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Introduction: Volumetric video production in commercial studios is
predominantly produced using a multi-view stereo process that relies on a
high two-digit number of cameras to capture a scene. Due to the hardware
requirements and associated processing costs, this workflow is resource-
intensive and expensive, making it unattainable for creators and researchers
with smaller budgets. Low-cost volumetric video systems using RGBD
cameras offer an affordable alternative. As these small, mobile systems are a
relatively new technology, the available software applications vary in terms of
workflow and image quality. In this paper we provide an overview of the technical
capabilities of sparse camera volumetric video capture applications and assess
their visual fidelity and workflow.

Materials and methods: We selected volumetric video applications that are
publicly available, support capture with multiple Microsoft Azure Kinect
cameras and run on consumer-grade computer hardware. We compared the
features, usability, and workflow of each application and benchmarked them in
five different scenarios. Based on the benchmark footage, we analyzed spatial
calibration accuracy, artifact occurrence and conducted a subjective perception
study with 19 participants from a game design study program to assess the visual
fidelity of the captures.

Results: We evaluated three applications, Depthkit Studio, LiveScan3D and
VolumetricCapture. We found Depthkit Studio to provide the best experience
for novel users, while LiveScan3D and VolumetricCapture require advanced
technical knowledge to be operated. The footage captured by Depthkit Studio
showed the least amount of artifacts by a larger margin, followed by LiveScan3D
and VolumetricCapture. These findings were confirmed by the participants who
preferred Depthkit Studio over LiveScan3D and VolumetricCapture.

Discussion: Based on the results, we recommend Depthkit Studio for the highest
fidelity captures. LiveScan3D produces footage of only acceptable fidelity but is
the only candidate that is available as open-source software. We therefore
recommend it as a platform for research and experimentation. Due to the
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lower fidelity and high setup complexity, we recommend VolumetricCapture only
for specific use-cases where its ability to handle a high number of sensors in a large
capture volume is required.
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1 Introduction

Most videos today are produced and consumed in a traditional
format, where a camera sensor captures a 2D projection of a scene
from a fixed perspective. This method lacks spatial depth and
confines viewers to a predetermined viewpoint. While this is
sufficient for many applications, certain use-cases benefit from a
capture method that includes spatial information and allows
observers to freely change their perspective (Alain et al., 2023).
For example, instructional volumetric videos for spatially complex
processes, such as machine operation, garment construction or even
surgical procedures would be able to depict these workflows in their
full spectrum. More immersive tele-conferencing systems and
virtual site visits could reduce emission associated with traveling,
and photorealistic animated assets for media production could be
created with low expenditure. While volumetric videos today are
almost exclusively produced in studios, all these use cases call for
mobile, low-cost and adaptable capture systems. 3D scanning of
static scenes is already a well-established and mature process, widely
adopted across various disciplines. Recent advances in this field,
such as Neural Radiance Fields (Barron et al., 2022) or Gaussian
Splatting (Kerbl et al., 2023) have significantly enhanced the fidelity
of these scans, pushing them towards photorealism. In static scenes,
a single camera can be moved around the subject to produce a
dataset. In dynamic scenes however, a dense array of cameras is
needed to capture all angles of the scene simultaneously. This
increases productions costs and limits the production of
volumetric video to film studios, research facilities, and large tech
companies. To reduce production costs as well as increase
accessibility and mobility, methods that require fewer cameras
and compute time are essential. Currently, the most common
method for capturing volumetric video from sparse viewpoints
involves the use of RGBD-cameras. These cameras can capture
both the color (RGB) and depth (D) value for each pixel and are
available at an affordable consumer price point. Moreover, they are
compatible with consumer-grade PC hardware, making them
suitable for low-cost setups. The emergence of affordable RGBD-
cameras, alongside more widely available presentation devices
(i.e., virtual reality head-mounted displays, VR-HMDs) have
since created a market niche for low-cost volumetric video
capture systems. Several commercial and non-commercial
research applications are available. These applications provide
access to volumetric video production for more creators, due to
their low entry barrier both in terms of technical complexity and
costs. The purpose of this paper is to provide an overview of
affordable and accessible volumetric video capture applications,
especially for first-time users. We highlight the strengths and
limitations of each system to help readers make informed
decisions based on their specific needs. To facilitate the
comparison between these systems and their future iterations, we

propose a benchmark for evaluating the visual fidelity of sparse
camera volumetric video applications.

Although the RGBD camera based workflow remains the most
popular method for creating sparse camera volumetric videos, a
variety of other experimental approaches exist. The common goal of
all methods is to extract the spatial information of a scene from a
given optical input. Existing approaches can be sorted into four
categories:

1.1 Depth sensors

Depth sensors physically capture the spatial information of the
scene, most often by measuring the time it takes for light to travel
from the camera to the scene and back. Popularized by the Xbox
Kinect (Microsoft Corporation, 2009), nowadays many affordable
RGBD cameras are available from various manufacturers, such as
the Realsense D455 (Intel Corporation, 2024), Azure Kinect
(Microsoft Corporation, 2020), Femto Mega/Bolt (Orbbec, 2023),
or ZED2i (Stereolabs Inc. 2023). These sensors provide scene depth
based on physical measurements. However, the resolution of these
sensors is still relatively low, with no consumer model exceeding one
megapixel, and the measurements can be distorted by reflective,
transparent and emissive objects.

1.2 Monocular depth estimation

Monocular depth estimation methods aim to estimate the scene
depth using only two-dimensional photographs as input. A neural
network is trained on a large dataset of 2D photos paired with a
depth map, which can then be used to infer a depth map from
unseen photos. While recent models such as ZoeDepth (Bhat et al.,
2023), Depth Anything (Yang et al., 2024) and Depth Pro
(Bochkovskii et al., 2024) perform well on single images, these
models are not yet suitable for dynamic sequences as they lack
temporal coherence. As the techniques improve, and models
targeted towards video monocular depth estimation with higher
temporal coherency may be developed, depth estimation could
improve or replace RGBD sensors.

1.3 Sparse photogrammetry

Photogrammetric approaches try to exploit recognizable
landmarks in the images, which can be used to infer the spatial
relationship between different images and camera poses. This
process is also the basis of the SfM process, although classical
methods require a large amount of input data. Recent advances
in this field have shown to produce usable outputs even from sparse
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input data (Chibane et al., 2021; Truong et al., 2023). Although the
number of input images required has been greatly reduced, a setup
of about 10–20 cameras is still needed to cover a captured subject
from all angles. Further advances in this area, combined with
approaches using very low-cost cameras, such as the Raspberry Pi
camera module, may make these setups economically available to
amateur creators in the future (Bönsch et al., 2019).

1.4 Foundation models

Foundation models are deep learning networks that have been
trained on large datasets in their domain. While these models have
been widely used in other applications, such as large language
models or image generation, this approach has only recently
been applied to scene reconstruction, with the introduction of
Dust3r (Wang et al., 2024). Using the learned priors, the model
can efficiently fill the data gaps between very sparse input images,
allowing full scene reconstruction with as little as two opposing
views of the subject. This method has already been applied to
dynamic scenes and shows promising results for single-viewpoint
videos (Zhang et al., 2024). However, full dynamic scene
reconstruction using multiple camera angles has yet to be
demonstrated and the high GPU processing requirements could
make this method expensive.

