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The wound-field doubly salient machine (WFDSM) is a generating system core
assembly. Its condition monitoring and early fault diagnosis are key to improving
system reliability. This study proposes a fault diagnosis method based on multi-
signal mixed domain fusion at the feature level and genetic algorithm improved
XGBoost (GA-XGBoost). First, low-pass noise reduction, singular value
decomposition noise reduction, and other signal pre-processing are applied
to the current and vibration signals of early inter-turn short-circuit faults.
Second, the time domain, frequency domain, and entropy features of the
current signal, along with the time domain features of the vibration signal, are
extracted, together forming a diagnostic feature set. Then, the feature set is put
into the GA-XGBoost model. The results show that the proposed method of
feature fusion achieves an accuracy of 99.3%. Thus, the multi-signal mixed
domain fusion has stronger signal characteristic expression ability. In addition,
the GA-XGBoost model achieves better generalizability and higher accuracy in
the small-scale samples of WFDSM faults. The experimental results demonstrate
that this method can effectively diagnose various conditions and also has strong
anti-interference capability under extreme conditions.
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1 Introduction

The wound-field doubly salient machine (WFDSM) has the characteristics of simple
structure and high reliability. Therefore, it is suitable for electric vehicles and other extreme-
condition applications (Zhou et al., 2020; Zhang et al., 2018; Chen et al., 2020). However,
irreversible short-circuit faults in the armature windings, influenced by external magnetic fields,
high temperatures, and natural aging, occur frequently. When an inter-turn short-circuit fault
occurs, it is difficult to distinguish using traditional diagnosis methods due to the slight changes
in current and vibration. Such short-circuit faults, if not monitored in time, can cause significant
heating and bearing vibration, which can endanger the operation of the motor and even the
safety of the airplane. Therefore, early-stage condition monitoring and fault diagnosis of
WFDSM are significant and necessary. Signal analysis methods are generally divided into
two categories: 1) model-based and 2) data-driven-based.

Model-based methods mathematically formulate the fault evolution process to facilitate
the diagnosis of abnormal conditions (Namdar, 2022; Bebars et al., 2022). These methods
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typically analyze and model a single signal, with current and
vibration being the most widely used detection characteristic
quantities. A novel method is proposed by modeling the current
in Chen et al. (2021), whose fault can be deduced by comparing the
measured and estimated currents. The short-circuit fault of 8–6 pole
switched reluctance motors has been detected by analyzing the
current compensation coefficient (Zhang et al., 2021). In
12–8 switched reluctance motors, a fault-diagnosis strategy has
been investigated for transistor faults, where a current coefficient
is adopted to identify the fault position (Han and Zhu, 2021). The
loop model can analyze the current slope and measurement symbol,
and its effectiveness has been verified through a variety of
experiments on different fault types (Fang et al., 2021). Vector
space decomposition and double three-phase space vector
modulation have been adopted to extract feature information,
combined with current trajectories to select more accurate fault
feature information from a permanent magnet synchronous motor
(Wang et al., 2019). The Wavelet transform has been applied to
extract fault features from the cost function in the model predictive
control system, and the inter-turn fault has been diagnosed by
monitoring the normalized energy-related feature vector (Hang
et al., 2019). Zhang et al. (2020) proposed a method based on
zero-sequence voltage vector decomposition to solve inter-turn
short-circuit fault problems. The voltage vector whose phase
angle is closest to the fault phase angle was extracted from the
zero-sequence voltage vector, which improved the sensitivity of fault
phase identification. A model of a phase winding with inter-turn
short circuit was built, and the fault characteristics were analyzed.
The frequency signature of the motor was extracted by Fourier
analysis when operating in normal conditions. When a fault
occurred, the symmetry of the phase currents was broken, and
both the negative and zero sequence components of the phase
currents appeared. According to the asymmetry, an index—the
ratio of negative to positive sequence components of the phase
currents—was defined to identify whether the motor was operating
normally (Chen et al., 2022). Zhang Y. et al. (2022) used the general
current deviations between the dq-axis feedback currents and dq-
axis predicted currents from different faulty models to locate the
faulty phase. Then, an intervention-based diagnosis was developed
to identify the specific fault. Although this method can achieve
instantaneous and high efficiency, accurate mathematical models are
difficult to obtain. In addition, this method was designed to solve
specific faults and therefore is not directly applicable to
other systems.

