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Ferromagnetic materials are extensively utilized in industrial settings where the
early detection and repair of defects is paramount for ensuring industrial safety.
During the enhanced magnetic memory detection of micro-defects, many
interference signals appear in the detection signal, which makes it difficult to
accurately extract the characteristics of the micro-defect signals, significantly
affecting detection effectiveness. When improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) is employed
independently for signal denoising, the noise and feature signals of the
transition components are retained or removed. When variational mode
decomposition (VMD) is employed independently for signal denoising, the
denoising effect is restricted because of the difficulty in determining the
penalty factor α and the number of decomposition layers m. To solve these
problems, a denoisingmethod for enhancedmagnetic memory detection signals
based on ICEEMDAN and VMD, called ICEEMDAN–VMD, is proposed in this
paper. First, a comprehensive index (CI) combining information entropy (IE) and
the correlation coefficient R is proposed, then the signal components obtained by
performing decomposition with the ICEEMDAN method are divided into noise-
dominant components, transition components, and useful signal components
based on the CI. Subsequently, VMD is employed to perform secondary
decomposition on the transition components obtained from the ICEEMDAN
method and calculate the correlation coefficients. Ultimately, the optimal VMD
components and useful signal components obtained by the ICEEMDAN method
are selected for signal reconstruction to obtain a denoised signal. To validate the
effectiveness of the proposed method, the denoising effects of the
ICEEMDAN–VMD, ICEEMDAN, and VMD methods were compared based on
the signal-to-noise ratio (SNR) and fuzzy entropy (FE). The comparison indicated
that the ICEEMDAN–VMD denoising method significantly enhanced the
denoising effect, and the SNRs of the components of the magnetic field signal
could be increased by up to 69.426%. The SNR of each gradient component of
the magnetic field signal could be improved by up to ten times, and the FEs of the
signal components and their corresponding gradient components could be
reduced by 24.198%–81.011%, respectively.
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1 Introduction

Ferromagnetic materials are essential raw materials for modern
industry and are widely used in various load-bearing structures, such
as pipelines, pressure vessels, and bridges. Due to environmental and load
factors, ferromagnetic components inevitably develop a variety of defects
that can adversely affect their performance and safety, potentially leading
to serious failures (Shi et al., 2020). Metal magnetic memory, as a nascent
non-destructive testingmethod, fulfills the objective of identifying defects
or stress concentrations in ferromagnetic materials by detecting changes
in the magnetic field of the object under test due to defects or stress
concentrations. Nevertheless, it possesses the disadvantage of weak
changes in the magnetic field, which is readily drowned out by
ambient noise. Enhancing magnetic memory detection by applying a
magnetic field of a certainmagnitude to the object to be tested so that the
sample reaches unsaturation magnetization achieves the effect of
enhancing the magnetic signal in the anomalous area and suppressing
noise. Enhanced magnetic memory testing can not only detect micro-
defects such as plastic deformation and stress concentration but also
improve the detection rate ofmacro-defects such as cracks and corrosion,
and thus has broad application prospects (Liu et al., 2022; Zhang and Liu,
2024; Liu et al., 2018). However, when there is strong interference in the
detection environment, the enhanced magnetic memory signal and its
gradient signal will still be severely affected, especially for the signals of
micro-defects, which can easily lead to missed detection. Therefore,
establishing an effective denoising method for the enhanced magnetic
memory signals of micro-defects is of great significance.