1.5 Comparisions

Since RGBD based approaches remain the most popular and
widespread technology for capturing sparse camera volumetric
video at the time of publication, our paper focuses on this
technique. While publications which represent the common
techniques and challenges in the field of RGBD camera-based
volumetric video applications exist (Jin et al., 2024), to our
knowledge, no published work to date has undertaken a
comparison of the features, workflow, or visual quality
generated with these systems. However, there are several
related publications that address segments of this evaluation
process: The image quality of RGBD cameras has been well
studied (Tölgyessy et al., 2021; Rijal et al., 2023), but the
scope of these evaluations focusses on the performance of only
a single device and emphasizes specific technical parameters. The
work of Zerman et al. (2019) and Zerman et al. (2020) assesses the
subjective perception of the effects of compression algorithms
and different rendering techniques on volumetric videos.
Similarly, Subramanyam et al. (2020) evaluate the impact of
different point cloud compression methods but extend the
study environment to display the data on virtual reality (VR)
HMD instead of conventional two-dimensional displays. The
three degrees of freedom (3DOF) study setup used in this paper
was the basis of our study environment. Our subjective
assessment methods were inspired by the work of Zerman
et al. and Subramanyam et al. There is no literature that
defines a benchmarking setup for comparing sparse RGBD
camera volumetric video applications. We therefore propose a
new benchmark, tuned to challenge the unique capabilities of
these systems.

2 Materials and methods

2.1 Selection criteria of volumetric video
capture software

For the evaluation, we focused on free or commercially, publicly
available, volumetric video capture applications. All selected
applications need to be able to capture images from multiple
RGBD cameras, process the sensor data into a coherent spatial
and temporal representation, and export the output into a common
and widespread file format. The hardware requirements posed by
the applications should be able to be fulfilled with widely available
consumer-grade components. Including commercial software into a
scientific comparison presents challenges for the reproducibility of
the results, as access to these applications may be limited and can
become unavailable on the market. However, open-source
alternatives currently show a notable gap in fidelity compared to
commercial solutions. To more accurately represent the state-of-
the-art capabilities available today, we included commercial
applications in the comparison. Although this article focuses on
low-cost systems, we imposed no specific restrictions on the costs of
the software applications. To allow readers to assess the affordability
of each application we inform about their associated licensing
costs (Table 2).

Variations in image quality across different camera models can
significantly impact the quality of the volumetric video produced.
Hence, achieving a reliable comparison between different software
applications requires the use of an identical camera model across all
tests. Among all available options, the Microsoft Azure Kinect was
selected due to its universal support across all software applications
and its provision of state-of-the-art image quality (Rijal et al., 2023;
Tölgyessy et al., 2021). At the time of writing this paper, the
production of the Azure Kinect has been discontinued, but the
underlying sensor hardware continues to be manufactured as the
Orbecc Femto Bolt/Mega (Orbbec 3D Technology International Inc.,
2024). These cameras utilize an identical depth sensor and only a
slightly modified color sensor compared to the Azure Kinectmodels.
The hardware similarities suggest that the results obtained using the
Azure Kinect are transferable to these newer models.

To identify suitable candidates for comparison, we conducted an
extensive internet search. Given the relatively novel and niche factor
of the volumetric video market, we were unable to find any
repositories, articles or reviews, that offered comprehensive lists
of potential software applications. To address this issue, we crawled
several internet archives using search terms such as “volumetric
video,” “depth sensors,” “RGBD” and “4D scanning.” Additionally,
commercial software applications were identified by searching
company databases such as Crunchbase (Crunchbase Inc., 2024),
while non-commercial, research and open-source candidates, were
located through open source repositories and scientific databases
such as Github (Microsoft Corporation, 2024), ArXiv (Cornell
University, 2024) and IEEE Explore (IEEE, 2024). Through this
process we identified six candidates which fulfilled our
requirements. Listed in no particular order, the candidates are:
Depthkit Studio (Scatter, 2024), SOAR (Stream Soar, 2023), EF
EVE (Experimental Foundation, 2023), LiveScan3D (Kowalski,
Naruniec, Daniluk., 2015), Brekel Point-Cloud v3 (Brekel, 2024)
and VolumetricCapture (Sterzentsenko et al., 2018). During the
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benchmarking phase, the commercial candidates SOAR and EF EVE
became permanently unavailable due to restructuring processes in
the authoring companies. While we were able to conduct some tests
with Brekel Pointcloud v3, a major bug prevented the capture of
volumetric videos. All software authors were contacted to confirm
that the software, or a bug fix, will not become available in the
midterm. Therefore, only the candidates Depthkit Studio,
LiveScan3D and VolumetricCapture could be included into the
comparison.

2.2 Benchmark

To establish a standardized framework for assessing the
volumetric video quality of each software application, we
captured footage of five predefined benchmark scenes using three
different camera configurations. These scenes were selected to
represent varying capture conditions, covering a range of spatial
complexities and adaptability requirements. Rigorous control
measures were implemented to ensure the consistency of the
benchmark environment, mitigating the influence from any
variable beyond the software application under evaluation. It is
important to note that all software applications presented in this
paper are capable of producing higher quality captures than those
shown in the benchmarks, when capture setups are optimized to
their specific needs. In some cases, limitations within the software
required adjustments to the physical benchmarking setup, which
were accommodated accordingly.

2.2.1 Hardware
Cost-effective setups have to balance the hardware quantity

against its qualitative gains in fidelity. During testing, we found
that using four cameras placed at regular intervals around the scene
provided sufficient coverage, but some elevated areas could be
obstructed. Adding one additional camera above the scene
provided more seamless coverage from all viewing angles.
Therefore, we decided to use five Microsoft Azure Kinect
cameras in all our benchmarks.

Each volumetric capture software poses different requirements
on the computing platform used to control, record, and process the
captures. The most important difference is the use of a centralized or
a distributed capture system. In a centralized system, all cameras are
connected to a single computer, which must have sufficient
bandwidth to communicate with the cameras and computational
power to handle the incoming data streams. This approach requires
more specialized and expensive hardware, at the benefit of an overall
less complex hardware setup. In a distributed system each camera is
connected to its own PC, called a client over a local area network.
The clients are controlled by a PC acting as server. With this
approach, each individual client only requires a small amount of
processing power. Multiple lower-end PCsmight be easier to acquire
than a single high-end PC, however, the complexity of this
networked approach results in a more difficult user experience.
We based our centralized capture PC setup on the requirements
(Table 1) ofDepthkit Studio (Scatter, 2023), as this candidate has the
highest hardware requirements. It is equipped with an AMD Ryzen
9 5950X CPU (Advanced Micro Devices Inc., 2020), Geforce RTX
3090 GPU (Nvidia Corporation, 2020), 64GB of RAM, and a 2TB

M.2 SSD storage. Connectivity was provided by two onboard USB
3.2 ports and gigabit LAN, extended by a Startech PCIe (Startech,
Startech.com Ltd., 2017) extension card that provided four
additional USB 3.2 ports. This PC was also used as the server for
the distributed setup. For the clients, we used various laptop models,
which all far exceeded the minimum specifications required for the
clients (Table 1). All PCs were connected using a gigabit LAN switch
and CAT6 cables. We verified that all candidates were compatible
with this hardware setup and were able to smoothly capture the
sensor data at their maximum framerate. The cameras were
connected via five and 10 m active USB 3.2 extension cables to
allow for a larger placement range. For lighting, we used four
consumer-grade LED-Panels from Elgato with up to
2,800 Lumens and an adjustable color range up to 7000K.

2.2.2 Camera arrangements
A major advantage of sparse-camera setups over traditional

dense-camera volumetric capture setups is their adaptability and
portability. To test for this adaptivity, we captured footage from a
total of three different camera arrangements. The arrangements
were selected to represent typical usage scenarios for volumetric
video capture systems (Figure 1).