Data-driven-based methods use a variety of signal processing
and statistical analysis techniques to extract the key features of
anomalies for diagnosis. A large number of fault features contained
in the stator current are used, and the stator phase current in vector
form is put into CNN to judge the fault condition accurately; this has
been verified in a real synchronous motor (Skowron et al., 2022).
S-transform is performed on the induction electromotive force of
the synchronous motor to extract parameter characteristics from the
time–frequency curve. By comparing the standard deviation values
and similarity of different parameters, the characteristic vectors are
established and fed into a particle swarm optimization least-squares
support vector machine model for fault identification (Song et al.,
2020). Time–time-transform has been applied to extract the pixel
rate of its diagonal element contour surfaces as the fault feature, and

an extreme learning machine was utilized as a classifier to obtain the
unique fault labels that can represent the positions at which
demagnetization occurred (Song et al., 2019). Adaptive secondary
sampling of the fundamental period was introduced to fit for the
variable-phase current data, which exhibits high accuracy, strong
robustness, and especially good generalization capability for
different kinds of multiphase drive systems (Song et al., 2019).
Shih et al. (2022) developed a mathematical model to assist with
feature selection associated with inter-turn short-circuit faults and
help identify suitable variables to regulate in the experiments for
data collection. The diagnosis model was then trained with the
support vector machine (SVM) algorithm using the labeled data
obtained by measurements on a permanent magnet synchronous
motor. The theoretical excitation current was estimated by artificial
intelligence. The algorithm estimates the field current, which was
compared with the real current. The fault severity level was
calculated from this comparison (Guillén et al., 2022). A data-
driven mechanical fault diagnosis method for induction motors
using stator current signals was proposed in Sun et al. (2022).
Through the automatic feature extraction and classification of the
residual current envelope spectrum, high diagnosis accuracy could
be obtained even if some differences existed among samples.
Although the data-driven method is relatively simple and
requires no prior knowledge of the system’s internal mechanisms,
the model’s solution still needs to be optimized in most cases, and
the speed of model solution is limited.

Both data-driven and non-data-driven approaches tend to be
based on a single detection which is affected by sensor faults and
complex working conditions. Therefore, data fusion is gradually
applied in fault diagnosis. The data fusion refers to automatic
analysis and synthesis of multiple detection signals such as
current, vibration, and magnetic signals under certain criteria.
The types of faults in reluctance motors under variable speed
conditions are identified by fusing the current and vibration
signals, based on features such as the resampled envelope
spectrum (Wang et al., 2021). Sensitive harmonics are
extracted from multiple flux sensors near the motor, and data
from multiple sensor locations are analyzed by confidence
function theory fusion (Irhoumah et al., 2017). A color
symmetrized dot pattern method has been newly designed to
infuse three multi-sensor signals to image, where a coarse and
refined diagnosis framework is designed. In the coarse part, the
color histogram features and a SVM are utilized, and a threshold
is selected to decide the coarse diagnostic samples. Meanwhile,
in the refined part, the SVM is used to diagnose remaining
samples (Tang et al., 2022). A novel multiclass wind turbine
method bearing-fault diagnosis strategy has been proposed
based on the conditional variational generative adversarial
network model combining multisource signals fusion. This
strategy converts multisource 1-D vibration signals into 2-D,
and the multisource 2-D signals are fused by using wavelet
transform. The results show that the proposed strategy can
increase wind turbine bearing fault diagnostic accuracy in
complex scenarios (Zhang L. et al., 2022). 1D-GAPCNN-SVM
was proposed to address the early anomaly diagnosis problem. A
1-D global average pooling layer has been designed to substitute
the fully connected layer with two or three layers to reduce the
number of parameters (Gong et al., 2021). A multi-sensor-based
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framework has been proposed for the fault diagnosis of rotating
machinery based on deep learning and data fusion techniques,
integrating thermal imaging with vibration measurements. The
results demonstrate that the proposed data fusion method
presents high diagnostic performance in identifying machine
health conditions in a complex working environment.
Therefore, the data fusion method can overcome the
traditional single-detection analysis methods that are
susceptible to external signal interference and are widely used
in the field of diagnosis. However, the traditional fusion
algorithm is usually based on the fusion of several
calculations. Although it can reduce computation and make
the fault tolerance ability stronger, some features will
inevitably be lost. Therefore, this study adopts a feature-
fusion method to reduce the amount of fused data while
preserving most of the fault features.

As a reluctance motor, WFDSM has a complex harmonic
content and often operates in a variable environment, making it
difficult to fully characterize the motor fault process using a
single detection quantity or single-domain characteristics.
Existing methods commonly rely on either a single detection
quantity or single-domain features, which may not adequately
capture the intricate fault processes of WFDSM. To address
these limitations, this study introduces a fusion method that
integrates both mechanical and electrical signals for fault
diagnosis. By combining multi-source, mixed-domain
information, the proposed approach offers a more
comprehensive representation of the motor’s operating
conditions, leading to better diagnostic accuracy than
traditional methods. Furthermore, a genetic algorithm (GA) is
employed for its strong global search capabilities, enabling the
identification of optimal hyperparameters for model
construction and ensuring effective feature selection for fault
diagnosis. This combination of signal fusion and GA-based
optimization enhances the robustness and performance of the
diagnostic model.

