient of viscosity of air and ρ is the density
of air. Pr � Cpμ

κ is the Prandtl number with Cp the coefficient of specific
heat at constant pressure and κ is the coefficient of thermal conductivity.
Keefe (1984) provides equations for calculating the value of these constants
within ± 10*C of 26.85*C. A time-domain form of Equation 84a is

∂z
ρc2

S z( )ψ( ) + ∂tυ + zvp
S z( )
ρ

υ( )︸�����︷︷�����︸
pv

� 0, (87a)

FIGURE 4
Hunt-Crossley force versus deformation simulated for different
initial velocities 0.5, 1, and 2 m/s using the nonlinear implicit scheme
(blue) and the linearly implicit scheme (red, dashed). Parameters used
for the plot are m � 100 mg, k � 10 N/m, γ � 100 s−1,
kc � 1 × 107N/mα, γc � 5 s/m, and α � 2.5.
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∂z
S z( )
ρ

υ( ) + ∂tψ + ytp
ρc2

S z( )ψ( )︸�����︷︷�����︸
ut

� 0, (87b)

where p operator denotes convolution. pv and ut are variables
representing the effects of viscous and thermal losses,
respectively. pv and ut can be approximated using network
synthesis (Bilbao et al., 2015a). We will interpret pv and ut as
the output of PHS loss sub-models.

6.2 Viscothermal loss approximation

Zv and Yt are approximated through an M section Foster
network synthesis with the form shown in Figure 5. The
frequency-domain transfer function for the losses at each spatial
location are

Zv � R0 + ∑M
m�1

Rmjω

jω + Rm/Lm
, (88a)

Yt � ∑M
m�1

1/Gmjω

jω + 1/ GmCm( ). (88b)

R0 is the limit as Zv approaches zero frequency. Yt(0) � 0
and no constant term is needed (Chatziioannou et al., 2019).
Both of these systems can be represented as Mth-order PHSs.
The losses due to viscous effects, pv, are approximated by the
following PHS

∇ϕHv � −R−1
v ∂tϕ + G

S z( )
ρ

υ( ), (89a)

pv � GT∂tϕ + R0
S z( )
ρ

υ( ), (89b)

with fluxes ϕ � [ϕ1, . . . ,ϕM]T. Rv is an M × M diagonal resistance
matrix and G is an M × 1 vector of ones. These elements are
defined as:

Rv � diag R1, . . . , RM[ ]( ), G � 1 . . . 1[ ]T,
Hv ϕm( ) � ϕ2

m

2Lm
, ∀ϕm ∈ ϕ.

(89c)

The losses due to thermal effects, ut, are approximated by
the PHS

∇qHt � −Rt∂tq + G
ρc2

S z( )ψ( ), (90a)

ut � GT∂tq, (90b)
with charges q � [q1, . . . , qM]T. Rt is anM × M diagonal resistance
matrix and G is an M × 1 vector of ones. These elements are
defined as:

Rt � diag 1/G1, . . . , 1/GM[ ]( ), G � 1 . . . 1[ ]T,
Ht qm( ) � q2m

2Cm
, ∀ϕm ∈ q.

(90c)

Both systems are defined as conjugate PHS systems as the output
of both systems are the sum of the flows of their respective storage
components. As described in Section 3.2, discretization with the
discrete gradient method results in a linearly implicit scheme.

6.3 Power balance of the horn model
including loss approximation

Following Bilbao and Harrison (2016), a power balance of the
horn model, including the loss approximations, is derived by taking

FIGURE 5
M-branch RL Foster I structure approximating Zv (top) and M-branch RC Foster II structure approximating Yt (bottom).

Frontiers in Signal Processing frontiersin.org13

Darabundit and Scavone 10.3389/frsip.2025.1519450

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1519450


the product S(z)
ρ υ with Equation 87a and ρc2

S(z)ψ with Equation 87b.
Integrating over the domain L and summing the equations,

∂t ∫
L
Hhdz( ) − B + ∫

L
pv
S z( )
ρ

υdz + ∫
L
ut

ρc2

S z( )ψdz � 0. (91)

Hh represents the energy storage density in absence of losses and B
is the power supplied at the bore boundaries,

Hh � 1
2

ρc2

S z( )ψ
2 + 1

2
S z( )
ρ

υ2, B � p 0( )u 0( ) − p L( )u L( ). (92)

We can identify the quantities Lψ(z) � ρc2

S(z) and Lυ(z) � S(z)
ρ

related to the quadratic Hamilton in Equation 92. The terms
related to viscothermal losses in Equation 91 are equivalent to
the product of the external ports of the PHS sub-models in
Equations 89a, 89b and Equations 90a, 90b, owing to their
definition as PHSs. As such, we can directly use the power
balance property from Equation 5 to simplify our derivation of
the power balance. The power balance of the entire horn system
including losses is

∂t ∫
L
Hh +Hv +Ht( )dz[ ] � B − ∫

L
Qv +Qt( )dz, (93)

with

Qv � 〈∂tϕ,R−1
v ∂tϕ〉 + R0‖Lυ z( )υ‖2, Qt � 〈∂tq,Rt ∂tq〉. (94)

The total system can be written as an infinite dimensional PHS based
on the variational derivatives:

δHh

δψ
� ∂ψHh � Lψ z( )ψ � p,

δHh

δυ
� ∂υHh � Lυ z( )υ � u. (95)

The variational derivatives are equivalent to the derivatives of
the energy density when the energy density does not depend on the
derivatives of the state (Duindam et al., 2009). Here, we use
Leibniz’s notation in conjunction with the operator δ to refer
specifically to the variational derivative. To prevent confusion, we
will use ∂ψHh and ∂υHh going forward. Due to the change in
variables in Equation 83, the variational derivatives are equal to the
pressure and volume velocity variables at each spatial location. The
main benefit of this change in variables is that the boundary efforts
and flows in Equation 94 correspond directly with pressure and
volume velocity which are the acoustic domain power-
conjugated variables.