2.2.2.1 Camera arrangement A
One of the most common use cases for volumetric capture is to

capture a single isolated person who is confined to a limited range of
motion, such as sitting or standing in one position. The captured
person is often in the role of an instructor, presenter, moderator, or
theater performer. For this arrangement, we positioned four cameras
in an orbital array around the subject, with an orbital diameter of
2.8 m and a height of 1.5 m above the ground. Each camera was
separated by 90° on the orbital plane. To allow for clean face
captures, a fifth “hero” camera was placed close to the subject’s
face, just above eye level (1.9 m). All cameras were rotated by 90° on
their camera axis, as this slightly increases the vertical field of view.
LED light panels were placed above each of the cameras in the orbit.
The total capture volume for this arrangement is about 1 m * 1 m *
2 m (length × width × height) (Figure 1A)

2.2.2.2 Camera arrangement B
In cases where more than a single person needs to be captured,

or when interaction with larger objects is required, the capture
volume must be increased. In camera arrangement B, the volume is
enlarged to a total size of approximately 2 m * 2 m * 2 m (L × W ×
H), by increasing the camera orbit diameter to 4 m. As this is a more
general arrangement with no specified position for the subjects, the
fifth camera was repositioned centrally to a height of 2.8 m above the
volume, pointing downwards. The four light panels were again
placed above the four cameras in the orbit (Figure 1B).

2.2.2.3 Camera arrangement C
For camera arrangement C, the capture volume has been

reduced to about 0.4 m * 0.4 m * 0.4 m (L × W × H). This
allows the sensors to be placed closer to a subject, increasing
pixel density. This setup is therefore ideal for close-up shots of
fine structures, such as hands, hand-object interactions, or faces. At
the same time, this presents a challenge to the candidates’ calibration
method, which must also adapt to the smaller volume. The camera
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orbit was decreased to a diameter of 1.2 m at a height of 0.2 m. The
fifth camera was placed 0.8 m above the ground, looking down on it.
We focused on hand interactions with this arrangement, so all
cameras were mounted on a table to act as a ground plane for the
capture volume. Two light panels were placed approximately 1.2 m
above the scene, facing the capture volume (Figure 1C).

2.2.2.4 Camera arrangement D
Due to limitations in the calibration procedure of the

VolumetricCapture software, a fourth unique arrangement had to
be created. Arrangement D is identical to Arrangement B, but
without the fifth overhead camera. This setup was used for all
scenes captured with the VolumetricCapture software (Figure 1D).

2.2.3 Sensor and software settings
While certain settings, particularly the sensor settings, are

shared between all tested applications, each software provides a
range of modifiers that can improve capture quality. We optimized
these settings according to the documentation guidelines and
consulted the software’s authors to ensure that the configurations
were ideal given the capture environments, maximizing fidelity.
Since most applications offer a large number of adjustable
parameters, only the settings that deviate from the defaults are
documented here. For Depthkit Studio and LiveScan3D, the
centralized system mode was used, as it reduced setup time and
hardware management complexity. For VolumetricCapture we used
the distributed systemmode as it doesn’t support a centralized setup.

TABLE 1 Overview of features for all candidates. Not all information about the supported cameras, number of camera and export formats could be verified.

Software Depthkit studio VolumetricCapture LiveScan3D Brekel PointCloud v3

Supported camera models Microsoft Azure Kinect,
Orbecc Femto Bolt

Microsoft Azure Kinect, Intel Realsense
D415

Microsoft Azure Kinect Microsoft Kinect
Azure Kinect
Kinect v2
Orbbec: Astra, Astra Pro,
Embedded S, Femto Bolt, Femto
Mega. StereoLabs ZED 2, Intel
RealSense (no specified model)
Generic 2D Webcams

Maximum number of
connected cameras

10 No limit specified, but at least up to 16 10 15

Application architecture Centralized Distributed Centralized or distributed Centralized or distributed

Operating System Microsoft Windows Microsoft Windows Microsoft Windows Microsoft Windows

Minimum PC system
requirements

For up to 6 sensors: Intel Core
i9-11900K or above, NVIDIA
RTX 4070 Ti GPU or above,
64GB of RAM, six USB
3.1 ports

Server: Intel i7 7700k or above, Nvidia
GTX 960 or above, 16GB Ram, Gigabit-
Lan
Clients: Intel i5 or above, Integrated
graphics, 8 GB Ram, Gigabit-Lan, one
USB 3.1 port

Not specified For one sensor: Current Intel
i5 or above, Geforce GTX
1070 or above, 8 GB Ram, one
USB 3.1 port
Requirements for more sensors
are not specified

Spatial calibration Method,
hardware required

Marker based
One or multiple markers
printed on paper, attached to a
sturdy surface

Geometric structure based: Multiple
cardboard moving boxes with accurate
dimensions

Marker based
Markers printed on paper and
attached to a box

Marker based
A single marker printed on
paper, attached to a sturdy
surface

Export modes Mesh, textures, proprietary
format

Pointclouds, proprietary format Pointclouds, raw color, depth
images

Pointclouds, mesh, textures, raw
color, depth images

Export file formats Mesh: .obj; .ply texture: .jpg;
.png proprietary: .mp4; .png

Pointclouds: .ply raw color: .jpg
raw depth: .png

Pointclouds: .ply raw color:
.jpg
raw depth: .tiff

Pointclouds: Alembic; Realflow
BIN; .bgeo; .e57; .geo; .obj; .pcd;
.pda; .pdb; .pdc; .ply; .prt; .ptc;
.pts; .ptx; .rib; .xyz, UnityCoder
Point Cloud
Mesh: Alembic; Realflow BIN;
.obj; .ply; SenseXR; Holo
CatchLight
Texture/Raw color: .jpg; .png;
.tga; .tiff; .mp4
Raw depth: .exr; .png

Relative export file size (based
on “Static Human” sequence),
highest export settings

Mesh and Texture
773 MB/s
Proprietary: 27,75 MB/s

Pointclouds: 106 MB/s Pointclouds: 280 MB/s No data available

Business model Commercial Free Free and open source Commercial

Costs 3000 USD per month,
subscription

0 0 300 USD (multi-camera
version) 150 USD (single
camera version), one-time
purchase
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2.2.3.1 Common and sensor settings
All Azure Kinect units were updated to the firmware version

1.16.110079014 and the Azure Kinect SDK v1.4.1 was installed on
all host PCs. The unbinned near field of view (NFOV) mode of
the depth sensor of the Azure Kinect units was used for all
volumetric capture applications, giving a depth resolution of
640 × 576 pixels and a field of view of 75° in the horizontal
axis and 65° in the vertical axis. This mode was selected based on
its favorable balance between depth accuracy and resolution and
is also recommended by most volumetric capture applications.
The color resolution was set to 1,920 × 1,080 pixels, as this was
the maximum resolution that could be smoothly handled by the
recommended PC hardware specifications. We enabled the Azure
Kinect temporal synchronization feature for all applications by
connecting the cameras via 3.5 mm audio cables in a daisy-chain
configuration. Enabling the synchronization requires switching
to manual exposure, which guarantees consistent frame timings
across all devices. A manual exposure intensity appropriate for
the environment was used to avoid under- or overexpose. The
powerline frequency setting was set to 50 Hz, which matches the
power frequency in the country where the benchmark was
performed. If this parameter is set incorrectly, lights might
show as having a flickering or strobing effect in the
captured footage.

2.2.3.2 Depthkit studio
Depthkit Studio version 0.8.0 and its accompanying Unity

package Depthkit Core Expansion Package Phase 9 were used in

the benchmark. The calibration refinement parameters (Spatial
Error, Sheer Angle and Temporal stability) will also need to be
adjusted for each calibration pass individually but should firmly
lean towards the Precision side. For the mesh export settings, the
Mesh Density parameter has been set to a value of 200, Depth
Bias compensation to 7 mm, Surface Infill to 0 and Surface
Smoothing to 5 mm. For the texture export settings, the
texture Blend parameter was set to 1, Texture Spill Correction
Intensity to 44 and Texture Spill Correction Feather was
set to 0.7.

2.2.3.3 LiveScan3D
LiveScan Pre-Release Build v.1.2alpha1 from the

BuildingVolumes repository has been used during the
benchmarking process. We built a calibration cube according to
the instructions and used the Calibration_Cube_4S_A4.txt preset for
the configuration. The Depth Map Filter was enabled for all cameras
and set to a value of 5.

