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Speaker extraction (SE) aims to isolate the speech of a target speaker from a
mixture of interfering speakers with the help of auxiliary information. Several
forms of auxiliary information have been employed in single-channel SE, such as
a speech snippet enrolled from the target speaker or visual information
corresponding to the spoken utterance. The effectiveness of the auxiliary
information in SE is typically evaluated by comparing the extraction
performance of SE with uninformed speaker separation (SS) methods.
Following this evaluation procedure, many SE studies have reported
performance improvement compared to SS, attributing this to the auxiliary
information. However, recent advancements in deep neural network
architectures, which have shown remarkable performance for SS, suggest an
opportunity to revisit this conclusion. In this paper, we examine the role of
auxiliary information in SE across multiple datasets and various input conditions.
Specifically, we compare the performance of two SE systems (audio-based and
video-based) with SS using a unified framework that utilizes the commonly used
dual-path recurrent neural network architecture. Experimental evaluation on
various datasets demonstrates that the use of auxiliary information in the
considered SE systems does not always lead to better extraction performance
compared to the uninformed SS system. Furthermore, we offer new insights into
how SE systems select the target speaker by analyzing their behavior when
providedwith different and distorted auxiliary information given the samemixture
input.
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1 Introduction

Speech is the primary means through which humans communicate. In typical acoustic
scenes, a recording of a speaker of interest is often degraded by other acoustic sources, such
as background noise and interfering speakers. Remarkably, human brains have the ability to
focus on a specific acoustic source in a noisy environment while ignoring others, a
phenomenon commonly referred to as the cocktail party effect (Cherry, 1953). In
contrast, speech corrupted with concurrent interfering speakers has been shown to
severely deteriorate the performance of several speech processing algorithms, including
automatic speech recognition (Cooke et al., 2010) and speaker verification (SV) (Martin and
Przybocki, 2001). Over the past several decades, a considerable amount of research has been
devoted to dealing with overlapped speech as a speaker separation (SS) task, i.e., separating
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all speakers from the observed mixture signal (Wang and Chen,
2018). In particular, deep learning has considerably advanced the
performance of single-channel SS methods (Hershey et al., 2016; Yu
et al., 2017; Chen et al., 2017; Luo and Mesgarani, 2019; Luo et al.,
2020; Chen et al., 2020; Zeghidour and Grangier, 2021; Subakan
et al., 2021; Byun and Shin, 2021). One fundamental issue associated
with SS is the permutation problem, i.e., the correspondence
between the separated output signals and the speakers is
arbitrary. This ambiguity poses a challenge when training deep
neural networks (DNNs) for separation since the loss function needs
to be computed between each output signal and the ground-truth
speech of its corresponding speaker. To address this challenge,
permutation invariant training (PIT) (Yu et al., 2017; Kolbæk
et al., 2017) has been proposed, which enables optimizing DNNs
that directly separate the speech signals by finding the permutation
of the ground-truth signals that best matches the output signals.

In many scenarios, it may not be necessary to reconstruct all
speakers from the mixture; instead, it suffices to extract a single
target speaker. This task has been given numerous names in the
literature, among which are target speaker extraction (Delcroix et al.,
2018; 2021), informed speaker extraction (Ochiai et al., 2019b), or
simply speaker extraction (SE) (Xu et al., 2020; Zmolikova et al.,
2019). In contrast to SS, SE systems do not suffer from the
permutation ambiguity since only a single output exists. Early
works on SE (Du et al., 2014; 2016) were target-dependent,
i.e., systems designed to extract speech from only a particular
speaker and cannot generalize to other speakers. Such systems
require abundant training data from the target speaker, which is
infeasible in many applications. To realize speaker-independent SE
systems, prior knowledge or auxiliary information must be provided
to specify the target signal. SE approaches can be categorized based
on the modality of the auxiliary information. Audio-based SE (SE-
A) methods rely on a speech snippet from the target speaker that
guides the system towards that speaker (Zmolikova et al., 2019;
Wang et al., 2019; Wang et al., 2018; Delcroix et al., 2020). Video-
based SE (SE-V) methods1 have also been proposed that leverage
visual information from the target speaker, such as lip movements
(Gabbay et al., 2018; Hou et al., 2018; Afouras et al., 2018a; Wu et al.,
2019) or cropped facial frames (Ephrat et al., 2018; Afouras et al.,
2019). Other methods have exploited multi-modal information, for
example, by utilizing both visual features of the target speaker as well
as an enrollment utterance (Afouras et al., 2019; Ochiai et al., 2019a;
Sato et al., 2021). Finally, brain signals (Ceolini et al., 2020) and
speaker activity (Delcroix et al., 2021) have also been utilized as
auxiliary signals for SE.

Clearly, SS and SE are related problems in the sense that both
deal with overlapped speech. In fact, SE can be realized by using a SS
system followed by a SV module, where all speakers are first
separated, and then SV is applied on all outputs to select the
target speaker. However, SS and SE exhibit notable distinctions
in terms of their underlying assumptions and the nature of errors
that could arise. In SS, all speakers in the mixture are to be recovered,
whereas only a unique speaker is assumed to be the target in SE. In

addition, knowledge about the number of speakers in the mixture is
often assumed in SS (Hershey et al., 2016; Isik et al., 2016; Yu et al.,
2017; Kolbæk et al., 2017), while such an assumption is not necessary
in SE. Furthermore, SE necessitates prior knowledge about the target
speaker in the form of an auxiliary signal, while SS blindly isolates
the speech signals. With respect to evaluation, any permutation of
the outputs of SS is a valid solution and leads to the same objective
metrics. In contrast, SE systems are prone to speaker confusion,
i.e., recovering an interfering speaker instead of the target (Zhao
et al., 2022). The above points should not be overlooked when
evaluating and, especially, comparing the performance of SS and SE.

The utility of the auxiliary information in SE is generally
assessed by comparing the extraction performance of SE to that
of SS with target speaker selection (e.g., in an oracle fashion)
(Zmolikova et al., 2019; Delcroix et al., 2020). Using this
evaluation procedure, the majority of SE works often report
performance improvement over SS, attributing this to the use of
auxiliary information. In particular, it has been argued that the use
of auxiliary information improves the performance in scenarios
involving mixtures having similar voice characteristics (e.g., same-
gender mixtures) (Gabbay et al., 2018), long mixtures with
complicated overlapping patterns (Zmolikova et al., 2019), or
adverse acoustic conditions, e.g., very low signal-to-noise ratios
(SNRs) or more interfering speakers (Chuang et al., 2020;
Michelsanti et al., 2021). Another work in SE-V has
demonstrated that the auxiliary visual information improves the
extraction performance compared to SS, especially for visually
distinguishable sounds (Aldeneh et al., 2021).