The distributed PHS formulation of the horn equation with
viscothermal losses is then:

∂tυ
∂tψ
∇ϕHv

∇qHt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0 −∂z −GT 0
−∂z 0 0 −GT

G 0 0 0
0 G 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸����������︷︷����������︸
J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −
R0 0 0 0
0 0 0 0
0 0 Rv 0
0 0 0 Rt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸������︷︷������︸
R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

∂υHh

∂ψHh

∂tϕ
∂tq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (96)

The upper left quadrant in J — representing the
interconnection of efforts and flows in the lossless horn

equation—is skew-symmetric by the inclusion of the boundary
elements p(0), u(0), p(L), and u(L) (Duindam et al., 2009).

6.4 Discretization of the horn equation by
the Störmer-Verlet method

In light of the frequency warping associated with the discrete
gradient method we now discretize the system in Equation 96 in
time and space with the Störmer-Verlet method. This produces a
scheme that, excluding viscothermal losses, is equivalent to the
scheme proposed in Bilbao and Harrison (2016). Spatial
discretization with the Störmer-Verlet scheme maintains the
skew-symmetry property of the upper left block matrix in
Equation 96. However, this property combined with the reduced
time discretization error does completely characterize the accuracy
of the scheme. Analysis of the scheme accuracy in relation to the
symplectic property of the discretization method merits further
investigation.

The fully discretized horn equation scheme is

δt−υ
n+1

2

l+1
2
+ δz+

ρc2

Sl
ψn
l( ) + pn

v,l+1
2
� 0, (97a)

δt+ψn
l + δz−

Sl+1
2

ρ
υ
n+1

2

l+1
2

( ) + u
n+1

2
t,l � 0. (97b)

Importantly, we define Sl � μz−Sl+1
2
and the bore is sampled on the

interleaved grid based on an energetic stability analysis of the
scheme (Harrison-Harsley, 2018). Equation 97b is centered on
the interleaved grid in n + 1

2 time and the regular grid l in space.
Equation 97a is defined in the opposite manner. The output of the
losses are then defined accordingly. The final step of the Störmer-
Verlet method in Equation 31c allows us to compute the values of υ
at boundaries l � 0 and l � N

S1
2

ρ
υ
n+1

2
1
2

� u
n+1

2
0 − Δz

2
δt+ψn

0 + u
n+1

2
t,0[ ], (98a)

u
n+1

2
N � SN−1

2

ρ
υ
n+1

2

N−1
2
− Δz

2
δt+ψn

N + u
n+1

2
t,N[ ]. (98b)

This equivalence can also be derived by substituting the property
δz− � 2

Δz
(μz− − ez−) into Equation 97b at l � 0 and l � N. The

viscothermal losses are discretized using the discrete gradient
method at each spatial step

μt− Lvϕ
n( ) � R−1

v δt−ϕn + G μt−
S

ρ
υn+

1
2( ), (99a)

pn
v � GTδt−ϕn + R0 μt−

S

ρ
υn+

1
2( ), (99b)

μt+ Ltq
n+1

2( ) � Rtδt+qn+
1
2 + G μt+

ρc2

S
ψn( ), (100a)

u
n+1

2
t � GTδt+qn+

1
2, (100b)

with Lv � [L−11 , . . . , L−1M ] and Lt � [C−1
1 , . . . , C−1

M ].

6.4.1 Vectorized scheme for the horn equation
We write the scheme in Equations 97a, 97b in vector form by

defining two N × 1 length vectors ψ � [ψ0 . . . ψN−1]T and υ �
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[υ1
2
. . . υN+1

2
]T with spatial indices l ∈ d � 0, . . . , N − 1. The

vectorized scheme is then given as

δt−υn+
1
2 +Dz+ Lψψ

n( ) + Gpp
n
L + CM

v Φ
n−1 +DM

v μt− Lυυ
n+1

2( ) � 0,

(101a)
δt+ψn +Dz− Ln+1

2
υ( )υ + Guu

n+1
2

−1
2
+ CM

t Q
n+1

2 +DM
t μt+ Lψψ

n( ) � 0.

(101b)
Dz+ � −DT

z− are the matrix forms of the spatial difference operators
(Bilbao, 2009). Lψ and Lυ are N × N diagonal matrices associated
with the quadratic energy densities along the bore

Lψ � diag
ρc2

S0
, . . . ,

ρc2

SN − 1
[ ]( ), Lυ � diag

S1
2

ρ
, . . . ,

SN+1
2

ρ
[ ]( ).

(102a)
Gp and Gu are N × 1 vectors which incorporate the boundary
elements by completing the spatial discretization scheme and are
defined as:

Gp � 0 / 1[ ]T, Gu � −1 / 0[ ]T. (102b)

Viscous and thermal losses are included by means of the explicit
update matricies of Equations 99a, 99b, Equations 100a, 100b. The
concatenatedMN × 1 length viscothermal loss state vectors areQ �
[q1

2
. . . qN+1

2
]T and Φ � [ϕ0 . . . ϕN−1]T. The associated

viscothermal loss matrices Cv,t and Dv,t are MN × MN and
N × N block diagonal matrices, respectively

CM
v � diag Cv,12

, . . . ,Cv,N+1
2

[ ]( ), DM
v � diag Dv,12

, . . . ,Dv,N+1
2

[ ]( ),
(102c)

CM
t � diag Ct,0, . . . ,Cv,N−1[ ]( ), DM

t � diag Dt,0, . . . ,Dt,N−1[ ]( ),
(102d)

where the matrices at each spatial location correspond to the
matrices Cd and Dd from the discrete gradient discretization
procedure. An explicit form is derived by solving the linear
equations in Equations 101a, 101b for υn+1

2 and. ψn+1

υn+
1
2 � H−1

u Auυ
n−1

2 − ΔtDz+Lψψ
n − ΔtC

M
v Φ

n−1 + ΔtGpp
n
L( ), (103a)

ψn+1 � H−1
p Apψ

n − ΔtDz−Lυυ
n+1

2 − ΔtC
M
t Q

n+1
2 + ΔtGuu

n+1
2

−1
2

( ),
(103b)

with

Hu � I + 1
2
DvLυ, Hp � I + 1

2
DtLυ, (103c)

Au � I − 1
2
DvLψ , Ap � I − 1

2
DtLψ . (103d)

After computing Equations 103a, 103b, the internal
viscothermal loss states Φn and Qn are updated via

Φn � AM
v Φ

n−1 + 1
2
BM
v Lυ υn+

1
2 + υn−

1
2( ), (104a)

Qn+1
2 � AM

t Q
n+1

2 + 1
2
BM
t Lψ ψn+1 + ψn( ), (104b)

where—similar to CM
v,t and DM

v,t—AM
v,t and BM

v,t are block diagonal
matrices but with dimensions MN × MN and MN × N,
respectively. Each diagonal entry corresponds to the update
matrices at the corresponding spatial index.