2.2.3.4 VolumetricCapture
VolumetricCapture v5.0.0 was used for benchmarking.

VolumetricCapture relies on several sub dependencies that need
to be installed along the main application. RabbitMQ v3.12.13 was
used, as well as Erlang Compiler v25.2.3 and Python 3.7. We note that
it is important that only Python 3.7 is installed on the host machine,
and to follow the instructions in the installations.txt file, instead of
the automatic installation during the configuration of the
calibration software.

FIGURE 1
Camera and lighting arrangements used for the benchmark. The diameter of the orbit used to arrange the cameras is marked as d, the height of the
orbit from the capture volume ground plane as h and the height of the of the centered overhead camera with s. The capture volume is shown as a pink
bounding box. From left to right, top to bottom: Arrangement (A) (d = 2.8 m, h = 1.5 m, s = 1.9 m), Arrangement (B) (d = 4 m, h = 1.5 m, s = 2.8 m),
Arrangement (C) (d = 1.2 m, h = 0.2 m, s = 0.8 m), Arrangement (D) (d = 4 m, h = 1.5 m).
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2.2.4 Scenes
Four benchmarking scenes with differing camera arrangements

were captured. The duration of each scene was targeted to be
approximately 15–20 s. Due to limitations in the calibration
procedure of VolumetricCapture, it was not possible to use it
with other camera arrangements than arrangement D. This
arrangement is not suitable for closeup scenes, therefore the
Hand and Hand Interaction could not be captured for this
candidate. Table 2 provides a comprehensive overview of the
scenes with their corresponding arrangement and candidate:

2.2.4.1 Static person
With this scene, our goal was to provide ideal and non-

challenging conditions for the candidates, that would result in
captures with high video quality. Camera arrangement A was
used to maximize the sensor coverage. The scene shows a single
person standing upright with little body motion.

2.2.4.2 Dynamic person
This scene corresponds to Static Person in the general setup

and use of camera arrangement A, but the subject makes much
more physical movement, particularly through their hands and
upper body. These conditions enable us to test the candidate’s
ability to handle fast movements and are expected to result in
some artifacts.

2.2.4.3 Object interaction
This scene presents a challenge to the candidate’s ability to

capture complex interactions between objects within larger volumes.
Camera arrangement B, with the largest capture volume, was
employed for this scene. This scene shows a small choreography
of a person sitting on a chair, who then stands up, walks around the
chair and puts on a jacket. They then proceed to lift a small box from
the floor and leave the capture volume with it. The presence of
various objects in the scene results in more obstructions, leading to
fewer cameras observing the same parts of the scene, decreasing data
density. Moreover, the larger capture volume reduces data density
and the scene is therefore expected to be of lower quality in general
compared to other scenes.

2.2.4.4 Hand
This scene uses camera arrangement C, with a relatively small

capture volume. As the increased pixel density allows for more
granular objects to be captured, we show a single hand in motion,
making different gestures. This scene allows us to test the
adaptability and scalability of the candidates to more extreme
camera arrangements and their ability to visualize finer structures.

2.2.4.5 Hand interaction
The setup in this scene is based on the Hand scene but

introduces a more complex hand-object interaction: Using a few
wooden blocks, the two hands build a small structure. Candidates
are challenged by the increased complexity of the scene, coupled
with the presence of fine structures.

2.3 Visual fidelity

Human perception of any media is a highly complex,
multidimensional, and subjective experience. Analyzing and
rating the overall quality and effect of a specific medium
therefore remains a challenging task. In order to keep the
subjective and objective evaluation of the captured benchmarks
within a manageable context, we decided to rate the footage
purely on the basis of visual fidelity. The fidelity of a given
medium describes its ability to mimic the source scene as closely
as possible. To produce footage with high visual fidelity, sparse
camera volumetric video software needs to address sensor errors
caused by the hardware itself and fuse multiple camera perspectives
into a single coherent image while working with relatively little
information compared to dense-camera setups. In order to assess the
fidelity of the captured benchmarks, we use both an objective and a
subjective approach. Some features of the fidelity can be assessed
objectively, such as the accuracy of the spatial calibration and
occurrence of certain artifacts. The overall image fidelity, which
is the collective effect of many known and unknown factors, remains
difficult to assess objectively. For this reason, we conducted a
subjective perception study in which participants were asked to
rate the fidelity of the candidates on a comparative basis.

2.3.1 Spatial calibration
All volumetric video capture software needs to fuse the image

data frommultiple sensors into a single consistent representation. At
the basis of this process is the transformation of the independent
local coordinate system of each sensor into a shared global
coordinate system. This process is commonly known as spatial
calibration. The final image quality of a volumetric video quickly
degrades if the calibration contains even small errors and is therefore
critical for fidelity. A variety of approaches have been developed,
often using calibration reference objects with known dimensions
and features. Beck and Froehlich (2015) proposes a checkerboard-
marker based calibration approach, where the color and depth pixels
of an individual sensor are directly mapped into a joint coordinate
system. Sterzentsenko et al. (2020) utilize a physical geometric
structure in combination with shape analysis to estimate sensor

TABLE 2 Benchmark scene, camera arrangement and candidate correlation.

Software/Scenes Static person Dynamic person Object interaction Hand Hand
Interaction

Depthkit Studio Arrangement A Arrangement A Arrangement B Arrangement C Arrangement C

LiveScan Arrangement A Arrangement A Arrangement B Arrangement C Arrangement C

VolumetricCapture Arrangement D Arrangement D Arrangement D — —

Brekel PointCloud v3 — — — — —
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poses. We want to familiarize the reader with the approaches used by
the candidates, before analyzing the specific implementations.

2.3.1.1 Marker based calibration
Marker based calibration is one of the most widely used

calibration approaches. It involves the use of two-dimensional
fiducial markers. Common marker formats include ArUco or
checkerboard patterns. If the dimensions of the marker and the
intrinsic parameters of the camera are known, the relative
transformation (position, rotation and scale) between the camera
and the marker can be estimated. If two or more sensors can see a
marker at the same time, the relative transformation between the
sensors can be measured and a shared coordinate system can be
established between the sensors. Additional strategies need to be
employed in configurations where not all cameras can observe the
marker simultaneously. The marker can either be moved from one
camera pair to another in a daisy-chained style, or a structure, where
markers are visible from any angle can be used. In general, the more
observations of a marker at different positions within a captured
volume exist, the better the calibration can be estimated.

2.3.1.2 Structure based calibration
Structure based calibrationmethods harness the ability of depth-

sensors to directly capture three-dimensional data of a scene. A
structure of known dimensions is constructed and placed in the
center of the capture volume, so that all sensors can observe it. The
three-dimensional shape of the structure is then searched for within
the depth sensor image. The orientation and position of the
structure relative to the sensor can be used to infer the position
of each sensor. For this method to work, it is important that the
structure looks unique from all perspectives, otherwise a false match
can occur.

The calibration process is a key component of any volumetric
capture workflow and must be performed each time a camera is
moved. Accordingly, this does not only affect the final quality, but
the convenience of the calibration workflow is also an important
usability factor. To quantify the spatial calibration quality of the
candidates, the dimensions of captured objects were compared to
their known physical dimensions. Since the Azure Kinect provides
depth data in metric units, the measurements can be taken directly
from the exported sequences. For each of the sequences Dynamic
Person, Object Interaction and Hand, we measured the dimensions
of the same objects on the X, Y and Z-axes of the Cartesian
coordinate system over multiple frames. The values for all axes
and samples are averaged into a single value for each scene and
candidate. Additionally, we provide the minimum and maximum
deviation measured in each scene.