The face of micro-defects when the magnetic field anomaly region
is weak is easily covered in strong interference environments, and
defects cannot be detected. Currently, the empirical mode
decomposition (EMD) and related improved methods have been
widely used in signal denoising for magnetic detection. Leng et al.
(2010) andChen et al. (2016) proposed an improved EMDmethodwith
different adaptive decomposition methods, and they achieved good
application results inmetalmagneticmemory gradient signal denoising.
However, they did not solve the problems of mode aliasing and
endpoint effects that occur during EMD, and the loss of useful
signals occurred due to the direct removal of high-order
components. Luo et al. (2023) proposed an EMD-wavelet threshold
denoising (WTD) method for metal magnetic memory signals and
experimentally verified its feasibility. Song et al. (2019) and Bai (2019)
applied an improved denoising method of ensemble empirical mode
decomposition (EEMD) to metal magnetic memory detection.
However, EEMD faces the problem that auxiliary white noise
cannot be completely removed. Shi et al. (2019) and Liang (2020)
proposed complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) to solve the auxiliary white noise
residual problem of the EEMD method. However, this can result in
the emergence of spurious modes. Zhang et al. (2019) and Zhang et al.
(2023) found that the improved complete ensemble empirical mode
decomposition with adaptive noise (ICEEMDAN) method can achieve
a better signal-to-noise ratio (SNR) and root mean square error than
CEEMDAN, but there are still noise residuals and characteristic losses.
Zhang et al. (2022) appliedVMD tomagnetic flux leakage detection and
demonstrated that its noise reduction effect is better than that of EMD.

To effectively process the enhanced magnetic memory signals of
micro-defects, we propose a denoising method for enhanced magnetic
memory signals based on ICEEMDAN–VMD by comparing

ICEEMDAN with VMD. SNR and fuzzy entropy (FE) were selected
as evaluation indicators to compare the denoising effects of
ICEEMDAN–VMD, ICEEMDAN, and VMD, and the result
indicated that ICEEMDAN–VMD yielded a better denoising effect
for the enhanced magnetic recording detection signal of micro-defects.

2 Test program and micro-defect
signals using enhanced magnetic
memory detection

As shown in Figure 1, the enhanced magnetic memory detection
system used in this study was composed of a loading device,
magnetization device, and magnetic signal acquisition device. The
loading device was a DF13.305T electronic universal testing machine,
which was used to apply tensile loads to the specimens. The
magnetization device was composed of an IT6862A programmable
DC power supply and a U-shaped magnetic yoke. The tested area of
the specimen was magnetized to a non-saturated state by applying
excitation currents to a U-shaped magnetic yoke. The magnetic signal
acquisition device consisted of a CH3600 three-dimensional Gaussian
meter and a three-axis displacement control platform, enabling
automatic scanning of magnetic signals of the tested area.

As shown in Figure 2, the specimens were made of Q235 steel
with dimensions of 450 mm × 40 mm × 4 mm (length × width ×
thickness). A micro-defect 0.1 mm deep was simulated by a plastic
indentation formed by pressing a Ø2 mm indenter at the center of
the specimen. The excitation current was 0.5 A. The specimen was
loaded to 400MPa and was then kept loaded. The probe was lifted to
a height of 1mm. The horizontal component Bx, normal component
By, and tangential component Bz of the magnetic field within a
range of ±20 mm from the center of the indentation were measured
by the magnetic signal acquisition device, then the gradient values of
the three components—represented respectively by GBx, GBy, and
GBz—were calculated along the x direction.

The original detection signals of Bx, By, and Bz are shown in
Figures 3A–C, and the Bx, By, and Bz with the trend components of
the excitation magnetic field removed are shown in Figures 3D–F. It
can be observed in Figures 3A–F that there were only minor
abnormal fluctuations of Bx, By, and Bz, and that Bx had an
indistinct peak at the indentation at the indentation site due to
the interference factors. Furthermore, as shown in Figures 3G–I,
GBx, GBy, and GBz at the indentation were completely
overwhelmed by noise signals, making it impossible to accurately
identify the location of the micro-defect.

3 Analysis of ICEEMDAN and VMD
denoising effects

3.1 Denoising processing steps and effect
of ICEEMDAN

ICEEMDAN is an improved algorithm of CEEMDAN, which
replaces the Gaussian white noise by the kth-order intrinsic mode
function (IMF) component noise resulting from the original EMD
during the CEEMDAN process. The process of ICEEMDAN is as
follows (Marcelo et al., 2014).
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Step 1: Adaptive Gaussian white noise is added to the
original signal:

B1
i( ) t[ ] � B1 t[ ] + ε0E1 p i( ) t[ ]( ) i � 1, 2...n( ), (1)

where B1[t] denotes the original signal, E1 denotes that the EMD is
performed once, p(i)[t] denotes the ith-order component of the noise
added to the original signal, and ε0 denotes the ratio of the SNR to
the standard deviation of the added noise.