The scheme in Equation 103b is driven by an external volume
velocity at the input end, l � 0 and pressure at the output end, l � N.
u−1

2
is a virtual grid point and can be determined via the equivalence

μt+u−1
2
� u0. Thus,

u−1
2
� 2u0 −

S1
2

ρ
υ1
2
. (105)

The pressure at the output end depends on the boundary condition at
the end of the bore. This is discussed in Section 6.5 where we couple
the bore to an unflanged radiation condition and in Section 7 where
we couple segments of bores together through two-port elements.

Assuming that the matrix inverses are computed and applied
beforehand, the lossy horn equation in Equations 103a, 103b, 103c,
103d has a computational cost of four (N × N) × (N × 1) matrix-
vector products, two (N × MN) × (MN × 1) matrix-vector
products, two N × 1 vector-scalar products, and eight N × 1
vector additions. Updating the internal loss states in Equations
104a, 104b further incurs two (MN × M ·N) × (MN × 1)
matrix-vector products, two (MN × N) × (N × 1) matrix-vector
products, two N × 1 vector additions, and two M ·N × 1
vector additions.

6.4.2 Discrete power balance
Aside from the characterization of losses as a PHS, the scheme

described here is exactly the same as the scheme in Bilbao and
Harrison (2016). The PHS loss subsystems can be rewritten in a
manner that is symbolically equivalent to the losses in Bilbao and
Harrison (2016) even though, numerically, the scheme proposed
here and the scheme in Bilbao and Harrison (2016) are not
equivalent. The discrete energetic quantities follow from the
proof given in that article. As such, we do not repeat the proof
here. The horn equation scheme is conditionally stable and is
determined by the Courant-Friedrichs-Lewy (CFL) condition
λ≤ 1 with λ � cΔt

Δz
(Bilbao and Harrison, 2016). The discrete

Hamiltonian associated with Equation 97 is,

hb � hp + hu,mod + ht + hv,mod (106)
with

hp � 1
2

(((
Lψ

√
ψ

000000 000000d′( )2, hu,mod �
1
2
〈
((
Lυ

√
υ, et−υ〉d , (107a)

ht �
1
2

qTLtq
0000 0000d′( )2, hv,mod �

1
2
〈Lvϕ, et−ϕ〉d , (107b)

where ‖ · ‖d and 〈·, ·〉d denote the norm and inner product over
the spatial domain d � 0, 1, . . . , N − 1. Conversely, ‖ · ‖d′ and
〈·, ·〉d′ denote the primed norm and inner product over the
entire domain d � 0, 1, . . . , N. Readers are referred to Bilbao
(2009) regarding the definition of these operators. The
dissipated energies are

qt � 〈δt+q,Rtδt+q〉d′ , (108a)
qv,mod � 〈v̂,Rvμt+μt−v̂〉d , qv0 ,mod � 〈Lυυ, R0μt+μt−Lυυ〉d , (108b)

with

v̂ � Gυ − Lvϕ, (108c)
and the discrete power transferred through the boundaries is,

bb � μt+p
n
N( )un+1

2
N − μt+p

n
0( )un+1

2
0 . (109)
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Due to discretization with the Störmer-Verlet method, the
discrete stored energy and dissipated energy is not an exact
sampling of the continuous energy function. Quantities denoted
with the subscript mod are only guaranteed non-negative if λ≤ 1
and the system instead maintains a modified energy balance. Which
energies are modified depends on the alignment with the boundary
variables, in this case the modified energies are related to v and pv are
centered on time n and the interleaved spatial grid l + 1

2.

6.5 Radiation model

We use the second-order circuit model, shown in Figure 6,
presented by Bilbao and Chick (2013) to model the radiation from
an unflanged end of the bore. The model is described by the
following PHS

∂tϕrad

∂tqrad
[ ]︸����︷︷����︸

frad

� ⎛⎝ 0 −1
1 0
[ ] − Rrad,1 0

0 R−1
rad,2

[ ]︸������︷︷������︸
Rrad

)⎞⎠ ∂ϕradHrad

∂qradHrad
[ ]︸�����︷︷�����︸

erad

+⎛⎝ 0

1
[ ]︸��︷︷��︸
Grad

− Rrad,1

0
[ ]︸���︷︷���︸

Prad

)⎞⎠uL,

(110a)
pL � Grad + Prad( )Terad + Rrad,1uL, (110b)

with parameters

Rrad,1 � Zc,L, Rrad,2 � 0.505Zc,L, Lrad � 0.613
r

c
Zc,L,

Crad � 1.111
r

c

1
Zc,L

,
(110c)

where Zc,L � ρc
SL
the characteristic impedance at the end of the bore.

The Hamiltonian of the unflanged radiation system is:

Hrad � ϕ2
rad

2Lrad
+ q2rad
2Crad

, (111)

and the dissipated energy and boundary power are

Qrad � 〈 erad uL[ ]T, Rrad Prad

PT
rad Rrad,1

[ ] erad uL[ ]T〉,
Brad � pLuL.