The rest of this article is organized as follows. Section 2 describes the
effect of short-circuit faults on current and vibration signals. Section 3
introduces the composition of themixed domain. Section 4 contains the
GA-XGBoost recognition model. Section 5 shows the results of
simulations and experiments. Section 6 concludes the paper.

2 Theoretical fault analysis
of 8–10 WFDSM

A four-phase 8–10-pole WFDSM was designed with a structure
that included a 4N/5N configuration (where N is a positive integer)
(Figure 1 and Table 1). Compared with traditional three-phase
motors, this four-phase motor features a smaller pole-arc
coefficient and offers more flexible multi-element unit structure
selection, making it adaptable to various conditions (Zhao et al.,
2021). Additionally, its simple design enhances fault tolerance.
Figure 2 illustrates the 3D model of the motor, showcasing a
radial structure with uniformly distributed stator slots, along with
evenly distributed armature and excitation windings in each slot.

FIGURE 1
Four-phase 8–10 pole WFDSM.

TABLE 1 Parameters of 8–10 pole WFDSM.

Parameters Values

Number of stator/rotor poles 8/10

Outside diameter of stator/rotor/mm 180/114

Internal diameter of stator/rotor/mm 115/50

Arc width of stator/rotor 14/12

Air gap/mm 0.5

Stack length/mm 90

Turns of armature winding 40

Turns of excitation winding 90

FIGURE 2
3D model of four-phase 8–10 pole WFDSM.
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2.1 Short-circuit fault setting

In order to study the inter-turn short circuit fault of 8–10 pole
WFDSM, the armature windings of the motor are shown in Figure 3.
For phase A, there are 40 turns of armature winding per phase. The
first and tenth turns of the winding are defined as A1 and A2,
respectively, dividing the winding of phase A into two parts: 10 turns
named A1 and 30 named A2. Different types of inter-turn short
circuit faults are researched, with Faults I and II marked in Figure 3.

2.2 Short circuit fault

When Fault I occurs in phase A, the four-phase currents are
expressed thus:

iA � ∑∞
m�1

Im sin ωmt( )

iB � ∑∞
m�1

Im sin ωmt + π

2
( )

iC � ∑∞
m�1

Im sin ωmt + π( )

iD � ∑∞
m�1

Im sin ωmt + 3π
2

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where Im is the current amplitude and ωm is the electric angular

velocity. The magnetomotive force of opposite poles of the four-
phase winding is then

FAv � ∑∞
m�1

∑
v

Fφmv cos vθ sinωmt

FBv � ∑∞
m�1

∑
v

Fφmv cos vθ + π

2
( )sin ωmt + π

2
( )

FCv � ∑∞
m�1

∑
v

Fφmv cos vθ + π( )sin ωmt + π( )

FDv � ∑∞
m�1

∑
v

Fφmv cos vθ + 3π
2

( )sin ωmt + 3π
2

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

where FAv, FBv, FCv, FDv are the magnetomotive force of the
four-phase winding, Fφmv is the magnetic potential amplitude, and θ
is the electric angle. The resultant magnetomotive force of the four-
phase winding is as follows:

FWv � FAv + FBv + FCv + FDv � 2 ∑∞
m�1

∑
v

Fφ sin vp qt − θ( )

where FWv is the four-phase composite magnetomotive force, p
is the logarithm of stator poles, and q is the mechanical
angular velocity.

According to the stator structure of the WFDSMmotor, the air-
gap permeance waveform is shown in Figure 4. The corresponding
air gap permeance λ(θ) is

Λ θ( ) � ∑∞
k

Pk cos kNsθ( ) k � 0, 1, 2/( )

where Pk is the permeance coefficient and Ns is the number of
stator slots. The magnetic field after magnetic field modulation is
as follows:

B � FWv · Λ θ( )
� 2 ∑∞

m�1
∑
v

Fφmv sin vp qt − θ( )∑∞
k

Pk cos kNsθ( )

� 2 ∑∞
m�1

∑
v

∑∞
k

FφmvPk sin vpqt − vpθ( )cos kNsθ( )

� ∑∞
m�1

∑
v

∑∞
k

FφmvPk cos vpqt − π

2
− vp + kNsθ( )( )

+ ∑∞
m�1

∑
v

∑∞
k

FφmvPk cos vpqt − π

2
− vp − kNsθ( )( )

The |vp + kNs|, (v � 1, 3, 5, . . .;k � 0, 1, 2, 3, . . .) harmonic is
produced when an inter-turn short-circuit fault occurs, leading to
the magnetic field’s distortion. According to the law of
electromagnetic induction, the changing magnetic field will lead
to change of the current; thus, the current can be used as a fault
detection quantity.