FIGURE 1
Enhanced magnetic memory detection system.

FIGURE 2
Schematic diagram of enhanced magnetic memory test detection.
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FIGURE 3
Detection signals and their gradient signals with trending components removed. (A) Original horizontal component Bx , (D) Bx without the trend
components of the excitation magnetic field, and (G) its gradient GBx . (B) Original normal component By , (E) By without the trend components of the
excitation magnetic field, and (H) its gradient GBy . (C)Original tangential component Bz , (F) Bz without the trend components of the excitation magnetic
field, and (I) its gradient GBz.
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Step 2: EMD is conducted on the noise-added signal to obtain the
first-order residual R1[t] and first-order intrinsic mode
function IMF1:

R1 t[ ] � ∑n
i�1
M B1

i( ) t[ ] + ε1E1 p i( ) t[ ]( )( )
IMF1 � M B1

i( ) t[ ]( ) − R1 t[ ],

⎧⎪⎪⎨⎪⎪⎩ (2)

where M(•) denotes the calculation of the local mean, and R1[t]
denotes residual signal.

Step 3: The residual signal R1[t] is treated as a new signal, and
further repetitive processing is carried out in accordance
with steps (1) and (2) to obtain the ith-order residual Ri[t]
and the ith-order intrinsic mode function IMFi:

Ri t[ ] � ∑n
i�1
M(Ri−1 t[ ] + εi−1En p i( ) t[ ]( )

IMFi � Ri−1 t[ ] − Ri t[ ].

⎧⎪⎨⎪⎩ (3)

Step 4: The above steps are repeated until the residual cannot be
decomposed, and the original signal is decomposed into a
series of intrinsic mode functions and the residuals:

B1 t[ ] � ∑n
i�1
IMFi + Ri t[ ]. (4)

Step 5: In order to achieve more accurate judgment of the
transition component, the comprehensive index CI
combined the information entropy IE with the
correlation coefficient R is proposed, which is calculated:

CI � N IE( )*N R( ), (5)
where N(x) represents normalization processing, the information
entropy IE represents the uncertainty of possible events occurring in
the information source, calculated by IE � −∑n

i�1p(ifmi)logp(ifmi),
and the correlation coefficient R is calculated by.

R s, IMFj( ) � ∑N
i�1

s − �s( ) IMFj − IMFj( )��������∑N
i�1

s − �s( )2
√ ����������������∑N

i�1
IMFj − IMFj( )2√ . (6)

Step 6: The comprehensive index CI between each order
component and the original signal are calculated. The
kth-order component IMFk is selected as the transition
component, the CI of which is the local extremum. Then,
the denoised signal is reconstructed with the kth-order
transition component IMFk and its subsequent order
components, and the 1st-through kth-order components
before the boundary component are discarded.

According to the ICEEMDAN process, the CI of IFM
components of Bx, By, and Bz, shown in Figure 4A, exhibits an
initial trend of rapid decline followed by aminor increase, and then a
further decline. The local maximum value of Bx was located at
IMF7, and the local maximum values of By and Bz were located at
IMF8, which is consistent with the characteristics of the IFM

components of Bx, By, and Bz. Figures 4B–D reveals that the
eighth-order components of By and Bz are mainly low-frequency
signals with obvious defect signal characteristics, while the first- to
seventh-order components are mainly high-frequency noise signals.
The seventh-order component of Bx has a more obvious
characteristic of the micro defect, while the first- to sixth-order
components of Bx are mainly high-frequency noise signals.

Using IMF7 as the transition component of Bx and IMF8 as the
transition component of By and Bz, the ICEEMDAN denoising
results of the enhanced magnetic memory signal of the micro-defect
are shown in Figure 5. The results indicate that the signal anomalies
of Bx, By, Bz, and their gradient values were significantly enhanced
at the micro-defect location. Bx presents a peak and GBx a peak and
valley at the location the micro-defect. Furthermore, By and Bz

present peaks and valleys, and GBy and GBz present valleys at the
location of the micro-defect. Nevertheless, due to the presence of
noise signals in the transition component obtained via ICEEMDAN,
a certain amount of noise was still present in the non-defect area,
resulting in fluctuations in the signal of this area. When calculating
the gradient values for each component of the magnetic field, the
noise signals were further amplified, causing a significant increase in
the fluctuation amplitudes of GBx, GBy , and GBz in the non-defect
area, leading to difficulties in defect identification using GBx, GBy,
and GBz. Moreover, the components before the transition
component often contained defective feature signals, especially
the first component IMFk−1 before the transition component
IMFk. Directly discarding IMFk−1 often resulted in the loss of
useful signals.