(112)

We discretize this system with the discrete gradient method on
the n + 1

2 time grid and produce the explicit state update and
output equations

x
n+1 1

2
rad � Arx

n+1
2

rad + Bru
n+1

2
L , (113a)

p
n+1

2
L � Crx

n+1
2

rad +Dru
n+1

2
L . (113b)

The discrete energy balance is maintained by the exact discretized
forms of the quantities in Equations 111, 112. We will discuss
coupling the radiation to the bore in Section 8.

7 Tonehole model

The woodwind tonehole is normally represented by a
frequency-domain equivalent circuit model involving four
elements: two series inertances equal to Za/2, an inner length
correction impedance Zi, and a shunt impedance Zs as shown on
the left of Figure 7 (Chaigne and Kergomard, 2016; Keefe, 1982;
Dubos et al., 1999; Dalmont et al., 2002; Lefebvre and Scavone,
2012). The values corresponding to the lumped circuit elements
are usually obtained via a fit to 3D simulation data of geometries
with sideholes (Dubos et al., 1999; Lefebvre and Scavone, 2012) or
analytical Green’s function approaches (Keefe, 1982; Dubos et al.,
1999). The one-dimensional model has also been validated against
measurements in Dalmont et al. (2002). In this section, we will first
present the lumped model parameters based on (Lefebvre and
Scavone, 2012). We will then propose a low-frequency circuit
approximations of the open and closed tonehole shunt
immitances before uniting the models through a switching PHS.
The switching PHS model is then discretized with the discrete
gradient method.

7.1 Lumped tonehole parameters

For a tonehole with tonehole radius b, tonehole height th, and
main bore radius r, the series inertance Za is described by

Za � jω
ρ

S
t o,c( )
a , (114a)

which has different values when the tonehole is open and closed
corresponding to the length correction values t(o)a and t(c)a :

t o( )
a � −bd2 0.36 − 0.06 tanh 2.7th/b( )( ),
t c( )
a � −bd2 0.12 + 0.17 tanh 2.4th/b( )( ), (114b)

with d � b/r. For the open tonehole, the lumped model shunt
impedance is equal to:

Z o( )
s � jω

ρc

Sh
ti + j

ρc

Sh
tan

ω

c
th + tm + tr( )[ ]. (115)

Sh � πb2 is the cross-sectional area of the tonehole. ti, tm, and tr are
length correction parameters associated with the inner length
correction, the matching volume correction, and the radiation at
the end of the tonehole. The matching volume and radiation length
correction are

tm � bd

8
1 + 0.207d3( ), tr � arctan

Zrth

jρc/Sh( ), (116)

and the inner length correction is

FIGURE 6
Circuit approximation of the radiation from an unflanged end of a
circular bore after Bilbao and Chick (2013)
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ti � 0.822 − 0.095d − 1.566d2 + 2.138d3 − 1.640d4 + 0.502d5( )b.
(117a)

Zrth is the radiation impedance associated with the end condition of
the open tonehole. Lefebvre and Scavone (2012) propose a frequency
dependent length correction such that ti(k) � ti × G(d, kb)
with kb � ωb/c,

G d, kb( ) � 1 +H d( )I kb( ), (117b)
H d( ) � 1 − 4.56d + 6.55d2,

I kb( ) � 0.17ka + 0.92 kb( )2 + 0.16 kb( )3 − 0.29 kb( )4. (117c)

The closed tonehole impedance includes the same matching
volume and inner length correction terms as appear in the open
tonehole impedance. The form of the closed tonehole impedance is
different due to the closed end condition and, correspondingly, the
radiation length correction is omitted,

Z c( )
s � jω

ρc

Sh
ti − j

ρc

Sh
cot

ω

c
th + tm( )[ ]. (118)

In both models, viscothermal losses can be incorporated by
replacing the imaginary wavenumber jk � jω/c with the lossy
wavenumber Γ (Dalmont et al., 2002). Γ is related to the
viscothermal losses by:

Γ � jω
ρ

Sh
+ Zv b( )( ) jω

Sh
ρc2

+ Yt b( )( )[ ]1/2, (119)

where the related loss immitances are evaluated with the tonehole
radius b.

7.2 Low-frequency tonehole model

A known hindrance in developing a time-domain model based
on the lumped tonehole approximation is that the series length
correction, ta, is always negative whether the tonehole is open or
closed. This represents a slowing of the flow as the bore interacts
with the tonehole (Keefe, 1982). It is likely that the contribution of
the negative inertance should not be ignored. We take the approach
in vanWalstijn and Scavone (2000) and subsume the negative length

into the length of the bore. Including the negative length in this
manner has the effect of “breaking” the woodwind bore into a
system of segments connected by two-port junctions. We will not
model the effect of changing the bore length to account for ta when
the tonehole is open and closed. Instead, we will use the open
tonehole t(o)a in all cases. This approximation is motivated by the fact
that the difference in these length corrections is minimal and not the
dominant effect of the tonehole. The resulting low-frequency
approximations of the open shunt impedance and closed shunt
admittance compared to the lossless and lossy tonehole models from
(Lefebvre and Scavone, 2012) is displayed in Figure 8. The responses
are plotted against the related frequency values of kb � ω/cb up to
the cutoff frequency (kb � 1.84) of the planar tonehole mode. Above
this cutoff frequency, the tonehole model is no longer valid (Chaigne
and Kergomard, 2016, 7.6.2).

7.2.1 Open shunt impedance
Following the approach in van Walstijn and Scavone (2000), we

develop a discrete-time model of the closed and open shunt
impedances via a low-frequency approximation. To model the
open shunt impedance, we use the frequency independent ti in
Equation 117a and a small angle approximation for tan(·) in
Equation 115. We cannot use the frequency dependent form of ti
because the function is not positive real and cannot be represented
by any circuit network. Radiation at the end of the tonehole is
modeled using the circuit representation presented in Section 6.5.
The low-frequency open shunt impedance is then given by the series
combination of two inertances and the impedance of the unflanged
radiation approximation

Z o( )
s,lf � jωLi + jωLo + Zrth b( ), (120a)

Li � ρ

Sh
ti, Lo � ρ

Sh
th + tm( ). (120b)

Zrth depends on the tonehole radius, not the bore radius. In
Figure 8, the behavior of the circuit approximation given by
Equations 120a, 120b is compared to the normalized open
tonehole shunt impedance in Lefebvre and Scavone (2012) with
and without losses. The low-frequency approximation is a good
match to both the lossy and lossless theoretical response for kb< 0.5.