However, ongoing advancements in DNN architectures, which
have demonstrated significant performance improvements in SS
(Luo et al., 2020; Chen et al., 2020; Subakan et al., 2021), suggest an
opportunity to revisit these findings. Having a clear understanding
of the contribution of the auxiliary information in SE would not only
give us more insights into how such systems function, but it could
also allow us to develop robust SE systems against unreliable
auxiliary information, e.g., noisy enrollment utterances, occluded
or temporally misaligned visual features.

In this work, we conduct an empirical study to objectively
examine the role of auxiliary information in SE from two aspects.
Firstly, through a comprehensive analysis over multiple datasets and
various mixing conditions, the utility of the auxiliary information in
improving the extraction performance of SE-A and SE-V in
comparison with uninformed SS is revisited. To ensure a fair
comparison, all SE and SS systems are implemented within a
unified framework employing the commonly used dual-path
recurrent neural network (DPRNN) architecture (Luo et al.,
2020). Secondly, inspired by previous works (Afouras et al., 2019;
Sato et al., 2021) that address corrupted auxiliary signals in SE, we
offer new insights into how SE systems select the target speaker by
inspecting their behavior for various samples from the embedding
space of the auxiliary information. This analysis also highlights the
difference in how SE systems select the target speaker when trained
on 2-speaker mixtures versus those trained on 3-speaker mixtures,
potentially addressing the issue of speaker confusion, which typically
occurs in scenarios involving inactive target speakers (Borsdorf et al.,
2021; Delcroix et al., 2022). The remainder of the paper is structured
as follows. Section 2 describes the tasks of SS and SE as well as the
systems employed in this study. In Section 3, the experimental setup

1 Also known in the literature as audio-visual speaker enhancement/

separation methods.
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is discussed, and Section 4 presents the experimental results. Finally,
the discussion is provided in Section 5.

2 Speaker separation and
extraction systems

In this section, we formally define the problems of SS and SE,
and provide a detailed description of the different systems used in
this study, which resemble, to a great extent, recently developed
methods in the literature on SS and SE (Luo and Mesgarani, 2019;
Luo et al., 2020; Delcroix et al., 2020; Wu et al., 2019; Ochiai et al.,
2019a; Ge et al., 2020; Pan et al., 2022). Figure 1 shows the block
diagrams of the different systems. Note that a common backbone is
employed for all systems to ensure a fair comparison. Further details
about the systems’ configurations are described in Section 3.2.

Let y ∈ RS be S samples of an observed single-channel time-
domain mixture signal consisting of speech from C speakers,
denoted by x1, . . . , xC ∈ RS, i.e.,

y � ∑
C

i�1
xi. (1)

2.1 Speaker separation (SS)

The objective of SS is to reconstruct all the constituent speech
signals in the mixture, i.e.,

x̂1, x̂2, . . . , x̂C{ } � f y( ), (2)

where x̂i ∈ RS denotes the estimated speech signal at the i-th output,
and f represents the transformation applied by the separation
system on the mixture signal y. Note that the order of the output
signals is arbitrary, and a mapping between each output and its
corresponding speaker identity is typically required. Following prior
SS works (Luo and Mesgarani, 2018; 2019; Chen et al., 2020;
Subakan et al., 2021), we adopt an encoder-masker-decoder
structure for f, as shown in Figure 1A. In particular, f
comprises three main blocks: an encoder, a mask estimator using
a DNN, and a decoder, represented by E, B, andD, respectively. The
encoder E transforms the time-domain waveform of the mixture
into frame-wise features Y ∈ RN×T, whereN is the dimensionality of
the encoded features of each time frame, and T denotes the number
of time frames, i.e.,

Y � E y( ). (3)

The mask estimator B is a DNN that maps the encoded features
Y to a mask for each speaker in the mixture, i.e.,

M1,M2, . . . ,MC{ } � B Y( ), (4)
whereMi ∈ RN×T denotes the mask for the i-th output. Each mask is
then applied to the encoded features Y and subsequently fed to the
decoder D to reconstruct the time-domain waveform of the
corresponding speaker, denoted by x̂i ∈ RS, as

x̂i � D Y ⊙ Mi( ), (5)
where ⊙ denotes the Hadamard product. To optimize the
parameters of the separation system, utterance-level PIT (uPIT)
(Kolbæk et al., 2017) is used first to find the bijective mapping
between each output signal x̂i and its corresponding speaker, as

FIGURE 1
Block diagrams of the speaker separation (SS) and speaker extraction (SE) systems: (A) SS trained with uPIT, (B) audio-based SE (SE-A), and (C) video-
based SE (SE-V).
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ϕ* � argmin
ϕ∈P

∑
C

i�1
ℓ xϕ i( ), x̂i( ), (6)

where ℓ is a loss function defined between two time-domain signals,
P represents the set of all possible permutations, and ϕ* is the
optimum permutation that provides the minimum loss. The total
loss L is then computed, as

L � ∑
C

i�1
ℓ xϕ* i( ), x̂i( ). (7)

2.2 Speaker extraction (SE)

In contrast to SS, SE refers to the task of reconstructing a single
target speaker from the mixture given auxiliary information about
the target speaker. We refer to the auxiliary information as the
reference signal and denote it by ro, where o is the index of the
desired speaker. Note that the dimensionality of ro depends on the
type of information provided to the system. SE can be formulated as

x̂o � g y, ro( ), (8)
where g represents the transformation carried out by the SE system,
and x̂o ∈ RS denotes the estimated speech of the target speaker.
Existing SE methods typically decompose g into two stages (Ephrat
et al., 2018; Wu et al., 2019; Ochiai et al., 2019a; Wang et al., 2019;
Delcroix et al., 2020; Ge et al., 2020; Pan et al., 2022): an auxiliary
network and an extraction network, represented by h and ~f,
respectively. The auxiliary network h extracts informative
features, denoted by Eo, from the reference signal, which help to
specify the target speaker, i.e.,

Eo � h ro( ). (9)

The second stage is to condition the extraction network ~f on the
features Eo such that an estimate of the target speaker can be
obtained as

x̂o � ~f y,Eo( ). (10)