During the operation of the motor, the generated
electromagnetic force will cause electromagnetic vibration.
According to Maxwell’s law, the radial electromagnetic force of
the stator surface is positively correlated with the flux density. The

FIGURE 3
Armature winding fault topology structure.

FIGURE 4
WFDSM slot vector composition.
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radial magnetic density is much higher than the tangential magnetic
density, so the electromagnetic vibration is mainly determined by
the radial magnetic tension:

Fr � 1
2μ0

B2
r t, h( ) − B2

v t, h( )( ) ≈ B2
r t, h( )
2μ0

The generated torque Te(t) due to magnetic tension is
as follows:

Te t( ) � r2gla

μ0
∫2π

0
Br t, h( )Bv t, h( )dh

where rg is the radius length of the air gap, la is the effective axial
length, μ0 is the vacuum permeability, and Br(t, h) and Bv(t, h)
represent the radial and tangential components of the air gap

magnetic density, respectively. The two components can be
further expanded into the Fourier form

Br t, h( ) � ∑
p

Brp cos ph − hrp( )
Bv t, h( ) � ∑

p

Bvp cos ph − hvp( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

where Brp and Bvp represent the pth (p = 0,1,2· · ·) Fourier
decomposition coefficients of Br and Bv, and hrp and hvp
represent the initial phase angles corresponding to pth Br and Bv.
The torque generated by the pth harmonic can be expressed
as follows:

Tp t( ) � πr2gla

μ0
BrpBvp cos hrp − hvp( )

The corresponding Brp and Bvp and hrp and hvp of each order
harmonic can be obtained by the finite element method, and the
torque of the extra harmonic contribution can then be obtained.

Therefore, the changes of vibration characteristics and
torque are caused by the variable magnetic field. The
vibration quantity can be used as the characteristic quantity
for fault diagnosis.

In summary, fault diagnosis of WFDSM in early extreme
conditions can be realized by current and vibration quantity.

3 Noise reduction and feature selection

Due to different magnitudes and noise interference, the
unprocessed data cannot be directly used for fault diagnosis, so
signal pre-processing is required. The interference will be caused in
the actual signal by the noise. Thus, noise reduction is the most
important part of signal pre-processing. Feature extraction should
be conducted after noise reduction.

3.1 Feature extraction

The FFT decomposition results of the current and vibration
signals are shown in Figure 5.

First, the input signal requires noise reduction, and the noise
reduction methods are determined by the frequency distribution.
Figure 5A shows that the fault characteristics for harmonic
components of the fifth order and above are not significant, and
the current signal is concentrated in the lower-frequency range.
Therefore, Butterworth low-pass filtering is applied to remove these
higher-order harmonic components, focusing on the relevant lower-
frequency signal features for fault detection.

While the vibration signal is more dispersed in Figure 5B, the
low-pass filtering method cannot be applied. Singular value
decomposition (SVD) is an effective method of signal
processing. The signal is decomposed into different
components, and the significant components are selected
based on the singular value difference method. The effective
components are retained after SVD while other noises are
removed. The vibration signal is scattered in various
frequency bands, which is suitable for SVD noise reduction.

FIGURE 5
A-phase Fourier spectral decomposition. (A) Current.
(B) Vibration.
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Therefore, low-pass filtering is adopted for the noise reduction
of current signal, and SVD is adopted for the noise reduction of
vibration signal.

3.2 Noise reduction

When the pre-processing is completed, the feature should be
extracted from the signal. The feature consists of three parts: time
domain, frequency domain, and signal entropy.

3.2.1 Time domain features
When a fault occurs, the amplitude, variance, and probability

distribution of the time domain will change. Figure 6 compares the
four-phase current signals and A-phase vibration signal of the time
domain under different conditions: normal, Fault I, and Fault II. The
x-axis represents time (ms), while the y-axis represents amplitude,

with current measured in amperes (A) and vibration in
millimeters (mm).

The changes in current and vibration signals are reflected in
various time-domain features when a fault occurs. Key statistical
values such as the maximum, minimum, mean, peak, rectification
mean, variance, standard deviation, and root mean square are used
to characterize these changes. Table 2 provides a summary of these
time-domain features, which are essential for fault diagnosis as they
capture signal behavior under different conditions.

The current time domain features and vibration time domain
features are recorded as A1 and B1, with the composition of the two
sets as follows:

A1 � a1, a2, a3, a4, a5, a6, a7, a8[ ]
B1 � b1, b2, b3, b4, b5, b6, b7, b8[ ]

3.2.2 Frequency domain features
Although the time domain feature is the most direct feature

extraction method, it cannot fully display the fault features of
WFDSM for the limitations of the fault information. The
frequency domain also contains a lot of information for fault
diagnosis, so it is necessary to extract the features of the
frequency domain.