FIGURE 7
Left: Equivalent circuit model of the tonehole with negative series inertances Za/2, inner length correction impedance Zi, and shunt impedance Zs .
Right: Low-frequency switching model used in this article with switch s. Zrth corresponds to the radiation impedance model given in Section 6.5
dependent on the tonehole radius.
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7.2.2 Closed shunt admittance
For the closed tonehole, the small angle approximation of cot(·)

results in a compliance in series with an inductance. In our model,
we include a fictitious resistance Rc in series with our compliance.
The resulting closed tonehole model is a series RLC circuit as was
presented in Section 4. The additional resistance is included to better
match the effects of viscothermal losses and the frequency
dependent inner length correction in the closed tonehole model.

In the absence of these components, the closed tonehole model
in Equation 118 behaves akin to a Helmholtz resonator and will
produce a strong resonance at a frequency proportional to the
volume of the closed tonehole (Chaigne and Kergomard, 2016,
1.5). One effect of the viscothermal losses (Equation 119) and the
frequency dependent inner length correction (Equations 117a, 117b,
117c) is to dramatically dampen the tonehole resonance. A
secondary effect is a shifting down—in frequency—of the same
resonance. In both cases, the frequency dependent length correction
is the more dominant effect. The additional resistance, Rc, allows us
to tune the strength of the resonance in our low-frequency
approximation to better match the peak admittance in the
theoretical model. The compliance, Cc can also be adjusted to
account for the shift in tonehole resonance. This is shown in
Figure 8 where the both parameters, Rc and Cc, have been
adjusted to fit the model from Lefebvre and Scavone (2012).

Both parameters can also be used to compensate for the effects of
frequency warping. When the tonehole model is eventually
discretized, the theoretical closed tonehole resonance can
potentially be at a frequency near or above the Nyquist limit. To
minimize the effects of frequency warping, Rc can be adjusted so that
the peak admittance in the low-frequency model is equal to the peak
admittance below the Nyquist limit. Cc can also be adjusted to
prewarp the response.

7.3 Switching PHS tonehole model

To transition between the closed and open tonehole models, van
Walstijn and Scavone (2000) proposed placing the shunt compliance
and inertance, corresponding to the closed and open tonehole models,
in parallel. The compliance and inertances values are thenmodified as
a function of a variable between zero and one. The overall effect is to
open the circuit on the opposing parallel branch by setting the
compliance to zero when the tonehole is open or the inertance to
infinity when the tonehole is closed. An immediate issue with this
approach, outside of simulating a system with infinite inertance at
times, is that the energy stored in the tonehole system becomes infinite
when the tonehole is opened.

In light of these issues, we instead model the tonehole transition
using a switching PHS which is used to represent systems with
variable topology (Duindam et al., 2009, 2.2.5). As a result, the
energy stored in the tonehole is independent of the tonehole state.
The switch does not have to be instantaneous and half-holing is still
possible using the switching model. We combine the open and
closed tonehole systems using the switching variable s. When s � 0,
the tonehole is completely closed and when s � 1 the tonehole is
completely open. The PHS formulation of the switching tonehole
system is given below, and the complete model is represented as a
circuit in Figure 7

vi � ∂tϕi

ic � ∂tqc
io � ∂ϕoHth

vrth � ∂tϕrth

irth � ∂tqr,th

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Jth s( ) − Rth s( )( )

ii � ∂ϕiHth

vc � ∂qcHth

vo � ∂tϕo

ir,th � ∂ϕrthHth

vr,th � ∂qrthHth

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�������︷︷�������︸

eth

+Gth
u
−
L

p
+
0

[ ],
(121a)

p
−
L

u
+
0

[ ] � Gth( )Teth + 0 1
−1 0
[ ]︸���︷︷���︸

Mth

u
−
L

p
+
0

[ ], (121b)

with

Jth s( ) �

0 s − 1 −s 0 −s
1 − s 0 0 0 0
s 0 0 0 0
0 0 0 0 −s
s 0 0 s 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (122a)

Rth s( ) �

sRrth,1 + 1 − s( )Rc 0 0 sRrth,1 0
0 0 0 0 0
0 0 0 0 0

sRrth,1 0 0 sRrth,1 0
0 0 0 0 sR−1

rth,2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (122b)

Gth � 1 0 0 0 0
0 0 0 0 0
[ ]T. (122c)

The overset symbols ()− and ()+ denote the acoustic variables to the
left and right of the tonehole, respectively. The total stored energy in
the tonehole is

Hth � ϕ2
i

2Li
+ q2c
2Cc

+ ϕ2
o

2Lo
+ ϕ2

rth

2Lrth
+ q2rth
2Crth

. (123)

The energy dissipated in the system is now also a function of s,

Qth s( ) � 〈eth,Rth s( )eth〉, (124)

FIGURE 8
Comparison of the normalized open tonehole shunt impedance
(A) and closed tonehole shunt admittance (B) for the lossless (red,
dashed), lossy (blue, solid) tonehole models in Lefebvre and Scavone
(2012), and the circuit approximation (green, solid) proposed in
this article. Parameters used for the plots are r � 7.5mm, δ � 0.5,
th � 1.1b, T = 26.85°C, kb � ω/cb.
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and the power transmitted through the two-port boundary is

Bth � p
−
Lu
−
L + p

+
0u
+
0. (125)

The model is a PHS for the tonehole state value 0≤ s≤ 1 as
evident by the skew-symmetric structure of Jth(s). In Equations
121a, 121b, we have a hybrid definition of efforts and flows due to
the open shunt inertance, Lo, and the inner length correction
inertance, Li, sharing an effort. Typically, these two inertances
would be combined into a single element to eliminate the non-
causal connection (Hélie, 2022). However, the two elements must
remain distinct so that Li can interact with the elements on
the closed tonehole branch of the model. A similar approach is
taken in (Müller and Hélie, 2021; Section 6.2) to keep
inductances distinct.