Following prior works (Wu et al., 2019; Delcroix et al., 2020), ~f
has a similar encoder-masker-decoder structure to the separation
system f described in Section 2.1, except that the mask estimator
consists of two DNN blocks B1 and B2, as well as a fusion layer
inserted in between, such that the informative features Eo can be
included. Many fusion techniques have been proposed, e.g.,
concatenation-based (Ephrat et al., 2018; Wu et al., 2019), and
product-based (Ochiai et al., 2019a; Zmolikova et al., 2019; Delcroix
et al., 2020). In this work, we adopt the product-based technique as
the fusion mechanism, based on empirical results showing that it
provided better performance compared to the concatenation-based
mechanism. The transformations carried out by ~f are
represented by

Mo � B2 B1 Y( ) ⊙ Eo( ), (11)
x̂o � D Y ⊙ Mo( ). (12)

The loss function, in this case, is computed with respect to the
target speaker only, and hence uPIT is not required, i.e.,

L � ℓ xo, x̂o( ). (13)
The design of the auxiliary network h in (Equation 9) depends

on the modality of the reference signal ro. In this work, we focus on
audio-based SE (SE-A) and video-based SE (SE-V). Both systems are
illustrated in Figures 1B, C, and described in the following.

2.2.1 Audio-based SE (SE-A)
In SE-A, a reference speech signal from the target speaker is used

as auxiliary information to guide the extraction system. Typical SE-
A methods realize this process by mapping the reference speech
signal to an embedding vector that encodes the voice characteristics
of the target speaker. The well-known speaker representations
developed for speaker recognition, such as i-vector (Dehak et al.,
2011) and d-vector (Wan et al., 2018), have been employed in SE-A
in (Zmolikova et al., 2019; Wang et al., 2019). Alternatively, speaker
representations can also be learned in an end-to-end fashion via an
auxiliary DNN that is jointly optimized with the extraction network
(Zmolikova et al., 2019; Delcroix et al., 2020). The end-to-end
approach was adopted in this study, as we empirically found it to
be better than using a pre-trained speaker recognition model
(Desplanques et al., 2020). The first block in the auxiliary
network is an audio encoder EA (similar to E in (Equation 3)), i.e.,

RA
o � EA rAo( ), (14)

where rAo ∈ RSr denotes the speech reference signal from the target
speaker having a length of Sr samples, and RA

o ∈ RN×Ta represents
the encoded frame-wise features, where Ta represents the number of
time frames. The features RA

o are further processed with a DNN,
denoted by F , which produces an embedding vector for each time
frame, arranged in the matrix ~E

A
o ∈ RN×Ta , as

~E
A

o � F RA
o( ). (15)

Temporal average pooling is then applied to the frame-wise
features ~E

A
o , such that an utterance-wise embedding vector,

represented by EA
o ∈ RN×1, is obtained. Note that, in this case,

the embedding vector EA
o is time-invariant, and it is broadcasted

over the different time frames in the fusion layer in (Equation 11).

2.2.2 Video-based SE (SE-V)
In an attempt to mimic the multimodality of human perception

(Golumbic et al., 2013; Partan and Marler, 1999), video-based SE
leverages visual cues, such as lip movements or facial expressions, as
auxiliary information. The first component of the auxiliary network
in the SE-V system is a visual encoder, denoted by EV. This encoder
extracts visual features RV

o ∈ RNv×Tv , where Nv represents the
dimensionality of the features, and Tv represents the number of
time frames, from the given visual reference signal rVo ∈ RD×H×W×Tv ,
where D, H, and W denote the depth, height, and width,
respectively, i.e.,

RV
o � EV rVo( ). (16)

The design of the visual encoder EV depends on the type of
visual information used. When facial frames are utilized as a
reference signal, typically EV is a pre-trained face recognition
network, e.g., FaceNet (Cole et al., 2017), from which an
embedding vector for each facial frame is extracted (Ephrat et al.,
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2018; Ochiai et al., 2019a). In the case of lip frames as a reference
signal, EV typically consists of a spatio-temporal convolutional layer,
i.e., 3-D ConvLayer, followed by ResNet-18 (Stafylakis and
Tzimiropoulos, 2017) that outputs a lip embedding for each
frame (Afouras et al., 2018a; Wu et al., 2019; Pan et al., 2022). It
has been shown that using lip features as visual information in SE
generally provides better extraction performance than facial features
(Inan et al., 2019; Shetu et al., 2021).

In this study, we adopt lip frames as visual information and use
the 3-D ConvLayer + ResNet-18 structure for the visual encoder EV.
The visual embeddings Ro are further processed with a DNN F ,
resulting in more task-specific features, represented by
~E
V
o ∈ RN×Tv , as

~E
V

o � F RV
o( ). (17)

Finally, to match the sampling rates of the visual and audio
streams, the learned features ~E

V
o are upsampled using linear

interpolation along the temporal dimension, similar to (Owens
and Efros, 2018; Pan et al., 2022), resulting in the frame-wise
features EV

o ∈ RN×T.

3 Experimental design

In this section, we introduce the datasets used in this study and
describe the specific configurations of the systems presented in
Section 2 and two baselines for SE. We then provide details of
the training setup. Finally, we describe the evaluation procedure for
SS systems within a SE setup.

3.1 Datasets

For experimentation, we consider the four most commonly used
datasets in the literature on SE. These datasets differ in terms of the
number of examples, the number of speaker identities, the
vocabulary size, and the recording conditions. The details of
these datasets are presented in Table 1. The audio files in all
datasets have a sampling frequency of 16 kHz.

3.1.1 TCD-TIMIT
TCD-TIMIT (Harte and Gillen, 2015) consists of

synchronized audio-visual recordings of 59 speakers reading
sentences from the TIMIT corpus. TCD-TIMIT is collected in
a controlled environment, thus comprising high-quality audio
and video clips of speech. The video recordings are sampled at
25 frames per second.

Since there are no official SS/SE dataset splits for TCD-TIMIT,
we created training, validation, and test splits based on speaker
identities, i.e., the splits are ensured to form disjoint sets in terms of
the speaker identities. We then simulated 2-speaker and 3-speaker
mixtures by randomly sampling utterances from different speakers
in each split. For consistency among the datasets and following prior
works (Ochiai et al., 2019a; Sato et al., 2021), the utterances were
mixed with a signal-to-interference ratio (SIR) sampled from
−5 dB–5 dB. The mixtures have a duration of 3 s. In the case of
3-speaker mixtures, two SIRs were sampled, and each interferer was
scaled by its corresponding SIR with respect to the target, and then
all signals were superimposed.