2.3.2 Artifacts of volumetric video
To create the final three-dimensional image, the applications

need to fuse observations from many different cameras and sensors
into a unified representation. Due to imperfections in the sensor
hardware, spatial calibration or post-processing, flaws and
imperfections are introduced into the final image. These are
commonly referred to as artifacts. We visually inspect the entire
benchmark sequences of the candidates for the occurrence of
artifacts and describe their occurrence rate, as well as their
intensity. In addition, we ask which artifacts dominate the visual

appearance of each candidate. To objectively measure the
occurrence and intensity of artifacts in volumetric captures, we
first need to define the different types of artifacts and their
appearance. To achieve higher fidelity, filtering strategies or data
refinement can be employed. However, these processes themself can
also introduce new artifacts. While artifacts generally result in a
lower image fidelity, they might be perceived differently depending
on the use case. Artifacts can be desirable in videos used for artistic
contexts, such as games, or Virtual reality experiences, but a strong
adherence to the ground truth is needed for other use cases, such as
medical training, or documentary films.

Figure 2 shows a non-exhaustive collection of the visually most
prominent artifacts in the captured benchmark footage, which are
described in more detail below. For evaluation purposes we
distinguish between the RGBD camera artifacts, data fusion
artifacts and visualization artifacts.

2.3.3 RGBD camera artifacts
RGBD cameras, such as the Azure Kinect used in this

benchmark are a unit of multiple different optical sensors that
need to work together precisely to produce the combined color
and depth data streams. While digital color cameras are a well-
established technology, depth-sensing cameras are relatively new as
a commodity technology. There are different technologies to
estimate the depth of a scene, but we focus on the artifacts
caused by the Azure Kinect’s near-infrared Time-of-Flight
(ToF) technique:

2.3.3.1 Depth noise
Like traditional RGB cameras, ToF sensors also suffer from

image noise. This noise is most visible as a high frequency jitter of
pixels along the depth axis of the sensor. For the Azure Kinect, this
jitter can range from 1 to 8 mm (Rijal et al., 2023) and increases with
the distance from the captured objects. In addition to affecting the
precision of the depth measurements, this noise is a highly visible
artifact in any video footage captured by this system. The noise can
be reduced by temporal filters, such as adopted versions of the
Kalman Filter (Amamra and Aouf, 2018).

2.3.3.2 Holes or missing pixels
Under certain conditions, the ToF sensor can’t correctly

measure the distance in parts of the image, resulting in gaps or
holes in parts of the scene. Incorrect measurements can be caused by
multipath interference, materials absorbing the infrared laser
illumination, or objects being too close or too far from the
sensor. Deep neural networks, which have been trained on
RGBD image sets can provide a possible solution to this problem
(Zhang and Funkhouser, 2018). These networks can complete the
depth maps and fill any remaining holes but can also introduce new
artifacts and hallucinations.

2.3.3.3 Flying pixels
When depth data is incorrectly placed on the depth axis, pixels

appear to float or fly around in the capture volume. Sometimes these
are just discrete outlier pixels that look like floating particles. Often,
however, these pixels appear more systematically between two
objects that are in front of each other. They seem to connect the
objects like glue (Tölgyessy et al., 2021). This artifact is particularly
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present on Azure Kinect devices and is likely caused by errors or
inaccuracies in the depth map generation algorithm. Most isolated
flying pixels can be filtered by using statistical outlier detection.
Flying pixels that occur systematically between two objects can be
removed using an erosion filter, which removes all pixels around
these objects on the XY image plane.

2.3.4 Data fusion artifacts
Because each camera in a volumetric video setup observes a

different perspective of the scene, the volumetric video capture
system has to fuse all these perspectives into a coherent
representation that accurately represents the ground truth. The
fusion algorithm needs to deal with several possible artifacts:

2.3.4.1 Overlapping data
Due to calibration or sensor inaccuracies, data points that are

observed by two or more cameras simultaneously will never be
perfectly aligned, which results in overlapping. While larger
geometric inaccuracies should be addressed with better
calibration methods, small overlapping regions can be masked by
depth fusion algorithms (Meerits et al., 2018; Newcombe et al.,
2011). Similarly, overlapping regions in the color data can be fused
by texture fusion algorithms (Waechter et al., 2014).

2.3.4.2 Color mismatch
Even with perfect spatial calibration and no overlapping data,

differences in the color sensor data from two cameras can create
visual seams. Due to differences in the hardware, color space,
exposure, ISO or white balance between sensors, this is often
unavoidable to some extent but can be dealt with by color
matching (Waechter et al., 2014), band separation (Baumberg,
2002) and smoothing between the two perspectives near the seam.

2.3.4.3 Incorrectly projected color
As the color and depth cameras are in physically different

locations, they observe slightly different perspectives of the scene.
To fuse both image modalities into a single unified coordinate
system, the lens distortion (intrinsics) and the orientation of the
sensors relative to each other (extrinsics) must be precisely
measured and corrected for. Errors in this calibration process
will result in an offset in the color data projected onto the depth
pixels. For example, parts of the foreground of a scene might appear
projected onto the background. Another possible cause of
misprojection is when larger areas of the depth map are missing.
In this case, the color information might get incorrectly projected
onto nearby geometry instead.

2.3.5 Visualization format
The data captured by the volumetric system needs to be

quantized into a format that can be used for storage and
playback. Classical representation formats for three-dimensional
data in computer graphics include point clouds and meshes,
which are also used by the candidates. Each format can produce
specific artifacts:

2.3.5.1 Point cloud-based artifacts
Point clouds consist of many discrete, colored points that are

located in a three-dimensional coordinate system. The size of the
points must be adjusted in relation to the distance of the point of
observation to create the appearance of a continuous shape. This
illusion quickly breaks down when the distance is changed and can
therefore result in artifacts with a patchy appearance. Additionally,
volumetric video rendered as a point cloud can appear noisy, as it is
composed out of many discrete objects. Rendering the points as
splats, where the transparency of the points increases towards its

FIGURE 2
Examples of different types of artifacts. (A)Depth noise on a flat wall, (B)Holes andmissing pixels, (C) Flying pixels, (D) Incorrectly projected color, (E)
Spatial calibration error, (F) Overlap, (G) Color mismatch, (H) Point cloud (left) and mesh and texture (right) renderings.
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edges, can result in smoother looking visualizations, but is not yet
widely supported.

2.3.5.2 Mesh-based artifacts
Mesh-based formats describe 3D objects as continuous surfaces

consisting of many small polygons. This format has the advantage of
being visually smoother looking, as well as taking advantage of the
high-resolution color texture captured by the sensors. Surface
reconstruction algorithms are used to create a mesh from the
point cloud or depth data, but these require a certain level of
information density. Regions of the volumetric image that cannot
provide this density, or contain structures that are too thin, may be
missing from the mesh. When this happens, the color texture cannot
be projected onto the missing geometry and may be incorrectly
projected onto other parts of the model.

2.3.6 Perception study setup
The objective visual analysis can only capture certain factors

that contribute to the fidelity of a video at a technical level but
cannot show how the fidelity of a candidate might be perceived by
an audience. For this reason, a subjective fidelity study was
conducted to evaluate which candidates are perceived to
possess higher fidelity. The design of the study is based on the
ITU-T P.910 2022 recommendation Subjective video quality
assessment methods for multimedia applications (ITU-T, 2022).
As the goal of this study is to compare the fidelity of the
candidates relative to each other, and not in a broader context,
we used a pair-comparison method (P.910 2022 section 7.4),
where participants judge which element in a pair of sequences is
preferred. We complemented the pair-comparison method with a
simultaneous presentation (SP) (P.910 2022 Annex C) of two
sequences from different candidates to facilitate the decision
process for participants. This accounts for the fact that
volumetric video is a relatively unknown medium with
unfamiliar visual patterns and artifacts. The recommendation
demands to show the sequences on a traditional two-dimensional
display. However, we argue that the experience of the spatial
dimension is a crucial factor in the perception of a volumetric
medium. Therefore, we implemented the study into an Extended
Reality (XR) environment, while keeping other presentation
parameters as specified in the recommendation, similar to
Subramanyam et al. (2020). We set up a three-dimensional
study environment within the Unity3D game engine (Unity
Technologies, 2023). As specified in the ITU-T P.910
recommendation, the environment is kept in a neutral gray,
except for a blue grid on the virtual floor, to facilitate the
navigation and orientation for the participants. Two podiums,
which are positioned about 2 m in front of the participants, act as
playback locations for the volumetric video. The position and
scale of the volumetric videos were adjusted in such a way that
both videos are fully visible at the same time, without requiring
the user to turn their head. Participants were asked not to leave
this centered position during the study but were allowed to move
their head in all dimensions. The Depthkit Expansion Package
Phase 10 (Scatter, 2024), included with Depthkit Studio was used
to playback the scenes for this candidate. As the other candidates
do not provide a native playback solution, we used the open-
source volumetric video playback solution Unity Geometry