As can be seen from Figure 5, the current signal is mainly
concentrated in the low frequency band, generating more low
harmonics; thus, its variation in the frequency domain is obvious.
Consequently, the frequency domain features of the current signal can
be used as evidence for fault diagnosis. In comparison, the distribution
of vibration signals under different working conditions ismore uniform:
after the SVD, a lot of noise is removed, and thus the difference in
frequency domain is smaller. Therefore, only the frequency domain
features of the current are analyzed.

The frequency domain features extracted from the power
spectrum analysis include centroid frequency, mean square
frequency, root mean square frequency, variance frequency, and

FIGURE 6
Comparison of different operating conditions. (A) Current.
(B) Vibration.

TABLE 2 Time domain feature.

Number Feature Number Feature

1 Max 5 Rectification mean (Rmean)

2 Min 6 Variance (Var)

3 Mean 7 Standard Deviation (Std)

4 Peak 8 Root mean square (Rms)

TABLE 3 Frequency domain feature.

Number Feature

1 Centroid frequency (Cf)

2 Mean square frequency (Msf)

3 Root mean square frequency (Rmsf)

4 Variance frequency (Vf)

5 Standard deviation (Stdf)
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standard deviation. These features, summarized in Table 3, reflect
the distribution and position of the main frequency components of
the power signal, effectively capturing the signal’s variations in the
frequency domain.

According to the frequency domain comparisons depicted in
Figure 7, when Fault I occurs, there is a slight increase in various
frequency indices of the WFDSM compared to the normal
operational state. Conversely, during Fault II, all frequency
indices experience a significant decrease. These observations
demonstrate that changes in the current frequency domain
features can effectively reflect variations in motor conditions. The
features under consideration are grouped under the label A2, with
the set comprising the following components:

A2 � a9, a10, a11, a12, a13[ ]

3.2.3 Entropy domain features
Although the above time and frequency domain features can

provide important evidence for WFDSM’s condition analysis, it is
difficult to obtain complete fault features for current signals with a
low signal noise ratio (SNR). Entropy can quantify the uncertainty of
information and describe the information quantity of signal, which
can provide an important basis for system complexity and
dependence. The value of information entropy is influenced by
the probability distribution—the larger the uncertainty of the system
probability distribution, the higher the information entropy, and
vice versa.

So as to improve the accuracy of diagnosis, the current signal
entropy is combined with some feature extraction methods,
including energy entropy obtained by empirical mode
decomposition, singular spectrum entropy obtained by singular
spectrum decomposition, and power spectrum entropy obtained
by energy distribution calculation.

Energy entropy combines information entropy with time-
frequency domain analysis methods to indicate the complexity of
signal energy. This study combines information entropy with

empirical mode decomposition, a common method for processing
nonlinear signals. The intrinsic mode function components of
signals, obtained after empirical mode decomposition, contain
energy information from different frequency bands. When the
operating state of a WFDSM changes, the energy distribution of the
IMF signals will also change. Therefore, signal energy entropy can be
used to assess the operating state of a WFDSM.

Power spectrum entropy is the combination of energy distribution
calculation and information entropy to express the uncertainty of signal
energy under power spectrum division. When the power spectrum is
concentrated in part of the frequency components, the number
corresponding frequency spectrum lines is small, and the probability
of the components is also small, resulting in a smaller value of the power
spectrum entropy. Therefore, the power spectrum entropy is a
quantitative description of the complexity of signal energy
distribution of the frequency domain to complement the current
frequency domain features.

Singular spectrum entropy combines entropy and singular
spectrum analysis through a dynamic analysis method, which can
realize a quantitative description of the signal in the time domain.
Since SVD noise reduction has been performed on the vibration
signal, singular spectrum entropy is not calculated for the vibration
data. Instead, it is used to complement the time-domain features of
the current. Table 4 summarizes the entropic features of the current,
including energy entropy, power spectrum entropy, and singular
spectrum entropy.

The current entropy domain features are recorded as A3, and
then the composition of the set is as follows:

A3 � a14, a15, a16[ ]

3.2.4 Feature summary
The different domain features of the current signal and the time

domain features of the vibration signal are summarized thus:

C � A1, A2, A3, B1[ ]
� a1, a2, a3, . . . , a14, a15, a16, b1, b2, b3, . . . , b7, b8[ ]

A total of 24 dimensional mixed domain features are extracted.

4 Improved XGBoost diagnosis method
based on genetic algorithm
optimization

4.1 Improved XGBoost fundamentals

The mixed domain feature set consists of a large amount of data.
As an integrated machine learning algorithm based on decision tree,

FIGURE 7
WFDSM slot vector composition.

TABLE 4 Entropy domain feature.