3.1.2 LRS3
LRS3 (Afouras et al., 2018b) is a large-scale audio-visual corpus

obtained from TED and TEDx talks. Unlike TCD-TIMIT, LRS3 is
collected in the wild, resulting in a lower quality of samples
compared to TCD-TIMIT. However, LRS3 has a tremendous
variability in terms of the spoken sentences, visual appearances,
and speaking styles, which allows developing robust DNN models
that generalize to real-world conditions. Similar to TCD-TIMIT, the
video recordings are sampled at 25 frames per second. In addition,
we followed the same procedure as in TCD-TIMIT to create dataset
splits suitable for SS/SE, since there are no official dataset
splits for LRS3.

3.1.3 WSJ0Mix
Derived from theWSJ0 corpus (Garofolo et al., 1993), theWSJ0-

2Mix and WSJ0-3Mix datasets (Hershey et al., 2016) for single-
channel 2-speaker and 3-speaker mixtures, respectively, have
become the standard benchmark for SS. The utterances are
mixed with a SIR randomly sampled from −5 dB–5 dB. We used
the min version of the datasets. Unlike TCD-TIMIT and LRS3,
WSJ0Mix comprises only audio signals, with no corresponding
visual recordings of the speakers.

3.1.4 LibriMix
LibriMix (Cosentino et al., 2020) is an audio-only dataset that

comprises 2-speaker and 3-speaker mixtures created from the
LibriSpeech corpus (Panayotov et al., 2015). For our experiments,
we used the clean subset of the dataset, which comprises speech
mixtures without noise or reverberation. The SIR of the mixtures in
the dataset follows a normal distribution with a mean of 0 dB and a
standard deviation of 4.1 dB. Similar to WSJ0Mix, we used the min
version of the dataset.

For all the datasets mentioned above, each reference speech
signal for the SE-A system was an utterance spoken by the target
speaker that was different from the one in the mixture. For the SE-V

TABLE 1 Statistics of the training, validation, test splits of the different datasets.

Corpus No. Speakers Total duration [h] No. Utterances

TCD-TIMIT (Harte and Gillen, 2015) 47/6/6 6.7/0.9/0.8 30k/5k/3k

LRS3 (Afouras et al., 2018b) 906/49/142 25.0/1.2/3.7 30k/5k/3k

WSJ0 (Garofolo et al., 1993) 101/(8/10) 24.9/(1.5/2.2) WSJ0-2&3Mix (Hershey et al., 2016): 20k/5k/3k

LibriSpeech (Panayotov et al., 2015) 921/40/40 362.4/5.4/5.4 Libri-2Mix(3Mix) (Cosentino et al., 2020): 51k (34k)/3k/3k
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system, each reference signal was derived by cropping the lip region
of the target speaker from the video clip of the corresponding
spoken utterance.

3.2 Model configurations

As mentioned in Section 2, we adopted an encoder-masker-
decoder structure for the different SS and SE systems. In particular,
we followed a TasNet-like structure (Luo and Mesgarani, 2018;
2019) for the encoder and decoder, which utilizes learnable kernels
instead of the traditional pre-defined Fourier bases. Both audio
encoders E and EA, shown in Figure 1, consisted of a 1-D
convolutional layer followed by a rectified linear unit (ReLU)
non-linearity. We set the parameters of this layer as follows:
number of kernels N � 256, kernel size L � 32 (2ms), and hop
size R � 16 (1ms). The decoder D was a 1-D transposed
convolutional layer, having the same kernel and hop sizes as
the encoder.

For the SE-V system, the visual encoder EV was pre-trained2

on a speech recognition task, and we kept its parameters fixed
during training, similar to (Wu et al., 2019; Pan et al., 2022). The
parameter count of the visual encoder is 11.2M. A linear layer was
used to match the feature dimensionality of the visual encoder’s
output (i.e., Nv � 512) with the input of the DNN block
F (i.e., N � 256).

For the DNN blocks in Figure 1, i.e., B, B1, B2, and F , we
employed the DPRNN architecture (Luo et al., 2020). We used the
DPRNN implementation provided by SpeechBrain (Ravanelli et al.,
2021) with the following hyperparameters. For the intra- and inter-
chunk recurrent neural networks (RNNs), bi-directional long short-
term memory (LSTM) networks (Hochreiter and Schmidhuber,
1997) were used with 128 hidden units in each direction. The
bottleneck size was set to 64. We used a chunk size of 90, except
forF in SE-V, which was set to 12. This choice ensures a comparable
sequence length for the intra- and inter-chunk RNNs and was
calculated for a 3-s input. Global Layer Normalization (gln) (Luo
andMesgarani, 2019) was used, and ReLU non-linearity was applied
at the output. For the SE-A and SE-V systems, the DNN blocks B1

and B2 have the same size, each consisting of 3 DPRNN blocks. In
contrast, for the SS system, the DNN block B comprised 6 DPRNN
blocks. This ensures that the separation network f and the
extraction network ~f are similar. In the auxiliary network of SE-
A and SE-V, the DNN block F consists of only one DPRNN block.
The number of trainable parameters of the SS, SE-A, and SE-V
models is 2.6M, 3.2M, and 4.2M, respectively.

As visual information for the SE-V system, lip regions were
extracted using facial landmark detection implemented in (King,
2009). The lip regions were transformed into grayscale (i.e., D � 1)
and resized to 100 × 50 pixels corresponding to the width W and
height H, respectively. For visual frames where the lip detection
algorithm failed to detect the lip region, e.g., due to occlusion, a
patch of zeros was used instead.

3.3 SE baselines

To validate the design choices of the adopted SE systems, we
compare their performance with two SE baselines: SpEx+ (Ge et al.,
2020) and USEV (Pan et al., 2022). These baselines were chosen
because they follow a time-domain approach similar to the SE
systems in this study, allowing for a fair comparison, and due to
the availability of their implementation. SpEx+3 is a complete time-
domain SE-A method that comprises a multi-scale speech encoder
and decoder. Following the notations in (Ge et al., 2020), the
hyperparameters of SpEx+ were set as follows: L1 � 40 (2.5ms),
L2 � 160 (10ms), L3 � 320 (20ms), N � 256, B � 8, R � 4,
O � 256, P � 512, Q � 3, NR � 3, α � 0.1, β � 0.1, γ � 0.5, and
the speaker embedding dimension was set to 256. The number of
trainable parameters of the SpEx +model is 11.3M (for TCD-TIMIT
and WSJ0Mix) and 11.5M (for LRS3 and LibriMix)4.