Sequence Streamer (BuildingVolumes, 2023). During the study,
all benchmark sequences were shown. The Static Person,
Dynamic Person and Object Interaction sequences were
compared across all candidates, while the Hand and Hand
Interaction scenes were only compared across the candidates
LiveScan3D and Depthkit Studio. In each sequence, every
candidate was paired with every other possible candidate. All
candidate pairings were shown twice, with the podium position
(left or right) swapped on the second viewing. After one sequence
pair finished playing, the participants could interactively vote for
their preferred sequence within the XR study environment or
choose to watch the sequence again once. Before the participants
began the study, they were shown a training sequence, which was
not included in the benchmark sequences, to familiarize them to
the study procedure and test conditions. Participants were asked
to vote solely based on visual fidelity, trying to avoid any bias
stemming from the aesthetics or stylization of the footage. The
study was conducted with a Meta Quest 3 headset (Meta
Platforms, Inc., 2023). The full dataset from the study, along
with the code used for data analysis and visualization is provided.

3 Results

3.1 Candidates

3.1.1 Features
Although all candidates share a certain set of core features

required for volumetric video capture, the features beyond the
required functions vary significantly. Table 1 provides a
comprehensive overview for most of the candidates’ features. We
were able to test the majority of these features during our benchmark
and evaluation phase, but not all features could be verified. This
especially applies to the list of supported camera models, the
maximum number of cameras and the export formats. The
feature list was partially taken from the available documentation
and was manually completed during the evaluation process. We
recommend reading Table 1 for full information on the feature set of
the candidates.

Brekel Pointcloud v3 and Depthkit Studio are both commercial
applications. While Depthkit Studio is distributed in a subscription
model for 3000 USD per month, access to the open beta of Brekel
Pointcloud v3 can be purchased for one time charge of 300 USD.
VolumetricCapture and LiveScan3D are freely available on Github2,3,
but only the code base of LiveScan3D is open-sourced.

Livescan3D and Depthkit Studio support capture with up to ten
Azure Kinect sensors at the time of writing. Brekel Pointcloud v3
supports a wide sensor range, such as the Kinect v1/v2/Azure,Orbecc
Astra series, Intel Realsense series and StereoLabs ZED series.
VolumetricCapture supports the Intel Realsense D415 in addition
to the Azure Kinect. It allows recordings with at least sixteen
simultaneous sensors due to its strictly distributed software
architecture, where each sensor is connected to its own host PC.

2 https://github.com/VCL3D/VolumetricCapture [Accessed 22 March 2024].

3 https://github.com/BuildingVolumes/LiveScan3D [Accessed 22March 2024].
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LiveScan3D and Brekel Pointcloud v3 can be operated in either a
centralized mode, where all sensors are connected to the same PC, or
the distributed mode. Depthkit Studio operates only in a centralized
mode, which requires a capable host machine. At the same time,
only Depthkit Studio allows to post-process the captured video and
export it as a textured mesh sequence. The other applications export
the video as a nearly unprocessed pointcloud sequence.

3.1.2 User experience
Due to the complexity and novelty of volumetric capture

systems, a solid user experience and comprehensive
documentation are the foundation for successful volumetric
captures. We evaluated the availability and quality of
documentation, the usability experience of the graphical user
interface (GUI), and at the stability of the system. Particular
attention was directed to the spatial calibration methods, which
are one of the most time-consuming tasks in the capture pipeline
(Section 3.2.1).

Depthkit Studio provides extensive and comprehensive
documentation resources in the form of a website, video tutorials
and a community forum.We found the GUI to be intuitive and well-
structured and didn’t experience any crashes or errors. The software
ran smoothly and was easy to set up with the provided installers.
Depthkit Studio uses a marker-based calibration approach. One or
more ArUco marker boards need to be printed out in DIN
A3 format and attached to a solid surface. The cameras are
calibrated in daisy chained pairs. For each pair, multiple samples
of the marker must be taken throughout the capture volume. To
capture a sample, the marker must be kept stationary and a sample
phase needs to be manually activated for approximately 5 s. Due to
the number of samples that need to be taken, the calibration routine
for five cameras took approximately 15–25 min to complete. While
the material requirements are low and the process works well, the
calibration routine took by far the longest compared to the other
applications. Not every calibration run produces the desired results
and may have to be repeated, resulting in calibration times of up
to an hour.

LiveScan3D only provides little documentation, which is
scattered throughout the software repository and is therefore
difficult to find. We found the GUI to be generally clear and
intuitive, although the program did occasionally freeze or crash.
For calibration, LiveScan3D uses a marker-based approach, that
requires the construction of a multi-marker calibration cube. The
calibration cube can bemade of different materials and its size can be
adjusted for different capture scenarios. This initial construction
step is time-consuming and difficult as the dimensions and angles
need to be carefully observed. The calibration cube must be placed in
a part of the scene that is visible to all cameras and is then
automatically recognized by the software. It was sometimes
necessary to adjust the lighting for the marker to be recognized.
The calibration routine itself takes about 2 min. There is also an
option to refine the calibration using an iterative closest point
algorithm, but this did not reliably improve the calibration
quality. While the calibration routine itself is quick, the initial
construction step may make it difficult for users without access
to laser cutters or 3D printers to achieve a successful calibration.

VolumetricCapture provides robust online documentation and
support on its Github repository page. Of all the applications,

VolumetricCapture offers the most sophisticated approach to the
distributed architecture. The clients can be run completely headless,
with no peripherals and no direct interaction with the clients other
than physically turning them on and off. To configure the
distributed system, multiple sub-programs, ports and services
needed to be set up for each client PC. We found the GUI rather
difficult to use, due to the complex layout and many non-
functioning elements. Disconnections and crashes were regular
problems and could only be resolved by restarting the
application. VolumetricCapture is the only candidate to employ a
structure-based calibration approach. The structure consists of four
IKEA Jättene moving boxes, which have been discontinued in
production. Due to the dimensions of the box being prescribed,
they had to be manually reconstructed from flat cardboard. The
calibration routine is not included with the binaries and must be
downloaded and installed via a Python script. We had to implement
workarounds to run the script successfully. For non-technical users,
this setup step can be particularly difficult. The calibration routine
itself can be performed in about 2 min, including the structure setup,
but often fails and needs to be repeated multiple times.

Brekel PointCloud v3 comes with an installer that makes
initial setup easy, and comprehensive documentation in the
form of an offline PDF document. The wide range of supported
features results in a sometimes cluttered and overloaded, but
well-structured interface. Although the application ran
smoothly and without crashes, we were unable to capture
benchmark footage with this candidate due to a bug in the
calibration process. We have confirmed the existence of this bug
with the author of the application to rule out operational errors
on our part. Brekel Pointcloud v3 is advertised as being in a beta
version on the manufacturer’s website.

3.2 Visual fidelity

All five scenes were successfully captured for LiveScan3D
and Depthkit Studio. Due to limitations in the calibration
approach used for VolumetricCapture, only three scenes
could be captured. Figures 3, 4 show a visual overview of all
the footage that was captured during the benchmark phase and
subsequently used for the analysis and study, including the
ground truth captured with the color camera of the Kinects. A
video showing these scenes in motion is available.4 In some
scenes, green areas might be noticeable. These are the result of
the presence of a green screen in the recording studio, which is
falsely being projected onto parts of the capture. This is an
artifact that would occur in any capture environment but is
more noticeable here due to the vibrant color.