3.2 Denoising processing steps and the
effect of VMD

VMD is an adaptive denoising method based on EMD. The
decomposition process is based on the following formula (Zhang
et al., 2022):

min
um,ωm{ }

∑
m

∂t δ t( ) + j/πt)*um t( )[ ]e−jωmt
���� ����22⎧⎨⎩ ⎫⎬⎭

s.t.∑M
m�1

um � B t( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (7)

where m is the number of modal decompositions, um is the mth-
order mode corresponding to the decomposition, ωm is the center
frequency corresponding to the mth-order mode, δ(t) is the
Fermi–Dirac distribution, * denotes the convolution, and B(t) is
the detection signal. To solve the constrained variational problem,
an augmented Lagrangian function L( um{ }, ωm{ }, λ) is introduced:

L um{ }, ωm{ }, λ( ) � α∑
m

∂r δ t( ) + j/πt( )*um t( )[ ]e−jωmt
���� ����2

2

+ B t( ) −∑
m
]m t( )

��������
��������22 + 〈λ t( ), B t( )−∑

m

]m t( )〉

(8)
where λ denotes the Lagrange multiplier, and α denotes the penalty
factor. After being updated, the μm,ωm, (λ){ } is calculated as shown
in Equation 9:
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μ̂n+1m ω( ) �
f̂ ω( ) − ∑

i≠m
μ̂i ω( ) + λ̂ ω( )

2
1 + 2α ω − ωm( )

ω̂n+1
m ω( ) � ∫∞

0
ω μ̂n+1m ω( )∣∣∣∣ ∣∣∣∣2dω∫∞

0
μ̂n+1m ω( )∣∣∣∣ ∣∣∣∣2dω

λ̂
n+1

ω( ) � λ̂
n
ω( ) + γ f̂ ω( ) −∑

m

μ̂n+1m ω( )⎡⎣ ⎤⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

During the VMD, it is necessary to determine different
optimal penalty factors α and the number of decompositions
m based on the complexity of the signal. According to experience
and the comparison of the decomposition effects for different α
and m, the optimal α and m combinations for Bx, By, and Bz were
respectively determined to be (α, m) = (5 × 105, 7), (7 × 105, 7),
and (1.2 × 106, 15). The denoising results of the VMD are shown
in Figure 6.

FIGURE 4
ICEEMDAN correlation coefficient selection and typical decomposition result charts. (A) Correlation coefficients of Bx , By , and Bz , (B) IFM
components of Bx , (C) IFM components of By , and (D) IFM components of Bz .
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The results indicated that the signal anomalies of Bx, By, Bz,
and their gradient values were more conspicuous at the site of
the micro-defect after VMD denoising. Bx presents a peak and
GBx presented a peak and valley at the location micro-defect. By

and Bz present peaks and valleys, respectively, GBy and GBz

present valleys at the site of the micro-defect. Compared with
the signals after ICEEMDAN denoising, the signal obtained by
VMD denoising had smaller signal fluctuations in the non-
defect region, suggesting that VMD could eliminate more noise
signals. Nevertheless, there were minor continuous fluctuations
in the gradient values. The main reason for these fluctuations
some extremely small noise signals in Bx, By, and Bz after VMD
denoising, which would affect the subsequent extraction of
micro-defect feature signals.

4Denoising processing steps and effect
of ICEEMDAN–VMD

4.1 Denoising processing steps of
ICEEMDAN–VMD

In response to the deficiencies of the ICEEMDAN and VMD
methods, the ICEEMDAN–VMD joint signal denoising method is
proposed, the process of which includes main four steps. The steps
are shown in Figure 7 and described as follows:

Step 1: ICEEMDAN is performed on the original enhanced
magnetic memory signals of the micro-defect to obtain
m IMF components.