As a baseline for SE-V, the USEV5 method (Pan et al., 2022) was
used. In general, both the USEV baseline and the SE-V system used
in this study share a similar structure. One key difference lies in the
type of architecture used for the DNN block F in the auxiliary
network, where USEV employs a temporal convolutional network
(TCN) instead of a DPRNN. Following the notations in (Pan et al.,
2022), the hyperparameters of USEV were set as follows:
L � 40 (2.5ms), B � 64, N � 256, R � 6, H � 128, K � 100, and
5 repeated TCN blocks were used in the auxiliary network. The
USEV model has a total of 4.1M trainable parameters.

3.4 Training setup

For each of the SS, SE-A, and SE-V systems, as well as the
baselines, we trained two independent models per dataset: one on 2-
speaker mixtures and another on 3-speaker mixtures. Note that the
video-based extraction systems (i.e., SE-V & USEV (Pan et al.,
2022)) were not trained on WSJ0Mix and LibriMix due to the
lack of visual recordings in such datasets. Adam (Kingma and Ba,
2015) optimizer was used with an initial learning rate of 10−3 and a
weight decay of 10−5. The batch size was set to 24, and gradients were
clipped if their L2 norm exceeded a value of 5. The maximum
number of epochs was set to 300. A scheduler was utilized to reduce
the learning rate by a factor of two if no reduction in the validation
loss occurred in 10 consecutive epochs, and early stopping was used
with patience of 20 epochs. A common seed was set for the generator
of each dataset to ensure that identical training examples were
provided to all systems during training.

For the TCD-TIMIT and LRS3 datasets, we trained on 3-s
segments, whereas 4-s segments were used for WSJ0Mix and

2 The weights of the visual encoder is obtained from: https://github.com/

smeetrs/deep_avsr

3 Official implementation provided Online: https://github.com/

xuchenglin28/speaker_extraction_SpEx

4 The difference in the number of trainable parameters across the different

datasets is due to the linear layer used for the speaker identification loss,

which depends on the number of speakers in the respective training split.

5 Official implementation provided Online: https://github.com/

zexupan/USEV
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LibriMix. This also holds for the length of the reference signal for the
SE-A systems. Dynamic mixing was not applied during training.
However, the enrollment utterances for SE-A were sampled
randomly across the different epochs. As the loss function ℓ, the
negative scale-invariant source-to-distortion ratio (SI-SDR) (Le
Roux et al., 2019) was used.

3.5 SS evaluation in SE setup

Evaluating a SS system in a SE setup requires an identification
step for selecting the target speaker. Following prior works (Wang
et al., 2019; Zmolikova et al., 2019; Xu et al., 2020; Delcroix et al.,
2020), we compare two variants for target speaker selection in SS:
oracle selection (SS + Oracle) and speaker verification selection
(SS + SV).

For oracle selection, the target speaker is selected by computing
the SI-SDR between each output of the SS system and the ground-
truth target signal. The signal that yields the maximum value is
selected as the target estimate. Oracle selection excludes
identification errors in SS, and thus provide an upper bound on
the performance of SS when applied in a SE setup.

In contrast, selecting that target speaker in SS using a speaker
verification (SV) module does not exclude identification errors,
which gives some perspective on the practical performance of the
SS system when applied in a SE setup. The SV module accepts two
utterances as input and computes a similarity score between them. It
consists of a speaker embedding network that extracts an embedding
vector for each utterance. The similarity is then determined by the
cosine distance between the two embeddings. Evaluating target
speaker selection for SS using SV is carried out by computing a
similarity score between the enrollment utterance and each output
of the SS system. The output signal that yields the maximum
similarity score is selected as the estimated target speaker. For
the speaker embedding network, we employed the ECAPA-
TDNN (Desplanques et al., 2020), which is pre-trained on the
VoxCeleb 1 + 2 datasets (Nagrani et al., 2020) comprising
utterances from over seven thousand speakers. We used the
implementation provided in SpeechBrain6 (Ravanelli et al., 2021).

To validate the generalizability of the pre-trained ECAPA-
TDNN model to the datasets considered in this study, we
evaluated its SV performance on each dataset using
3,000 positive and negative pairs from the clean signals in the
respective test split. The resulting equal error rates are as follows:
0.4%, 2.1%, 0.5%, and 1.3%, for TCD-TIMIT, LRS3, WSJ0Mix, and
LibriMix, respectively. This evaluation confirms that the pre-trained
ECAPA-TDNN model generalizes well to the datasets used in
this study.

4 Experimental results

The goal of this study is to gain a better understanding of the role
of auxiliary information in SE systems. In the first set of

experiments, we investigate whether and in which scenarios the
auxiliary information improves the extraction performance
compared to uninformed SS systems. The second set of
experiments explores the behavior of SE systems when provided
with different or distorted auxiliary information for a given mixture
signal. As evaluation metrics, we use the SI-SDR (Le Roux et al.,
2019) to assess speech quality and the extended short-time objective
intelligibility (ESTOI) (Taal et al., 2010) to measure speech
intelligibility. Audio examples are available online.7

4.1 Performance on fully
overlapped mixtures

In this experiment, we evaluate the extraction performance of
the different systems on fully overlapped 2-speaker and 3-speaker
mixtures. We first compare the SE-A and SE-V systems with the
baselines described in Section 3.3. Subsequently, a comparison
between the SE systems and SS is provided. The mean results in
terms of the SI-SDR improvement (ΔSI-SDR) are presented in
Table 2. We also report the ESTOI scores, which generally follow
the trends observed in the SI-SDR scores.

4.1.1 Comparison with SE baselines
By comparing the SE-A system to SpEx+ (Ge et al., 2020), we

observe no clear trend with respect to the superiority of either system
across the different datasets. Furthermore, the performance of both
SE-V and USEV (Pan et al., 2022) is generally comparable, except in
the TCD-TIMIT datasets for 3-speaker mixtures, where SE-V clearly
outperforms USEV. These results affirm that the adopted SE-A and
SE-V systems are, to a certain extent, competitive with existing SE
methods in the literature.

4.1.2 Comparison with SS
We further compare the performance of the SE systemswith SS + SV

and SS + Oracle. We first observe that SS + SV generally yields
comparable results to SS + Oracle for 2-speaker mixtures. Conversely,
for 3-speaker mixtures, SS + SV generally exhibits worse mean
performance than SS + Oracle. This can be attributed to the lower
separation scores for 3-speaker mixtures and the fact that the SVmodule
is pre-trained on clean speech signals rather than on separated signals that
might have processing artifacts or residuals from the interfering speakers.