3.2.1 Spatial calibration analysis
The spatial calibration was measured for each scene individually

by calculating the average deviation in centimeters between the
dimensions of virtual objects and their real counterparts. The results
show that the size of the capture volume is directly correlated to the

4 https://doi.org/10.5281/zenodo.13908942 [Accessed 10 October 2024].
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FIGURE 3
Frames of the captured benchmark footage with all candidates. From top to bottom: GT) Ground truth, A) VolumetricCapture, B) LiveScan3D, C)
Depthkit Studio. From left to right: 1) Static Person scene, 2) Dynamic Person scene, 3) Object Interaction scene.
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calibration error, with a larger capture volume resulting in a larger
error (Figure 5). Depthkit Studio consistently showed the least
amount of deviation. For the Dynamic Person scene, the average
deviation was 8 mm, for Object Interaction 13 mm and for Hand
2 mm. The measured deviation for LiveScan3D is on average twice
as large as in Depthkit Studio. The Dynamic Person scene measured
an average deviation of 17 mm, the Object Interaction scene an
average deviation of 21 mm and the Hand scene an average
deviation of 4 mm. While the camera arrangement for
VolumetricCapture did not change between scenes, the
calibration accuracy varied by a large margin, with the Dynamic
Person scene showing a low accuracy with 26 mm of deviation but
performing much better in the Object Interaction scene with 15 mm
deviation. This shows that theoretically a competitive calibration
accuracy can be achieved with the employed calibration approach,
but the accuracy could not be reliably reproduced between different
takes in our benchmarking setup, even though repeated attempts
were made for each scene.

3.2.2 Artifact analysis
We conducted a thorough examination of all the benchmark

footage captured, specifically focusing on identifying visual artifacts.
We found that each candidate exhibits a different set of artifacts that,
in sum, dominate the overall appearance of the volumetric video.
The most prominent artifacts for each candidate are presented along
with their frequency of occurrence and intensity.

Depthkit Studio is the only application in the benchmark that
renders the captured video in a mesh and texture format. This
strategy seems to solve some of the artifacts that point cloud-based
approaches exhibit. Videos produced withDepthkit Studio appear to
be more coherent, contain less noise, and blend overlapping sensor
data more elegantly. However, the surface reconstruction algorithm
implemented in the application has difficulties catching finer details,
such as fingers or thin objects. These parts often disappear
completely from the reconstruction. Consequently, the color
texture of the missing geometry is sometimes incorrectly
projected onto surrounding geometry in the scene. These artifacts
were present throughout the entire benchmark footage. A less
common color mismatch artifact affects the blend between
overlapping sensor data, making the seams more noticeable.
Despite these artifacts, the footage overall exhibits a smooth and
coherent look, and objects are mostly faithfully
reconstructed (Figure 6).

LiveScan3D renders the captured footage as point cloud
sequence. Compared to the mesh and texture videos of Depthkit
Studio, the point cloud footage appears grainy and noisy, but can
capture finer detail. The accuracy of the spatial calibration is less
precise than with Depthkit Studio but better than
VolumetricCapture. This is noticeable throughout all scenes, with
more detailed regions appearing to be duplicated and shifted.
Objects often show trails of flying pixels, making silhouettes
harder to detect. There is jitter and color mismatch in areas
where sensor data overlap. LiveScan3D images generally show
sufficient detail in regions such as the face or hands, and objects
appear cohesive, but the artifacts can cause objects to appear slightly
distorted and noisy especially in smaller regions (Figure 7).

VolumetricCapture shows artifacts similar to LiveScan3D, but
often more pronounced. Due to the limitations of the calibration
routine, the sensors in the Static Person and Dynamic Person scene
had to be positioned further away than in the other applications,
reducing the resolution in the captures. In cases where good
calibrations could not be achieved, small to medium-sized details
appear blurred and distorted, such as the eyes, ears and nose of a
face. Incorrectly projected colors appear as large seams that extend
throughout the video. Flying pixels are not only visible near objects
but are scattered throughout the entire capture volume. The general
context and content of the scene is recognizable, and larger objects
are correctly reconstructed. However, VolumetricCapture also
captured some details that were not visible in other candidates;
for example, the leg of a chair (Figure 8).

3.3 Subjective study results

For the subjective fidelity perception study, we asked
participants to rate the volumetric video solely on its visual
fidelity. We selected a cohort familiar with the processes involved

FIGURE 4
Frames of the captured benchmark footage with camera
arrangement C. From top to bottom: GT) Ground truth, B) LiveScan3D,
C) Depthkit Studio. From left to right: 4) Hand scene, 5) Hand
Interaction scene.
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in creating and analyzing computer graphics. 19 participants were
recruited from a game design graduate program. All
19 participants completed the study, with an average session
length of 10–15 min. Each participant voted 22 times during the
study, for a total of 418 votes. In cases where participants chose a
different candidate during the repeated presentation of a pair of
comparisons, both votes were invalidated. This affected 66 votes
or 15.7% of the votes. Depthkit Studio and LiveScan3D were
compared 190 times (160 valid), Depthkit Studio and
VolumetricCapture 114 times (98 valid), VolumetricCapture
and LiveScan3D 114 times (94 valid). To assess statistical
significance, we conducted goodness-of-fit tests for each
evaluation scenario. As a measure, we use the sum of valid
votes that each framework received from all participants. For
scenes where all three software candidates produced sequences
(Static scene, Dynamic scene, Object scene), Pearson’s chi-
squared (χ2) tests were performed. For the Hand and Jenga
scene, where only LiveScan3D and Depthkit Studio were able
to capture footage, Barnard’s exact test was used to account for
the smaller sample size of votes. In the tests, we compare the
observed number of recorded votes to the expected number,
assuming an equal distribution of votes for each framework. Our
null hypothesis assumes that the recorded numbers of votes
follow a random distribution, while the alternative hypothesis
is expected to have differing distribution proportions. After
adjusting p-values to account for multiple comparisons with
the Benjamini–Hochberg procedure, we rejected the null
hypothesis in all scenarios, indicating statistically significant
differences in the distribution of recorded votes at a
significance level of α = 5%. The results of the significance
tests are presented in Table 3. All statistical analyses were
performed in python (version 3.12.1) with the packages SciPy
(version 1.14.1) for the hypothesis testing and Pinguin (version
0.5.5) for multiple comparisons adjustment.

The percentage vote distribution among the candidates is shown
in Figure 9 and the total number of votes is shown in Table 4. When
comparing Depthkit Studio with LiveScan3D, Depthkit Studio was
preferred, with 90% (144 votes) of the votes. Depthkit Studio was
slightly less preferred, but also strongly preferred over
VolumetricCapture with 84% (82 votes) of the votes. LiveScan3D
was strongly preferred over VolumetricCapture with 78% (74 votes)
in favor. When comparing across individual scenes, the votes in the
Static Person and Dynamic Person scene are similarly distributed.
Depthkit Studio receives on average 64% of the votes, LiveScan3D
26% and VolumetricCapture 9%. Only in the Object Interaction
scene, the vote distribution was more evenly distributed, with
LiveScan3D receiving about 35% and VolumetricCapture
receiving about 19% of the votes compared to Depthkit Studio.
For the close-up scenesHand andHand Interaction,Depthkit Studio
continued to be almost exclusively preferred over LiveScan3D with
94% of the votes (Figure 10).