FIGURE 5
Denoising result of ICEEMDAN. (A) Horizontal component Bx and (D) its gradient GBx . (B) Normal component By and (E) its gradient GBy . (C)
Tangential component Bz and (F) its gradient GBz .
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Step 2: IMF component classification. The correlation coefficients
between the IMF components obtained in step 1 and the
original signal are calculated, and the decomposition
components are classified into three types—the noise-
dominated components from IMF1 to IMFk−2, the
transition components IMFk−1 and IMFk, and the useful-
signal-dominated components from IMFk+1 to IMFm.

Step 3: Secondary denoising by VMD. The penalty factors and the
number of decompositions are selected based on
experience, and a secondary decomposition on the
transition component IMFk is performed via VMD to
obtain a series of V − IMFn components. Then, the
correlation coefficients between the obtained V − IMFn

components and IMFk are calculated to obtain the most
relevant V − IMFj component to IMFk.

Step 4: Signal reconstruction. The component V − IMFn−1,
IMFk, and the components IMFk+1 to IMFm obtained
in Step 2 are reconstructed to obtain the denoising signal
of B(t).

Compared with ICEEMDAN, ICEEMDAN–VMD can
effectively remove noise signals in the transition components,
reduce signal noise in non-defect areas, and make the gradient
values more stable, as well as minimize the loss of useful signals to
the greatest extent. Compared with VMD, ICEEMDAN–VMD can
effectively solve the problem of the difficult selection of penalty
factors and the number of decomposition layers and avoids the
problem of small fluctuations in the signal gradient values caused by
the extremely small noise signals after VMD denoising.

4.2 Analysis of the noise reduction effect of
the ICEEMDAN–VMD signal
processing method

The ICEEMDAN–VMD denoising method was used to process
the detected signals of a micro-defect. The selection of penalty factor
α and the number of decomposition layers m for the VMD method
was made according to the predictions outlined in Xiaoya et al.

FIGURE 6
Denoising result of VMD. (A) Horizontal component Bx and (D) its gradient GBx . (B) Normal component By and (E) its gradient GBy . (C) Tangential
component Bz and (F) its gradient GBz .
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(2022), with the stipulated values set to α = 3,600 andm = 4, with the
results shown in Figure 8. The results indicate that the
ICEEMDAN–VMD denoising method could effectively reduce
the influence of noise signals on the defect characteristic signals
Bx, By, and Bz as well as their gradient values, and it could
significantly reduce abnormal signal fluctuations in non-defect
areas, making the signal anomalies at defect locations clearer.

Comparing the signals processed by ICEEMDAN, VMD, and
ICEEMDAN-VMD, the signal components and their gradient
curves processed by ICEEMDAN-VMD are smoothest, especially
in non-defect areas where the signal fluctuation amplitude is
smallest (Figure 9).

Furthermore, to quantitatively compare the improved effect
of the ICEEMDAN–VMD method, the SNR and FE were selected
to evaluate its effect. The SNR is the ratio of useful signal energy
to noise energy; the larger the SNR, the better the denoising effect.
Since the original pure signal could not be obtained, the
maximum amplitude of the useful signal was selected for
comparison with the maximum amplitude of the noise signal
for calculation. The SNR formula is shown as follows (Ren
et al., 2021):

SNR � 20 lg
B t[ ]
N t[ ], (10)

where B[t] represents the maximum magnitude of the useful signal,
and N[t] represents the maximum magnitude of the noise signal.

FE serves as a measurement of the probability that a time series
will generate new patterns when the dimensionality varies. The
higher the probability that the time series generates new patterns
and the higher the complexity of the time series, the higher the FE of
the time series. Therefore, the smaller the FE of the denoised signal,
the better the denoising effect (Zhu et al., 2024) The FE calculation
formula is:

FE m, n, r( ) � lim
N ����→∞

lnφm n, r( ) − lnφm+1 n, r( )[ ]
φm n, r( ) � 1

N −m
∑N−m

i�1

1
N −m − 1

∑N−m

j�1,j ≠ i

Dm,n,r
ij

⎡⎢⎢⎣ ⎤⎥⎥⎦
Dm,n,r

ij � e−
d Xm

i
,Xm
j

( )n

r ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

WhereN denotes the test sampledata, andXm
i is thevectorof the signal inm

dimensions.
Xm

i � [x(i), x(i + 1), . . . , x(i + m − 1)] i � 1, 2, . . . , N − m + 1,
d(Xm

i ,X
m
j )n

r is the maximum absolute value of the difference between the

element values, r denotes the similarity tolerance, and n denotes the
similarity tolerance boundary gradient.