Comparing SE-A with SS + Oracle, it can be seen that SS + Oracle
achieves comparable or better scores across the different datasets. This
also holds for SS + SV, except for LRS3 on 3-speaker mixtures, where a
1.4 dB drop in performance can be seen compared to SE-A. By
examining the results of SE-V and SS + Oracle, we observe
comparable performance, except for LRS3 on 3-speaker mixtures,
where SE-V achieves better mean scores than SS + Oracle. However,
the gap in performance increases when SV is used instead of oracle
selection for SS. The results also clearly demonstrate that the SE-V
system exhibits better mean performance than SE-A. This could be due
to the prominent correlation between the visual cues and the target

6 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

7 https://www.audiolabs-erlangen.de/resources/2024-New-Insights-on-

Target-Speaker-Extraction
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TABLE 2 Extraction performance for fully-overlapped 2-speaker and 3-speaker mixtures.

TCD-TIMIT LRS3 WSJ0Mix LibriMix

2 3 2 3 2 3 2 3

SpEx+ (Ge et al., 2020) ΔSI-SDR 15.9 10.6 12.8 11.2 16.1 12.2 14.4 11.7

ESTOI 81.6 59.4 77.3 62.2 91.3 78.3 85.4 70.3

USEV (Pan et al., 2022) ΔSI-SDR 18.4 14.4 14.7 13.5 — — — —

ESTOI 86.2 69.0 80.8 69.5 — — — —

SE-A ΔSI-SDR 15.5 10.0 13.7 12.0 15.2 13.8 14.7 12.7

ESTOI 81.3 60.1 79.1 65.0 89.1 81.4 85.2 73.0

SE-V ΔSI-SDR 18.4 16.5 14.4 13.2 — — — —

ESTOI 86.1 74.7 80.4 68.5 — — — —

SS + SV ΔSI-SDR 17.9 15.4 13.7 10.6 17.0 13.8 16.4 12.9

ESTOI 85.0 70.2 79.2 61.6 92.8 80.9 88.6 72.6

SS + Oracle ΔSI-SDR 18.0 16.1 14.2 11.9 17.0 14.0 16.5 13.7

ESTOI 85.2 70.9 79.8 63.4 92.8 81.2 88.8 74.0

FIGURE 2
Histogram of the SI-SDR [dB] score difference between the different systems and SS +Oracle for 2-speaker (orange) and 3-speaker (blue) mixtures.
The mean (dashed line, black) and median (solid line, red) are also visualized. The tuples provide the values of the mean and median, respectively.
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signal in the mixture, as well as the use of time-varying embeddings in
SE-V.

4.2 Per-sample performance analysis

The comparison in Section 4.1 provides a holistic view of the systems’
performance, quantified by the arithmetic mean of the evaluationmetrics
over all samples in the test set. To gain more insights, we perform a per-
sample analysis by inspecting the difference in theΔSI-SDR performance
between the different systems and SS + Oracle. A negative difference
indicates that the SS + Oracle system is better than the respective system,
and vice versa. It is important to note that this analysis differs from those
in previous studies [e.g., (Ochiai et al., 2019a)], which compared
histograms of performance scores computed for each system
individually, rather than examining the performance differences
between a pair of systems. The histograms of the ΔSI-SDR difference
are shown in Figure 2. The mean and median values of the ΔSI-SDR
difference are also provided. Interestingly, in many cases, the mean and
median scores are quite different, which clearly shows that solely
reporting the mean performance does not provide a full picture when
comparing SE and SS systems.

Comparing SS + SV with SS + Oracle, it can be observed that the
median is always centered around 0 dB. In contrast, the mean
deviates to the negative side, especially for 3-speaker mixtures,
where the SV module sometimes selects an interferer speaker
instead of the target. When comparing SE-A with SS + Oracle,
we observe that, in most cases, the median is close to 0 dB, except for
LibriMix on 2-speaker mixtures and TCD-TIMIT on 3-speaker
mixtures, where clearly the SE-A system performs poorly
compared to SS + Oracle. It is also important to note how
susceptible the mean performance of SE-A is to outliers, reflected
by the gap between the mean and median values. The distributions
of the performance difference between SE-V and SS + Oracle for 2-
speaker mixtures exhibit a slight shift towards the positive side for
TCD-TIMIT, whereas it is centered around zero for LRS3. However,
for 3-speaker mixtures, the shift towards the positive side is more
prominent, indicating an overall advantage of the visual information
in this case.

The analysis here highlights the inadequacy of reporting only the
mean scores over the samples when attempting to compare SS and
SE systems due to the presence of outliers, e.g., caused by the
incorrect selection of the target speaker. By excluding such
outliers and considering the median values, the following
conclusions can be drawn. The auxiliary information in SE-A
does not consistently improve the quality of the extracted signals
compared to SS, neither for 2-speaker mixtures nor for 3-speaker
mixtures. To some extent, this is also the case for the auxiliary
information in SE-V for 2-speaker mixtures. However, for 3-speaker
mixtures, the visual information provides an overall improvement
compared to SS, indicated by the shift of the distributions towards
the positive side in Figure 2.

4.3 Effect of input SIR

In this experiment, we specifically study the impact of the input
SIR on the performance of the different systems for 2-speaker and 3-

speaker mixtures. This examines whether the auxiliary information
in SE-A and SE-V improves the extraction performance compared
to SS for different powers of the interfering signal(s), especially at
low SIRs. For evaluation, 1,000 examples (target + interferer(s)) were
selected from the test split of each dataset and mixed with a SIR
swept from −10 dB to 20 dB with a step size of 10 dB. Figure 3 shows
the results of this experiment, where we report the SI-SDR instead of
ΔSI-SDR to better reflect the reconstruction quality of the extracted
signals. As expected, the SI-SDR scores generally drop as the SIR
decreases. Furthermore, it can be seen that SS + SV is comparable to
SS + Oracle for higher SIRs (i.e., ≥ 10 dB). However, as the SIR
decreases, the SS + SV system generally exhibits worse mean
performance, especially for 3-speaker mixtures. Nonetheless, it is
important to note that the median values of SS + SV and SS + Oracle
are still close to each other, highlighting again the influence of the
outliers on the mean values.

For 2-speaker mixtures, it can be seen that SE-A generally performs
worse than SS + SV and SS + Oracle in terms of bothmean andmedian
values for all SIRs. Comparing SE-V with the SS systems, we observe
comparable mean andmedian values, except for LRS3, where the mean
of the SS + SV system is lower than SE-V and SS + Oracle. The results
for 3-speaker mixtures follow different trends than the 2-speaker case.
With the exception of TCD-TIMIT, it can be observed that SE-A yields
better mean and median scores than SS + SV (and SS + Oracle for
LRS3 andWSJ0Mix) for SIR � −10 dB. However, for higher SIRs, both
SS + SV and SS +Oracle generally outperform SE-A across the datasets.
We can also observe that the SE-A system exhibits poor generalization
to unseen SIRs for TCD-TIMIT and WSJ0Mix. It is clear that SE-V
generally exhibits the best performance in terms of mean and median
scores for SIR ≤ 0 dB.