7.3.1 Discretization of the switching
tonehole model

The system in Equations 121a, 121b has a hybrid PHS definition
that is not easily discretized using the methods outlined in Section
3.2. However, using the definition in Equation 13 we can rewrite
Equation 121a as

δt+ Lf1x
n+1

2
th( ) + Lf2x

n+1
2

th � Jth s( ) − Rth s( )( ) μt+ Le1x
n+1

2
th( ) − Le2x

n+1
2

th( )
+ Gthu

n+1
2

th ,

(126)
where xth � [ ϕi qc ϕo ϕrth qrth ]T are the tonehole energy storage
states and the system is discretized on the n + 1

2 timestep. The
matrices denoted with L are diagonal matrices equal to

Lf1 � diag 1, 1,Δt/ 2Lo( ), 1, 1[ ]( ), (127a)
Lf2 � diag 0, 0,Δt/ 2Lo( ), 0, 0[ ]( ), (127b)

Le1 � diag 1/Li, 1/Cc, 2/Δt, 1/Lrth, 1/Crth[ ]( ), (128a)
Le2 � diag 0, 0, 2/Δt, 0, 0[ ]( ). (128b)

The explicit update for the tonehole system is

x
n+1 1

2
th � Athx

n+1
2

th + Bth

u
−n+1

2

L

p
+ n+1

2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (129a)

p
− n+1

2

L

u
+n+1

2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Cthx
n+1

2
th +Dth

u
−n+1

2

L

p
+ n+1

2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (129b)

and defined by the matrices

Hth � Lf1 −
Δt

2
ALe1( )−1,

Ath � Hth Lf1 + Δt
1
2
ALe1 − ALe2 − Lf2( )[ ], (129c)

Bth � ΔtHthGth, (129d)
Cth � GT

th

1
2
Le1 Ath + I( ) + Le2( ), Dth � 1

2
GT

thLe1Bth +Mth, (129e)

where A � (Jth(s) − Rth(s)) and I is the appropriately sized 5 × 5
identity matrix. All the matrices are dependent on the tonehole state,
s, and must be recomputed if the tonehole state changes. The
discrete energy is an exact discretization of the terms in
Equations 123–125.

In Figure 9, we examine the input impedance of a cylindrical
pipe with a single tonehole at its center for different values of
s. We model the system using the discrete PHS described thus
far. The simulation includes losses and the unflanged radiation
condition at the end of the bore. In the case the tonehole is
completely closed (s � 0) or open (s � 1), the response is
compared to the input impedance derived using the
transfer matrix method (TMM) (Scavone, 2024). The discrete
PHS model closely matches the behavior of the TMM at
frequencies up to around 16 kHz. As s goes from 0 to
1 the response gradually shifts, starting with the higher
frequencies.

8 A complete model

To build a complete model we must connect the bore, tonehole,
radiation, and reed sub-models discussed thus far. The pressure
and volume velocities at the external ports in these elements have
been defined such that they are linked by the 2 × 2 skew-symmetric
matrix, J, defining a parallel connection. The pressure output from
one model at z � l is equal to the pressure going into another
model (pout

l � pin
l ) and the volume velocities have opposite sign

(uoutl � −uinl ). We will first discuss coupling two bores together
through a general two-port system and coupling a bore to the
radiation model in Section 6.5. We will then discuss the non-linear
coupling between the bore and reed model from Section 5. Finally,
we will perform a simulation using a simplified bore profile
with toneholes.

FIGURE 9
Input impedances of a cylindrical tube and single tonehole
derived from a discrete PHS simulation (blue) for various tonehole
conditions s. The cylindrical tube has length L � 20fs/c − ta m and
radius r � 7.5mm with a tonehole at L/2 with parameters δ � 0.5
and th � 1.1b. The simulation was carried out with T � 26.85°C and
fs � 48kHz. At the fully closed (s � 0) and open (s � 1) states the
response is compared to the input impedance derived using the TMM
(red, dashed).
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8.1 Linear coupling to two-ports and one-
port systems

We first consider a general two-port system coupling two bores
discretized with the scheme in Equations 97a, 97b. We seek to solve
the equation,

μt+ p
− n
N( )

−u+n+
1
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Cxn+
1
2 +D

u
−n+1

2

N

μt+ p
+ n
0( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (130)

for p
−n+1
N and u

+n+1
2

0 at time n + 1
2 following the first step of the Störmer-

Verlet scheme. The overset symbols ()− and ()+ will again be used
denote elements pertaining to the system to the left and right of the
two-port. C and D are the explicit output matrices produced by the
discretization of the two-port junction. x refers to the internal
storage states for the two-port junction.

Using Equations 98a, 98b, 13, we rewrite u
−n+1

2

N in terms of
μt+(p

−n
N) and some additional terms. The same can be done to

express μt+(p
+n
0) in terms of u

+n+1
2

0 and some additional terms. Then we
can rewrite Equation 130 as a function of a diagonal matrix,V, and a
residue vector containing the additional terms r,

μt+ p
− n
N( )

−u+n+
1
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Cxn+
1
2 +D V

μt+ p
− n
N( )

u
+n+1

2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + r⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠. (131)

This equation can be solved for the vector [μt+(p
−n
N) u

+n+1
2

0 ]T and
then p

−n+1
N is found by definition of the forward averaging operator.