According to the results in Table 1, for Bx and By, the SNRs after
VMD denoising were the highest, followed by those after
ICEEMDAN–VMD denoising, and the SNRs after ICEEMDAN
denoising were the lowest. In terms of Bz, the SNR after
ICEEMDAN–VMD denoising was the highest, followed by that
after VMD denoising, and the SNR after ICEEMDAN denoising was
the lowest. The SNR of Bz after ICEEMDAN–VMD denoising was
improved by 51.25% and 10.94%, respectively, compared with those
after ICEEMDAN andVMDdenoising. For the gradient valuesGBx,
GBy , and GBz, the SNRs after ICEEMDAN–VMD denoising were
higher than those after ICEEMDAN denoising, increasing by
17.03%, 67.73%, and 445.85%, respectively, and the
ICEEMDAN–VMD yielded an order-of-magnitude improvement
in the SNR compared with VMD.

According to the results in Table 2, the FEs of Bx, By, Bz, and
their gradient values after ICEEMDAN–VMD denoising were the
smallest. After ICEEMDAN–VMD denoising processing, the FE of
Bx decreased by 31.142% and 48.412%, and the FE of GBx decreased
by 28.59% and 71.89% compared with those after ICEEMDAN and
VMD denoising, respectively. Similarly, the FE of By respectively

FIGURE 7
Denoising processing steps of ICEEMDAN–VMD.
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decreased by 20.47% and 48.73%, and the FE of GBy respectively
decreased by 24.20% and 81.01% compared with those after
ICEEMDAN and VMD denoising. Finally, the FE of Bz

respectively decreased by 35.61% and 49.94%, and the FE of GBz

respectively decreased by 29.20% and 69.16% compared with those
after ICEEMDAN and VMD denoising. Therefore, the above results
indicated that ICEEMDAN–VMD yielded the fewest new modes
after processing and the denoising effect was improved significantly.
Based on the comparison of the SNR and FE, the denoising effect of
ICEEMDAN–VMD was best for the enhanced magnetic signals of
micro-defects.

The VMD demonstrates the highest SNR at Bx and By, which
can be attributed to the fact that the Gaussian white noise added by
the ICEEMDAN method is not fully removed, resulting in some of
the noise being retained. However, an examination of GBx and GBy

reveals that the ICEEMDAN-VMD method yields a substantial
enhancement in SNR. This can be attributed to the fact that the
signal obtained by the VMD is characterized by a lack of smoothness

and is amplified following the solution of the gradient values. This
phenomenon is further substantiated by the observed change in FE.
The efficacy of the method for ICEEMDAN with VMD
enhancement has been demonstrated.

To verify the applicability of ICEEMDAN-VMD to various
paths, it was used to process detection signals from different
paths within a 20 mm × 20 mm area near the defect, and the
processed signals were used to create a pseudo-color map
(Figure 10). Figures 10A–F display the unprocessed detection
signals Bx, By, Bz and their gradient signals GBx, GBy, and GBz,
and Figures 10G–L show the processed detection signals and their
gradient signals obtained after applying ICEEMDAN-VMD. It
becomes evident that slight signal anomalies are observed in the
defect area in the absence of denoising methods, rendering it a
challenge to identify and locate defects through these anomalous
signal regions. However, after denoising with ICEEMDAN-VMD,
the noise signals are significantly eliminated, revealing distinct
abnormal signal areas near the defect. This enables effective

FIGURE 8
Denoising results of ICEEMDAN–VMD. (A)Horizontal component Bx and (D) its gradientGBx . (B)Normal component By and (E) its gradient GBy . (C)
Tangential component Bz and (F) its gradient.
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FIGURE 9
Comparison of ICEEMDAN, VMD, and ICEEMDAN–VMD results. (A) Horizontal component Bx and (D) its gradient GBx . (B) Normal component By

and (E) its gradient GBy . (C) Tangential component Bz and (F) its gradient GBz .