The results of this experiment show that the use of auxiliary
information in SE does not always lead to better performance
compared to SS for different SIRs. The only exception is for 3-
speaker mixtures at low SIRs, where SE-A and SE-V generally
exhibit better performance than the SS systems.

4.4 Long sequences

Thus far, only fully overlapped mixture signals were considered. In
this experiment, we evaluate the effectiveness of the auxiliary
information in SE for 2-speaker mixtures with different overlapping
patterns and longer durations (up to 9 s), which mimic what typically
occurs in natural conversations. Figure 4 depicts the different
overlapping patterns considered in this experiment. For each dataset
and each pattern, we generated 1,000mixture signals with a SIR of 0 dB.
For the SE-V system, the duration of the reference signal was always
equal to the duration of themixture signal. In segments where the target
speaker was absent, we used static visual frames by repeating the starting
frame of the silent segment. For SS +Oracle and SS + SV, target speaker
selection was performed on the whole output waveforms rather than
over the individual segments. Figure 5 shows the results of this
experiment in terms of SI-SDR.

Consistent with the observations from the previous results on 2-
speaker mixtures, both SS + Oracle and SS + SV attain comparable
mean and median performance across the different patterns and
datasets. Interestingly, the high scores of the SS systems indicate that
they are able to track the speakers over time, even though there could be
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FIGURE 3
Extraction performance in terms of SI-SDR [dB] for different signal-to-interference ratios (SIRs) for 2-speaker (top) and 3-speaker (bottom)mixtures.
The mean values are visualized by the square symbol.

FIGURE 4
Different overlapping patterns for 2-speaker mixtures. The green and red regions represent the target speaker A and the interferer speaker B (red),
respectively, while gray regions indicate silence. Each digit (1 or 0) within a pattern represents a 3-s segment, where 1 denotes a speech segment, whereas
0 represents silence. The last three patterns {101/111, 111/101, 011/110} also include their cyclic shifts by 3 s.
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pauses in the streams of either the target or interferer, e.g., patterns 101/
111, 111/101, and 110/011. This behavior could be attributed to the
recurrent structure of the DPRNN architecture as well as the non-
causality of the SS systems. From the results, it can be observed that SE-
A achieves similar performance to SS + SV and SS + Oracle for LRS3,
whereas it is generally worse for the other datasets. Note again how
different the median and mean values are for SE-A, indicating the
presence of many outliers where the SE-A system performs poorly. A
comparison between SE-V and SS + SV/Oracle shows that the SE-V
system generally achieves slightly higher mean values. However, the
median scores of SE-V are mostly close to those of the SS systems, or in
some cases, even lower, especially for TCD-TIMIT. This again
emphasizes the importance of reporting additional statistical
measures alongside the mean values when comparing SE and SS
systems, to avoid drawing misleading conclusions. The findings
presented here show that the use of auxiliary information in SE
does not consistently lead to better performance than SS for the
considered overlapping patterns for 2-speaker mixtures.

4.5 Performance for different
reference signals

We further investigate the role of auxiliary information in SE by
evaluating the extraction performance for different reference signals
from the target speaker, given the same input mixture. This
experiment addresses the question of whether different reference
signals yield equivalent performance, or if some reference signals
lead to better outcomes than others. The experiment was conducted
only for SE-A, where multiple enrollment utterances from the target
speaker are available. For each dataset, evaluation was performed on
1,000 2-speaker mixtures with a SIR of 0 dB. For each mixture, we
evaluated the extraction performance of SE-A using five different

randomly selected reference signals and then computed the standard
deviation of the resulting ΔSI-SDR scores. In Figure 6, the histogram
of the standard deviations is depicted for each dataset. Interestingly,
across the various datasets, the standard deviation is less than 0.5 dB
in more than 80% of the cases, demonstrating that the extraction
performance for the five different reference signals is generally
similar. These results suggest that the performance of SE-A for a
given mixture is primarily determined by the capability of its
extraction network, rather than by the specific enrollment
utterance used, assuming that such utterances possess ‘sufficient’
discriminative information.

4.6 Distorted auxiliary information

Inpired by prior studies (Afouras et al., 2019; Sato et al.,
2021) that address corrupted auxiliary information in SE, we
analyze the behavior of the SE-A and SE-V systems when
provided with distorted auxiliary information. Although no
distortions were introduced during training, this experiment
offers interesting insights into how SE systems leverage the
auxilairy information in selecting the target speaker. We explore
distortions in the embedding space of the auxiliary signals by
linearly interpolating between two embeddings belonging to
different speakers (indexed by A and B),
i.e., Einterpolated � α EA + (1 − α) EB, for α ∈ [0, 1]. In one
case, we interpolate between embeddings from two in-
mixture speakers, i.e., EA and EB belong to two different
speakers in the mixture. In the other case, we consider EA to
be from an in-mixture speaker, while EB belongs to an out-of-
mixture speaker. Note that when α � 0 for the latter case, it is
equivalent to the challenging inactive target speaker scenario,
studied in (Borsdorf et al., 2021; Delcroix et al., 2022).

FIGURE 5
Extraction performance in terms of SI-SDR [dB] for the different overlapping patterns for 2-speaker mixtures. The mean values are visualized by the
square symbol.
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For evaluation, we considered two subsets, one consisting of 2-
speaker mixtures and the other of 3-speaker mixtures, each
containing 1,000 examples with a SIR of 0 dB. For both SE-A
and SE-V systems, evaluation was performed in amatched condition
utilizing the models trained on mixtures having the same number of
speakers. We evaluate each output signal in terms of ΔSI-SDR with
respect to the ground-truth signals of all in-mixture speakers to
determine which speaker was extracted. In addition, we report the
difference in system performance when provided with the
interpolated embedding versus the undistorted embedding of
each in-mixture speaker. A performance difference close to zero
indicates that the interpolated embedding enables extracting an in-
mixture speaker with a reconstruction quality close to the respective
undistorted embedding. The histograms of the ΔSI-SDR scores are
provided in Figure 7. For brevity, we only show the results for the
LRS3 dataset, as the outcomes for the other datasets exhibit a
similar pattern.