Number Feature

1 Energy entropy (Ee)

2 Power spectrum entropy (Pse)

3 Singular spectrum entropy (Sse)
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XGBoost has the advantages of high classification accuracy and
intuitiveness in the prediction of structural data, while, as a non-
deterministic naturalistic algorithm, the genetic algorithm (GA) has
a positive global optimization ability. Therefore, GA-improved
XGBoost (GA-XGBoost) can diagnose a large amount of data
and optimize the hyperparameters for mixed-domain feature sets
efficiently.

XGBoost is a parallel regression tree model combined with
boosting algorithm. Compared with the gradient-boosted decision
tree, it adds the idea of regularization to the loss function in order to
prevent overfitting. To ensure accuracy, XGBoost performs second-
order Taylor expansion on the loss function, thus breaking the limits
on accuracy and speed. The objective function of XGBoost can be
expressed as follows:

Obj i( ) � L +Ω ft( ) � ∑n
i�1

l yi + ŷi( ) + γT + 1
2
λ∑T

j�1
ω2
j

where the loss function L is jointly determined by the
predicted ŷi and true yi value. The regularization term Ω(ft)
consists of two components: the first term γT is a complexity
penalty proportional to the number of leaf nodes T in the
decision tree, while the second term 1

2 λ∑T
j�1ω2

j penalizes the
weights ωj of the leaf nodes, where λ is a regularization
parameter that controls the model’s complexity.

4.1.1 Genetic algorithm optimization
GA is a model of biological evolution that simulates the

mechanisms of natural selection and genetics of Darwinian
biological evolution [22–23]. It is an adaptive method used in
parameter and network optimization. GA is applied to the
XGBoost model to make up for its global search ability and
prevent the local optima. The main steps of GA model
establishment are shown in Figure 8.

1. Parameter initialization: determination of chromosome
coding, population size, crossover probabilities, variation
probabilities, etc.

2. Population initialization: randomly generate the first-
generation population.

3. Fitness assignment: calculate the fitness function to determine
the precision and the length of chromosome coding.

4. Population iteration: perform selection, crossover, and
mutation operations on the population to obtain the next-
generation population.

5. Result evaluation: if the fitness function is met, stop and output
the result; otherwise, continue to repeat step 4 until the
condition is met.

In this paper, GA is adopted to optimize the hyperparameters of
the model. The superior global search ability of the GA can
compensate for the weakness of XGboost, which can easily fall
into local optimum when multi-features are used. At the same time,
the preliminary screening of features can also help XGboost
quickly converge.

4.1.2 Feature validation
GA performs an initial screening of features, while XGBoost uses

the initially screened features for fault diagnosis and scores
the features.

In order to demonstrate the effectiveness of feature selection, the
different sets of selected features obtained from multiple
independent experiments are counted and ranked on the basis of
the usage frequency. According to the importance of features, each
feature is gradually added to the XGBoost model for training,
obtaining each diagnosis accuracy.

Since the testing and training sets are randomly divided,
independent experiments can be achieved by changing the
seed number.

4.2 Diagnosis process based onGA-XGBoost

The flowchart of the GA-XGBoost diagnosis method is shown
in Figure 9.

1. Data processing: pre-process on the input current and
vibration signals, including data filtering, missing value
filling, interval scaling, noise reduction, and other components.

2. Mixed domain feature extraction: construct a data matrix for
the pre-processed data, extract feature sets A1, A2, A3, and
B1 from signal, and divide the constructed matrix into a
training and a test set.

FIGURE 8
Genetic algorithm flowchart.
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3. Model optimization: the GA is used to iteratively optimize the
hyperparameters of XGBoost. The feature importance of the
mixed domain features is ranked by multiple independent
repetitions of the experiment, and the number of input
feature dimensions is gradually increased to verify the
validity of multi-source mixed domain features.

4. Feasibility analysis: The feasibility of the feature fusion method
is analyzed and the impact of noise in extreme environments
on the detection method mentioned is also analyzed.

5 Experimental validation analysis

5.1 Improved XGBoost fundamentals

The data of the experimental platform are collected from the
actual 8–10 WFDSM motor. The experimental environment is

Anaconda and MATLAB 2021a, the version of Python is 3.9.1,
and the libraries used include Sklearn, XGBoost, Pandas, and
Numpy. Data processing and model optimization are
implemented in the above environment.

The experimental platform is shown in Figure 10. The data
sampled are the four-phase current signals and vibration signals of
the 8–10 WFDSM under different operating conditions. The four-
phase armature currents are obtained by a current transformer at the
sampling frequency of 50 kHz. The vibration signals are obtained by
acceleration sensors installed on different positions and directions.
The acceleration sensors are used to collect the motor vibration
amplitude, which is converted into the voltage signal. The frequency
of the vibration signal is 12 kHz.