TABLE 1 Signal-to-noise ratios (SNRs) of different denoising methods.

Bx By Bz GBx GBy GBz

ICEEMDAN 13.225 10.342 6.563 9.342 5.993 1.47 × 10−5

VMD 20.078 13.765 8.947 0.106 0.548 0.051

ICEEMDAN–VMD 16.832 12.232 9.926 10.933 10.052 8.024

Bold values are only used to highlight the optimal SNR and FEs of different denoising

methods for signal components and their gradients.

TABLE 2 Fuzzy entropies (FEs) of different denoizing methods.

Bx By Bz GBx GBy GBz

ICEEMDAN 2.997 3.341 5.150 4.053 3.497 8.548

VMD 4.000 5.183 6.624 10.295 13.959 19.621

ICEEMDAN–VMD 2.063 2.658 3.316 2.894 2.651 6.052

Bold values are only used to highlight the optimal SNR and FEs of different denoising

methods for signal components and their gradients.
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identification and localization of defects through these abnormal
signal regions. In summary, the proposed ICEEMDAN-VMD
method demonstrates effectiveness in processing magnetic field
signals from various paths.

5 Conclusion

To overcome the difficulty of identifying micro-defect feature
signals caused by signal interference during enhanced magnetic

FIGURE 10
(A–F) specifically denote the unprocessed detection signals Bx , By , and Bz and their gradient signalsGBx ,GBy , andGBz; (G–L) specifically denote the
processed signals Bx , By , and Bz and their gradient signals GBx , GBy , and GBz obtained after applying ICEEMDAN-VMD.
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memory detection, the ICEEMDAN–VMD denoising method is
here proposed. The denoising effects of ICEEMDAN, VMD, and
ICEEMDAN–VMD were analyzed in detail through experiments,
and the improvement effect of ICEEMDAN–VMDwas verified. The
findings were as follows:

1. When ICEEMDAN is employed for the enhanced magnetic
memory signal denoising, the transition component IMFk

contains both useful and noise signals. Directly discarding
IMFk would result in the loss of useful feature signals,
while retaining IMFk would result in the retention of noise
signals in the reconstructed signal, affecting the denoising
effect of the signal. When VMD is employed for the
enhanced magnetic memory signal denoising, it is difficult
to select the optimal penalty factor α and the number of
decomposition layers m. After processing the experimental
results, there were still some extremely small noise signals in
Bx, By, and Bz after VMD denoising, resulting in minor
continuous fluctuations in the gradient values.

2. The denoising method of ICEEMDAN–VMD could effectively
overcome the shortcomings of ICEEMDAN and VMD, and it
had a better denoising effect on enhanced magnetic memory
signals. Compared with ICEEMDAN, ICEEMDAN–VMD
could effectively reduce the noise signals of the transition
components and non-defect areas, making Bx, By, Bz, and
their gradient values more stable. Compared with VMD,
ICEEMDAN–VMD could effectively solve the problem of
the difficult selection of the optimal penalty factor α and
the number of decomposition layers m, and it could avoid
the problem of small fluctuations in the signal gradient values
caused by extremely small noise signals in Bx, By, and Bz.

3. After the ICEEMDAN–VMDdenoising process, the SNRs of Bx

and Bz were larger than those of ICEEMDAN, and the SNRs of
Bz and its gradient values were significantly improved. In
particular, the SNRs of each magnetic gradient value
component signal yielded an order-of-magnitude
improvement compared with those obtained via VMD
processing. Compared with the FEs of the signals processed
by ICEEMDAN and VMD, the FEs of Bx, By, Bz, and their
gradient values decreased by 20.469%–81.011% after
ICEEMDAN–VMD processing. Therefore,
ICEEMDAN–VMD is better suited to the enhanced magnetic
memory signals of micro-defects than ICEEMDAN or VMD.
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