4.6.1 Two-speaker mixtures
Figure 7A shows the results for interpolating between two in-

mixture speakers for mixtures with two speakers. It can be seen that the
closer the interpolated embedding is to either speaker embedding, the
more likely the corresponding speaker is extracted. Except for α � 0.5, it
is interesting to observe from the histogram of differences that the
performance of both interpolated and undistorted embeddings is, in
most cases, close to each other. For α � 0.5, in at least 50% of the cases,
both SE-A and SE-V systems still equally likely extract one of the
speakers in the mixture, maintaining the same quality as when the
undistorted embedding is provided.

When an embedding from an out-of-mixture speaker is
interpolated with an in-mixture speaker (i.e., spk-1), it can be
seen in Figure 7B that for higher values of α, the considered in-
mixture speaker is more likely to be extracted compared to the other
speaker in the mixture. Interestingly, when an utterance from an
out-of-mixture speaker is used as a reference signal for SE-A
(i.e., α � 0), the system tends to extract one of the speakers in
the mixture. This behavior has also been observed in previous
studies (Borsdorf et al., 2021; Delcroix et al., 2022). However, we
also demonstrate that this behavior holds for the SE-V system at
α � 0, although the reference signal (i.e., lip frames) corresponds to a
different utterance spoken by a speaker not present in the mixture.

4.6.2 Three-speaker mixtures
For 3-speaker mixtures, the results for interpolating

between in-mixture speakers are omitted for brevity, as they
are consistent with those shown in Figure 7A. However, when
interpolation is performed between an in-mixture speaker and
an out-of-mixture speaker, it can be seen in Figure 7C that the
SE systems generally do not extract any speaker in the mixture
as α decreases. This behavior contrasts with systems trained on
2-speaker mixtures (as shown in Figure 7B), which tend to
extract one of the speakers in the mixture, irrespective of the
provided auxiliary information. These findings suggest that the
training data composition, particularly the number of speakers
in the mixtures, significantly influences the speaker selection
mechanism in SE systems. Additionally, the results imply that
training a SE system on both 2-speaker and 3-speaker mixtures
may offer a potential strategy to mitigate the issue of
speaker confusion.

5 Discussion

In this study, we examined the role of auxiliary information in
two reference-based SE systems, namely audio-based SE (SE-A) and
video-based SE (SE-V). In the first set of experiments (i.e., Sections
4.1–4.4), we compared the extraction performance of both SE
systems to uninformed speaker separation (SS) systems evaluated
in a SE setup. The comparison was carried out for 2-speaker and 3-
speaker mixtures across various datasets and multiple input
conditions. We demonstrated that the use of auxiliary
information in the SE systems does not always result in better
extraction performance than SS. However, as an exception, we found
that the auxiliary information in SE generally leads to a performance
improvement compared to SS for 3-speaker mixtures
under low SIRs.

In the second set of experiments (i.e., Sections 4.5 and 4.6), we
inspected the behavior of SE for different samples from the
embedding space of the auxiliary information. We first showed
that the performance of SE-A for a given mixture does not generally
vary when provided with different enrollment signals from the target
speaker with sufficient discriminative information. This indicates
that the SE-A performance is mainly determined by how capable its

FIGURE 6
Histogram of the standard deviations in terms of ΔSI-SDR [dB] for the SE-A system. For each input mixture, the standard deviation of the extraction
performance is computed for five different randomly selected reference signals belonging to the target speaker.
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extraction network is, rather than by the specific enrollment signal
used. In addition, we evaluated the performance of SE systems when
provided with distorted auxiliary information by interpolating
embeddings either from two in-mixture speakers or from an in-

mixture speaker and an out-of-mixture speaker. We showed that an
interpolated embedding between two in-mixture speakers generally
leads to extracting either one of the speakers, which is closest to the
interpolated embedding.

FIGURE 7
Performance for distorted auxiliary information via interpolation in the embedding space. (A) Interpolation between embeddings from two in-
mixture speakers for 2-speaker mixtures; (B) and (C) interpolation between embeddings from an in-mixture and out-of-mixture speakers for 2-speaker
and 3-speaker mixtures, respectively. For each value of the interpolation coefficient α, stacked histograms are provided: (bottom) histogram of ΔSI-SDR
scores [dB] for interpolated embeddings, (top) histogram of the difference in performance between the interpolated embedding and the undistorted
embedding. The output of the SE systems is evaluated with respect to all speakers in the mixture: spk-1 (blue), spk-2 (orange), and spk-3 (green).
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Furthermore, the results for interpolating between an in-mixture
and out-of-mixture speakers highlight the difference between SE
systems trained on 2-speaker mixtures and those trained on 3-
speaker mixtures in the way the auxiliary information is leveraged to
select the target speaker. Particularly, when using an embedding
from an out-of-mixture speaker, SE systems trained on 2-speaker
mixtures tend to consistently extract one of the speaker in the
mixture, whereas those trained on 3-speaker mixtures generally do
not extract any in-mixture speaker. This suggests that training SE
systems on both 2-speaker and 3-speaker mixtures could help
mitigate the speaker confusion issue, typically occurring in
scenarios with an inactive target speaker.

While this study provides valuable insights into the role of
auxiliary information in SE, it is crucial to acknowledge its
limitations to avoid over-generalization of the results. On the
system level, we considered the DPRNN architecture as the main
learning machine for all systems, although several newer
architectures (Subakan et al., 2021; Wang et al., 2023) have been
proposed and demonstrated better separation performance.
Therefore, whether the conclusions reached in this study also
extend to these architectures is yet to be validated. In addition,
we considered only two forms of auxiliary information for SE,
i.e., enrollment utterances and visual information. It would be
interesting to extend this study to other forms of auxiliary
information and possibly also their combinations, i.e., multi-
modal SE. Finally, it is important to note that the list of input
mixture scenarios covered in this study is by no means exhaustive.
For example, neither non-speech interferers nor reverberation were
considered. Exploring these and other more complex scenarios is left
for future work.

This study highlights several key aspects that should be
considered in future work on SE. Firstly, reporting only mean
performance may not adequately capture the true behavior of SE
systems due to the influence of outliers, mainly caused by the
speaker confusion problem. We recommend including additional
metrics, such as the median, and visualizing score distributions to
provide a more comprehensive understanding of system
performance. Furthermore, our findings suggest that existing SE
systems do not fully exploit the potential of auxiliary information,
which could intuitively lead to significantly improved performance
compared to SS. Thus, future research should focus on developing
new techniques to better leverage the auxiliary information in SE.
Finally, further investigation is required to address the challenges of
speaker confusion and inactive target speakers in order to improve
the robustness of SE systems in practical scenarios.
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