4 Discussion

4.1 Result interpretation

Depthkit Studio shows the best results across all measured
parameters. It scores highest in spatial accuracy, shows the least
intensive artifacts and is the preferred candidate in the subjective
perception study. We also found Depthkit Studio to be the most
accessible candidate, and therefore suited for users novel to the field
of volumetric video. At the same time, Depthkit Studio is the most
expensive application, with a price tag of 3000 USD per month. This
may be at the edge of what is considered low cost or affordable. We
would therefore recommend Depthkit Studio to users who are
confident that a sparse RGBD-camera volumetric video setup
meets the needs of their use case and want to extract the highest

FIGURE 5
The calibration accuracy of the candidates is assessed by calculating the average deviation in centimeters between the dimensions of virtual objects
and their real counterparts. The ranges show the minimum and maximum deviation measured over several frames.
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possible fidelity from their system. In terms of fidelity, LiveScan3D
ranks below Depthkit Studio by a larger margin, but above
VolumetricCapture. Hence, we can recommend LiveScan3D as a
solid entry point for beginning with volumetric captures, when the
highest fidelity is not strictly required. As LiveScan3D can be
modified due to the available source code, it is a suitable
platform for volumetric video research and experimentation.
VolumetricCapture is available as free, but proprietary software. It

is specialized to be used in a distributed system mode. This offers
advantages for certain use cases, with a high (>10) number of
sensors and large capture volumes, or when only low-
performance hardware is available. At the same time, this
distributed approach is labor-intensive with regard to hardware
and software setup, making it difficult to recommend this
application to first-time users, even though it is well documented.
We can therefore only recommend VolumetricCapture in use cases,

FIGURE 8
Artifacts in VolumetricCapture footage: (A) Imprecise spatial calibration, (B) incorrectly projected colors, (C) flying pixels (Point size was slightly
increased for illustration purposes).

FIGURE 7
Artifacts in LiveScan3D videos: (A) Imprecise spatial calibration, (B) flying pixels, (C) overlapping sensor data.

FIGURE 6
Prominent artifacts in footage captured with Depthkit Studio. (A) Missing geometry, (B) Incorrectly projected color texture, (C) Color mismatch.
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where a high number of sensors and large capture volumes
are required.

The results of the conducted survey show that participants
preferred the footage of Depthkit Studio, which is the only
candidate that employs heavy use of post-processing filters
and a mesh and texture-based rendering. Results do not
provide insights into which of these aspects contribute more
to the visual fidelity, but the work of Zerman et al. (2019)
suggests that a mesh-based visualization is preferred over a
point cloud based visualization, provided that it is encoded with
a high enough bitrate. Accurate calibration seems to have a
rather large effect on the visual quality as well. Depthkit Studio
consistently showed the least deviation in calibration accuracy
across all scenes and was also the most favorably rated
application for fidelity.

Our results indicate to developers of volumetric video
applications that encoding their captures in a mesh-based format,
the use of filters and a spatial calibrationmethods with high accuracy
are advantageous for visual fidelity.

4.2 Method limitations

Although our proposed benchmark environment was designed
to capture footage in a variety of scenarios, it primarily focused on
capturing people and their interaction with objects. The benchmark
could be expanded to include a wider variety of scenes and
environments, such as outdoor settings, capturing entire
environments rather than individual subjects, or testing under
challenging lighting conditions. Additionally, the benchmark only
evaluates how the applications perform relative to each other under
identical capture conditions. However, each application may
perform differently when the capture environment is adapted to
its individual strengths and weaknesses, such as by using more
sensors, alternative sensor models or different camera
configurations. While our captures provide a general estimate of
how the applications perform “in the wild,” further improvements in
visual quality are certainly achievable with tailored adjustments.

Our approach tomeasuring spatial accuracy provides some basic
estimation about image fidelity but lacks detailed technical

FIGURE 9
Vote Distribution in the subjective Perception study.

TABLE 4 Fidelity perception study total vote counts.

Votes Total Total
valid

Total
invalid

Depthkit studio vs.
LiveScan3D

Depthkit studio vs.
VolumetricCapture

LiveScan3D vs.
VolumetricCapture

Combined 418 352 66 — — —

Depthkit Studio 249 226 23 144 82 —

LiveScan3D 115 90 25 16 — 74

VolumetricCapture 54 36 18 — 16 20

TABLE 3 Significance test results.

Scenes Test p p Adjusted Significant

Static Pearson chi-squared test 1,36074E-11 6,80369E-11 True

Dynamic Pearson chi-squared test 3,71198E-10 9,27995E-10 True

Object Pearson chi-squared test 0,014,737,039 0,014,737,039 True

Hand Barnard’s exact test 0,000,162,039 0,000,202,548 True

Jenga Barnard’s exact test 0,000,162,039 0,000,202,548 True
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parameters. Similarly, the artifact analysis lacks a quantifiable
measurement of artifact intensity. This may be sufficient for a
relative visual perception analysis between captures, but it lacks
detailed objective parameters that are required when measuring
volumetric videos on a larger scale.

Unlike other publications that have presented visual
perception studies of volumetric videos using more nuanced
rating scales, our study used only a binary voting system to
capture the impressions of the participants. This approach forces
participants to clearly choose a single candidate, even if the
perceived difference in fidelity is small. This is sufficient to
determine which system is relatively preferred over the other,
but it doesn’t show how large the differences in perceived fidelity
between the candidates are. Additionally, our subject pool is
limited to a small, homogenous group from a single profession
(game designers). Influenced by their domain knowledge, this
group might have a different definition of high fidelity than the
general population, therefore the results of our study might not
be applicable to a broader audience. Re-conducting this study
with a more nuanced rating scale and a more diverse study pool
could provide better insights into which aspects contribute most
to providing a sense of high fidelity. The UI and UX analysis of
the tested systems could benefit from a systemic evaluation
through a user study, as the usability has only been evaluated
internally, by a group of technically skilled experts in the field of
volumetric capture. Novice users may experience more
challenges or would rate the usability of the candidates
differently. A usability study could provide valuable insights
into how volumetric capture workflows should be designed to
help adaptability and efficient usage. Finally, this paper can only
capture the state of knowledge in the field at the time of
publication. Due to the rapid advances in this relatively young
field, the concrete results of the fidelity analysis have a certain
expiration date, although we believe that the proposed
benchmark itself will be viable for future iterations of sparse
camera volumetric video capture systems.

4.3 Outlook

Although significant advances have been made in visual
fidelity, the overall image quality of sparse camera volumetric
video capture applications is not yet sufficient for many use cases
with higher demands. Dense camera studio captures can provide
photorealistic high-fidelity captures today, but are not accessible
to most researchers, creators and developers due to their high
costs. This is not likely to change any time soon. Affordable
sparse camera systems not only fill a niche of lower cost video
creation but help to raise awareness for the field of spatial
imaging. Certainly, further research and investment into low-
cost sparse camera systems is needed to improve volumetric
video creation. Better RGBD cameras could provide higher
depth resolutions and depth stability, and the software can
improve visual fidelity by deploying solid filtering and fusion
pipelines, as Depthkit Studio shows.

However, RGBD cameras are only one of many possible capture
solutions in this emerging field. Monocular depth estimation
algorithms have seen major developments in recent years and are
already deployed for certain VFX tasks, such as scene relighting or
masking. While being a relatively new technique, 4D foundation
models have been shown to generate impressive scene depth from
only sparse image inputs as well. If these models are proven useful
for sparse camera volumetric video capture, specialized and
expensive RGBD sensors, might become superfluous. This could
further improve accessibility for volumetric video capture. As
indicated by the subjective fidelity study, the visualization format
of the captured data has a palpable impact on the perceived fidelity.
New volumetric visualization formats, such as Gaussian Splatting,
remedy classical weaknesses of traditional visualization formats such
as transparent, reflective or caustic surfaces.

Although these techniques are new, they rely on the same
underlying infrastructure as RGBD-camera based capture
workflows, such as spatial calibration, temporal
synchronization, data streaming, and fusion. Current sparse

FIGURE 10
Vote distribution per scene in the subjective perception study.
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camera volumetric video applications are therefore ideally suited
to adapt these new techniques. It will be interesting to see which
techniques in this rapidly developing field will prevail and how
they will contribute to a more accessible and higher fidelity
volumetric video creation.
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