For the lossy horn equation, the diagonal matrix V and the residue
vector r are equal to

V � diag − Δ
−
z

2L
−
ψ

2
Δt

+D
−
t( ), 2L

+
ψΔt

Δ
+
z D

+
tΔt + 2( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (132a)

and

r �
u
−n+1

2

N−1
2
+ Δz

−

2
2

ΔtL
−
ψ

p
− n
N − C

−
tq
−n−1

2

t
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

Δ
+
z 2p

+ n
0 − ΔtL

+
ψC
+
tq
+n−1

2

t( ) − 2ΔtL
+
ψu
+n+1

2
1
2

Δ
+
z D

+
tΔt+2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (132b)

The overset symbols have again been used to distinguish
elements Lψ � ρc2

SN
at the bore boundaries, Δz the spatial

discretization step for each bore, and Ct, Dt, and q
n−1

2
t

corresponding to the explicit thermal loss output matrices and
state at the end of each bore. After solving Equation 131, the next
input values are used to update the two-port junction states and
the thermal loss states at the end of the left bore. The system in
Equation 131 is only a 2 × 2 system and can be solved without the
use of a matrix inverse. In the case when there is a sharp
discontinuity in the bore profile, the same approach can be
used to couple two bores of different radii. The discontinuity
two-port is memoryless with C � 0 and

D � 0 1
−1 0
[ ]. (133)

To couple the bore to the one-port lumped radiation model
described Section 6.5 we only need to solve the top line of
Equation 131 and the matrix D reduces to a scalar.

8.2 Nonlinear coupling between the reed
and bore

The final remaining step is to couple the reed model from
Section 5 to the lossy horn equation at l � 0. Without any loss of
generality, we shift the discrete-time reed model to the n + 1

2 time
step. Then, due to the aforementioned sign conventions, the
discrete-time relationship between the volume velocity at the
input to the bore and the output of the reed is given as

u
n+1

2
0 � Srμt+

]n+1
2

m
( ) + sign p

n+1
2

Δ( )Sn+1
2

j

((((((
2 p

n+1
2

Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣
ρ

√√
, (134)

corresponding to the bottom line of Equation 130. The discrete-time
definitions for the jet-area Sj and pressure difference pΔ are

S
n+1

2
j � yl − yn+1

2[ ]+, p
n+1

2
Δ � pn+1

2
m − μt+p

n
0. (135)

The associated discrete energy loss due to the Bernoulli flow and
power transfer through the boundary are

qf � S
n+1

2
j sign p

n+1
2

Δ( ) ((
2
ρ

√
p
n+1

2
Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣3/2, br � p
n+1

2
in u

n+1
2

in + pn+1
2

m un+1
2

m . (136)

Using the definition of u
n+1

2
0 from Equation 98a and Equations

13, 135, we rewrite u
n+1

2
0 in terms of p

n+1
2

Δ

u
n+1

2
0 � −b1pn+1

2
Δ + b1p

n+1
2

m + bn0, (137)
where

b1 � Δz

2
Dt + 2

LψΔt
( ), (138a)

b
n+1

2
0 � u

n+1
2

1
2

+ Δz

2
Ctq

n−1
2 − 2

LψΔt
pn
0[ ]. (138b)

Replacing μt+( ]
m) in Equation 134 with ξ, we derive a nonlinear

equation in ξ and p
n+1

2
Δ :

G p
n+1

2
Δ( ) � −b1pn+1

2
Δ − c1

(((((
p
n+1

2
Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣√
+ b1p

n+1
2

m + b
n+1

2
0 − Sr

Δt
ξ � 0. (139)

As in Bilbao et al. (2015b), we have a pair of coupled nonlinear
equations, F(ξ), from Equation 67 and G(pn+1

2
Δ ) above. These

equations can be solved iteratively for ξ by first solving
Equation 67 for p

n+1
2

Δ in terms of ξ, substituting the result into
Equation 139, and using a Newton-Raphson iteration on the
combined equation.

For the linearly implicit quadratized scheme discussed in Section
5.3, we can derive a direct solution for p

n+1
2

Δ . Substituting Equation 78
into Equation 139 and using the definition of ξ in Equation 68a, we
produce a quadratic equation in

(((((
|pn+1

2
Δ |

√
,

−c2sign p
n+1

2
Δ( ) pn+1

2
Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣ − c1sign p
n+1

2
Δ( ) (((((

p
n+1

2
Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣√
+ c0 � 0 (140)
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with coefficients dependent on the branching conditions of gn in
Equation 79

c2 �
b1 + S2r

a0
, h< 0

b1 + S2r

a
n+1

2
2 Δt

, h≥ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (141a)

c1 � S
n+1

2
j

(
2
ρ

√
, ∀h, (141b)

c0 �
b1p

n+1
2

m + b
n+1

2
0 − Sr

Δt

a
n+1

2
1

a0
, h< 0

b1p
n+1

2
m + b

n+1
2

0 − Sr
Δt

a
n+1

2
1 − gnμt+σ

n

a
n+1

2
2

, h≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (141c)

with

a
n+1

2
2 � a0 + gn+1

2 gn+1
2 + γc

Δt
σn( ). (141d)

a0 and a
n+1

2
1 are defined in Equations 68b, c. c2, c1 ≥ 0 and we can use

the same reasoning as in Harrison-Harsley (2018), Chatziioannou
et al. (2019) to guarantee a positive and real solution by

sign p
n+1

2
Δ( ) � sign c0( ), (142)

and taking the positive solution to the quadratic equation:(((((
p
n+1

2
Δ

∣∣∣∣∣∣ ∣∣∣∣∣∣√
� −c1 +

(((((((((
c21 + 4c2 c0| |√
2c2

. (143)

The value of p
n+1

2
Δ can then be used to compute ξ, ξp, and the

associated reed state variables at the next timestep. In the case there
is no collision, gn can be computed as in the top branch of
Equation 79 to ensure the contact energy becomes zero. The
value of ξ can be used to compute the input flow into the bore
using Equation 134.

8.3 Simplified bore synthesis simulation

For our simulation experiment, we designed a simplified bore
profile with two toneholes. Through an optimization procedure
similar to Lefebvre (2010), the bore length and tonehole position
were tuned such that the first impedance peak corresponds to the
note C4 when all the holes are closed, and D4 and E4 when one
tonehole is open and the other is closed. The resulting bore profile
and tonehole positions are shown in Figure 10, and the dots indicate
the tonehole positions. The bore radius is defined by the
piecewise function

r z( ) �

r1(
3

√ , 0≥ z< z1

tan θ( ) z2 − z1( ) + r1, z1 ≥ z< z2
β

za − z − z2( )v, z2 ≥ z<L

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (144)

and is composed of a cylinder, truncated cone, and Bessel horn
(Chaigne and Kergomard, 2016). The parameters β, za, and v are
related to the Bessel horn definition. The radius of the cylinder is

chosen to match the missing volume of the truncated cone. The
parameters defining the bore as a result of the optimization along
with the reed parameters used in the synthesis simulation are given
in Table 1.