In order to simulate different types of conditions, the speeds
are 800, 1000, and 1200 rpm, and the loads are 0.5, 1, and 5 Ω,
constituting nine kinds of operating conditions. Faults I and II
and normal occur under the above nine operating conditions.
There is thus a total of 27 operating conditions. Experiments of
different conditions are conducted to eliminate the influence of
operating conditions and to verify the robustness of the
diagnostic method.

The current is collected for 5 s for each operating condition,
from which 75 periods are extracted for diagnosis. Each period of
the current and corresponding vibration signals is used to
calculate time and frequency domain features. Since the
current data contain four phases, this results in 300 sets of
data for each working condition, along with the corresponding
vibration signals. Finally, the training and test sets are divided on
a random 4:1 basis.

5.2 Experimental data validation

5.2.1 Verification of effectiveness of fault diagnosis
for mixed domain features

In order to test the validity and advancement of the proposed
method, a comparison with a single domain feature set is performed.

FIGURE 9
Genetic algorithm flowchart.

FIGURE 10
Experimental platform.
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It is difficult for WFDSM to ignore the interference of extra
noise in extreme conditions, which makes the vibration signal
easy to distort. In order to test the accuracy of the method in
extreme conditions, different degrees of white noise between
0 and 30 are added. The diagnostic accuracy is obtained as per
Table 5, and the effect of using mixed-domain features is much
better than using single-domain features. When SNR is 30 dB, the

accuracies of time domain, frequency domain, and signal entropy
of current signal are 70.1%, 42.4%, and 51.2%, and even the
vibration time domain is 80.4%. In contrast, the accuracy of the
mixed-domain feature reaches almost 100%, reflecting the
superiority of the multi-source mixed-domain feature. With
the addition of noise, the accuracy of each domain decreases,
and only the mixed domain can still maintain above 95% when
the signal-to-noise ratio is greater than 20 dB. Even in extreme
conditions, this method performs better than the others and has
better resistance to interference. In summary, the fault diagnosis
method based on mixed domain features has better anti-
interference ability whose features are almost not hidden by
noise, and its generalizability is better.

Taking SNR = 30 db as an example, Figure 11 shows the
confusion matrices for the mixed-domain feature set C and the
current time-domain feature set A1, respectively. The prediction
performance index of each model is solved according to the
confusion matrix. As can be seen from Table 6, all indicators of
mixed domain fault diagnosis have been greatly improved compared
with single signal. The precision rate is used to reflect the degree of
misreporting while the recall rate reflects the degree of
underreporting. In depth for these two indicators, it can be
found that mixed domain features perform better in both Fault I
failures and normal conditions. However, the precision and recall
rate of the single current signal for Fault II can also reach 80%.
Therefore, it can be shown that the with the single-current feature, it
is easy to confuse the normal situation with Fault I, and that the
addition of the vibration feature can reduce this probability.

Figure 12 shows the receiver operating characteristic (ROC)
curve of the model. This curve is plotted with a true positive rate
on the vertical axis and false positive rate on the horizontal axis.
The space enclosed between the curve and the coordinate axes is
referred to as the area under the ROC curve, indicating the
classification performance of the model. From Figure 14, it is
evident that the area under the ROC curve can reach 100%,
demonstrating excellent classification performance and
significant practical value.

5.2.2 Verification of effectiveness of fault diagnosis
for GA optimization

A comparison of the XGBoost model before and after GA
optimization of different SNRs is shown in Table 7. The results
show that the accuracy of the GA-optimizedmodels has significantly

TABLE 5 Accuracy of current features in different fields.

SNR A1 A2 A3 B C

30 70.1% 42.4% 51.2% 80.4% 99.6%

20 65.2% 39.1% 49.2% 77.2% 95.0%

10 60.7% 36.5% 47.8% 75.8% 89.5%

0 46.5% 36.0% 43.6% 71.1% 82.9%

FIGURE 11
Confusion matrix of vibration and current. (A) Set C. (B) Set A1.

TABLE 6 Model prediction indicators under different input.

Indicators C A1

Accuracy 99.6% 70.1%

Precision (Normal) 99.7% 60.8%

Recall (Normal) 99.3% 64.0%

Precision (Fault-I) 99.7% 61.7%

Recall (Fault-I) 99.9% 62.1%

Precision (Fault-II) 99.4% 89.1%

Recall (Fault-II) 99.7% 84.3%
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improved: the lower the SNR, the higher the accuracy improvement.
The prediction ability of the model has been greatly improved,
indicating that the GA can effectively optimize the model
hyperparameters.

The hyperparameters of the XGBoost model significantly impact
its training effect, so the hyperparameters are optimized using GA

after the pre-training. GA parameters are set as follows: real coding;
the population is 40; the fitness function is the diagnostic accuracy of
model. The accuracy variation and iterative convergence curves of
the 30 db model are shown in Figure 13. It can be seen from the
figure that the accuracy increases rapidly in the early stage of
iteration and then increases slowly. After reaching 99%, accuracy
gradually reaches convergence at approximately 20 generations.
Compared with the initial model, diagnostic accuracy has
improved by 8.8%. The optimal parameters of the XGBoost
model are shown in Table 8.

5.2.3 The SVM comparison
SVM is the most commonly used method in fault diagnosis. To

directly compare it with the performance of GA-XGBoost, data from
different SNRs are diagnosed using SVM. The findings are presented
in Table 9. This table shows that GA-XGBoost significantly
outperforms SVM at any SNR level. When the SNR is 0, SVM
becomes overfitted, whereas GA-XGBoost still maintains high
accuracy, demonstrating the model’s superior anti-interference
capabilities.

5.2.4 Feature validation
Taking SNR = 30 dB as an example, Figure 14 shows the

scores of each feature of multi-source mixed domain (due to
limited space, only the scores above 0.02 were selected). It can be
seen that the 14-dimensional features selected include current
peak, vibration var, and vibration mean. It can be determined
that the features with high ratings belong to different domains,
which proves the effectiveness of multi-source mixed domain.
Second, the seven-dimensional features with the highest score
come from the time domain of the two types of signal, which also
shows that the time domain features of the two signals are of great
significance for the model.

Because a single experiment may be contingent, ten independent
experiments were performed. In order to avoid serendipity, features

FIGURE 12
Curve of ROC.

TABLE 7 XGBoost accuracy before and after GA optimization.

SNR Before After

30 90.8% 99.6%

20 81.5% 95.0%

10 73.3% 89.5%

0 63.3% 82.9%

FIGURE 13
Accuracy variation during model training.

TABLE 8 XGBoost optimal parameters.

Parameters Optimal value

Learning rate 0.38

Estimators 151

Depth 8

Subsample 0.88

TABLE 9 Accuracy across SNR levels.

SNR SVM GA-XGBoost

30 66.9% 99.6%

20 64.7% 95.0%

10 63.6% 89.5%

0 33.3% 82.9%

Frontiers in Signal Processing frontiersin.org11

Chen et al. 10.3389/frsip.2024.1433831

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1433831


adopted less than three times were removed. The numbers of feature
adoptions are shown in Table 10.

To demonstrate the effectiveness of feature selection, the
XGBoost model was tested by gradually increasing the
dimensions of the features according to their importance. In
order to simulate the actual situation, only 2700 sets of data were
selected for testing, which sacrificed the integrity of the data but
optimized the duration. The accuracy and time for each output are
shown in Figure 15. As can be seen from the figure, even when
reducing a large number of features, accuracy can be maintained at
more than 95% with more than five-dimensional features. The
model’s accuracy reaches a stable value of 97% with 13-
dimensional features, while the training time is 53 s. It can be
seen that the efficiency is significantly improved while model
performance is guaranteed.

6 Conclusion

For the feature extraction and intelligent diagnosis in WFDSM
fault diagnosis, an intelligent diagnosis method based on multi-
signal feature fusion and GA-XGBoost is proposed. We also found
different signal fault features which provide new ideas for WFDSM
fault detection. By analyzing the fault, collecting, extracting, and
classifying the data of different working conditions, the following
conclusions have been reached.

1. The magnetic field ofWFDSMwill be distorted with additional
vpm � kNs (v � 1, 3, 5, . . . ; k � 0, 1, 2, 3) harmonics
generated when a short-circuit fault occurs, which also
indirectly leads to a change in the electric flow and
vibration amount. This is the basis for using electric flow
and vibration amount for fault diagnosis.

2. Compared with the single domain, mixed-domain features
have significantly improved accuracy and anti-interference
ability; thus, the multi-source mixed-domain model is
effective for diagnosis. Moreover, this method still has
higher accuracy and stronger anti-interference ability in
extreme conditions.

3. Compared with other methods like SVM, the proposedmethod
not only improves the accuracy of fault diagnosis but can also
identify optimal features.

The proposed intelligent diagnosis method based on multi-
signal feature fusion and GA-XGBoost has demonstrated
promising improvements in the accuracy and robustness of
WFDSM fault detection. However, there are several potential
directions for future research. One possibility is to explore
additional data sources, such as thermal or acoustic signals, to
further enhance diagnostic accuracy. Furthermore, integrating
deep learning techniques, such as convolutional neural networks
or recurrent neural networks, could improve feature extraction and
fault classification capabilities.

FIGURE 14
Mixed domain feature scoring.

TABLE 10 Numbers of feature adoption.

Current features Numbers Vibration features Numbers

Peak 10 Var 9

Fc 9 Mean 8

Arv 9 Min 7

Ee 8 Peak 7

FIGURE 15
Accuracy and time.
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