The discrete Hamiltonian of the system is the sum of the discrete
Hamiltonian from each sub-model

h � +hr,σ + ∑
bores

hb + ∑
toneholes

hth. (145)

Likewise, the dissipated energy is,

q � qσ + ∑
bores

qb + ∑
toneholes

qth. (146)

The only boundary term is

b � pn+1
2

m un+1
2

m , (147)
as the boundary terms for each sub-model cancel with each other
due to the use of energy-conserving interconnections.

8.4 Results and discussion

The simplified geometry was used to synthesize the first two
measures of “Mary Had a Little Lamb,” corresponding to a 4.8 s
long audio sample1. We evaluate the pressure at l � 0 and times
n + 1

2 corresponding to the boundary condition of the bore. The
resulting spectrogram is shown in Figure 11 along with the input
mouth pressure, tonehole states, and accumulated energy error.
The accumulated energy error is on the order of 10−9 over the
length of the entire simulation. The discrete energy is not an exact
sampling of the continuous time energy function due to
discretization with the Störmer-Verlet method in the bore
model. The gradual increase in accumulated error was
determined to be primarily a result of precision loss from
computing the synthesis matrices related to the discrete
gradient method. Other possible contributions to the shown
accumulated energy error drift are the order of operations in

FIGURE 10
Simplified bore profile used in final simulation consisting of a
cylinder, truncated cone, and a Bessel horn with two toneholes.
Tonehole positions are indicated by white markers. Parameter values
are provided in Table 1.

1 An audio sample is provided as part of the supplementary material.
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the scheme computations and the energy error computation itself
(Torin, 2015). The variation of errors is bitwise, displaying only
integer multiples of machine precision as in Bilbao and Harrison
(2016). It is possible to confirm that the variation in accumulated
energy error is random and not systematic via multiple runs of the
simulation highlighting the fact that different energy variations are
due to the propagation of random finite-precision rounding errors.

Simulations were run in Python on an Apple M3 CPU at a
48 kHz sample rate and are not intended for real-time computations.
Defining the real-time factor (RTF) as the ratio of the simulated
elapsed time and the real processing elapsed time, the simulation
performed in this section had an RTF approximately equal to 1/16.
An RTF much greater than unity is necessary for real-time
computations. A significant bottleneck in the simulation is

computation of the viscothermal losses. Running the same
simulation without viscothermal losses resulted in an RTF of
approximately 1/5.

9 Conclusion

In this article, we have presented a port-Hamiltonian systemmodel of
a single-reedwoodwind instrument comprised of a lumped reedmodel, a
one-dimensional horn model, and a lumped tonehole model. We then
discretized each model using FDTD methods. The PHS framework has
aided us in systematically deriving sub-models that can be composed in a
modular and energy-conserving fashion, allowing us to construct bores
with arbitrary geometries and tonehole placements.

TABLE 1 Synthesis parameters used in the final simulation.

Bore parameter Value Units Reed parameter Value Units

L 0.56 m Sr 100 mm2

z1 5 cm w 2 cm

z2 0.7 L m m 8 mg

r1 5.5 mm k 1,200 N/m

β 0.0083 - γ 9,000 s−1

za 16.9 cm kc 82.5 × 106 N/mα

v 0.3 - γc 3 s/m

zth,1 0.365 m α 2.5 -

zth,2 0.432 m yl 0.3 mm

bth,1 6.5 mm yc 0.6 yl mm

bth,2 7.5 mm

tth,1,2 3.5 mm

FIGURE 11
Simulation synthesizing the first two measures of “Mary Had a Little Lamb” using the simplified bore described in this section. (A) and (C) display the
provided mouth pressure and tonehole states used in the synthesis. (B) and (D) Demonstrate a spectrogram of the resulting synthesized audio and the
accumulated energy error.
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A final simulation based on a simplified bore geometry
demonstrates bitwise machine precision variations in the
accumulated energy error resulting in a slow long term drift. The
drift is not systematic, but random and is based on the propagation of
random finite-precision rounding errors. However, further statistical
analysis of the scheme should be conducted from hundreds of runs to
characterize the behavior of the error as inHairer et al. (2008). Real-time
computation was not a concern in our implementation and proper
benchmarking in a compiled programming language, such as C++,
would allow for the evaluation of the computational load of the scheme.

Refinements to the lumped reed model and tonehole model were
presented. A linearly implicit scheme based on energy quadratization of
the Hunt-Crossley contact force was proposed and the behavior of the
scheme was compared to a nonlinear implicit scheme solved via a
Newton-Raphson iteration. We demonstrated that the linearly implicit
scheme maintains the overall characteristic of the interaction. A new
low-frequency lumped model of the tonehole was proposed that
provides better agreement to existing literature by including damping
in the closed tonehole model. The stored energy in the discrete tonehole
model is now bounded through use of a switching PHS structure.

The lossy horn equation was discretized using a general
Störmer-Verlet scheme, motivating the scheme proposed by
Bilbao and Harrison (2016). This initial investigation merits
further research into the efficacy of symplectic schemes for
discretizing musical systems where numerical dispersion is of a
primary concern. A major computational bottleneck in the overall
model is due to the complexity of the viscothermal losses as two
16th-order filters are necessary at every spatial index to accurately
model the losses (Bilbao et al., 2015a). Development of a more
efficient representation remains for future work. Due again to the
modular nature of the PHS framework, any future improvements to
the sub-models described here or new models of radiation
conditions or losses—provided these sub-models are described as
a PHS—can be incorporated into the existing model with ease.
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