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In this paper, we propose an integrated framework for multi-granular explanation
of video summarization. This framework integrates methods for producing
explanations both at the fragment level (indicating which video fragments
influenced the most the decisions of the summarizer) and the more fine-
grained visual object level (highlighting which visual objects were the most
influential for the summarizer). To build this framework, we extend our
previous work on this field, by investigating the use of a model-agnostic,
perturbation-based approach for fragment-level explanation of the video
summarization results, and introducing a new method that combines the
results of video panoptic segmentation with an adaptation of a perturbation-
based explanation approach to produce object-level explanations. The
performance of the developed framework is evaluated using a state-of-the-
art summarization method and two datasets for benchmarking video
summarization. The findings of the conducted quantitative and qualitative
evaluations demonstrate the ability of our framework to spot the most and
least influential fragments and visual objects of the video for the summarizer,
and to provide a comprehensive set of visual-based explanations about the
output of the summarization process.

KEYWORDS

explainable AI, video summarization, fragment-level explanation, object-level
explanation, model-specific explanation method, model-agnostic explanation
method, quantitative evaluation, qualitative evaluation

1 Introduction

The current practice in the Media industry for producing a video summary requires a
professional video editor to watch the entire content and decide about the parts of it that
should be included in the summary. This is a laborious task and can be very time-
consuming in the case of long videos or when different summaries of the same video should
be prepared for distribution via multiple video sharing platforms (e.g., YouTube, Vimeo,
TikTok) and social networks (e.g., Facebook, Twitter, Instagram) with different
specifications about the optimal or maximum video duration (Apostolidis et al., 2024).
Video summarization technologies aim to generate a short summary by selecting the most
informative and important frames (key-frames) or fragments (key-fragments) of the full-
length video, and presenting them in temporally-ordered fashion. The use of such
technologies by Media organizations can drastically reduce the needed resources for
video summarization in terms of both time and human effort, and facilitate indexing,
browsing, retrieval and promotion of their media assets (Apostolidis et al., 2025). Despite
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the recent advances in the field of video summarization, which are
tightly associated with the emergence of modern deep learning
network architectures (Apostolidis et al., 2021b), the outcome of
a video summarization method still needs to be curated by a video
editor, to make sure that all the necessary parts of the video were
included in the summary. This content production step could be
further facilitated if the video editor is provided with explanations
about the suggestions made by the used video summarization
technology. The provision of such explanations would allow a
level of understanding about the functionality of this technology,
thus increasing the editor’s trust in it and facilitating
content curation.

Over the last years there is an increasing interest in
explaining the outcomes of deep networks processing video
data. Nevertheless, most works are related with network
architectures for video classification (Bargal et al., 2018;
Mänttäri et al., 2020; Li Z. et al., 2021), action classification
and reasoning (Stergiou et al., 2019; Zhuo et al., 2019; Han
et al, 2022), activity recognition (Aakur et al., 2018; Roy et al.,
2019) and anomaly detection (Wu et al., 2022; Singh et al., 2023;
Guo et al., 2022; Szymanowicz et al., 2022; Hinami et al., 2017).
With respect to explainable video summarization, a first attempt
to formulate the task and evaluate various attention-based
explanation signals was initially reported in Apostolidis et al.
(2022a) and extended in Apostolidis et al. (2023). Another
approach that relies on the use of causality graphs between
input data, output scores, summarization criteria and data
perturbations, was presented in Huang et al. (2023). However,
the produced graphs require interpretation by a human expert,
while the performance of these explanations was not evaluated
through quantitative or qualitative analysis.

In this paper, we build on our previous efforts on explainable
video summarization (Apostolidis et al., 2022a; Apostolidis et al.,
2023) and extend them, in order to: 1) investigate the use of a model-
agnostic approach [adaptation of the LIME method (Ribeiro et al.,
2016)] for fragment-level explanation of the video summarization
results, 2) develop a new method for producing more fine-grained
explanations at the visual object level that provide more insights
about the focus of the summarizer, and 3) build an integrated
framework for multi-granular (and thus more informative)
explanation of the video summarization results. Our
contributions are the following:

• We investigate the use of a model-agnostic explanation
method for fragment-level explanation of video
summarization: We adapt the LIME method (Ribeiro et al.,
2016) to operate on sequences of video frames (rather than on
a single frame/image, which is the typical approach) and
produce a fragment-level explanation of the video
summarization results, which indicates the temporal
fragments of the video that influenced the most the
decisions of the summarizer.

• We introduce the generation of fine-grained object-level
explanations for video summarization: We combine the
state-of-the-art Video K-Net method for video panoptic
segmentation (Li et al., 2022) with another adaptation of
the LIME method (Ribeiro et al., 2016) that also operates
on frame sequences, to build a method that performs object-

oriented perturbations over a sequence of frames and
produces explanations at the level of visual objects.

• We build an integrated framework for multi-granular
explanation of video summarization: We integrate the
methods for fragment- and object-level explanation into a
framework for multi-granular explanation of video
summarization, and assess their performance based on
quantitative and qualitative evaluations using a state-of-the-
art method [CA-SUM (Apostolidis et al., 2022b)] and two
datasets for video summarization [SumMe (Gygli et al., 2014)
and TVSum (Song et al., 2015)].

2 Related work

Over the last years there is a rapidly growing interest of
researchers on building methods that provide explanations about
the working mechanism or the decisions/predictions of neural
networks. Nevertheless, in contrast to the notable progress in the
fields of explainable pattern recognition (Bai et al., 2021), image
classification (Gkartzonika et al., 2023; Ntrougkas et al., 2024), and
NLP (Zini and Awad, 2022), currently there are only a few works on
producing explanations for networks that process video data (listed
in Table 1). Working with network architectures for video
classification, Bargal et al. (2018) visualized the spatio-temporal
cues contributing to the network’s classification/captioning output
using internal representations and employed these cues to localize
video fragments corresponding to a specific action or phrase from
the caption. Mänttäri et al. (2020) utilized the concept of meaningful
perturbation to spot the video fragment with the greatest impact on
the video classification results. Li Z. et al. (2021) extended a generic
perturbation-based explanation method for video classification
networks by introducing a loss function that constraints the
smoothness of explanations in both spatial and temporal
dimensions. Focusing on methods for action classification and
reasoning, Stergiou et al. (2019) proposed the use of cylindrical
heat-maps to visualize the focus of attention at a frame basis and
form explanations of deep networks for action classification and
recognition. Zhuo et al. (2019) defined a spatio-temporal graph of
semantic-level video states (representing associated objects,
attributes and relationships) and applied state transition analysis
for video action reasoning. Han et al. (2022) presented a one-shot
target-aware tracking strategy to estimate the relevance between
objects across the temporal dimension and form a scene graph for
each frame, and used the generated video graph (after applying a
smoothing mechanism) for explainable action reasoning. Dealing
with networks for video activity recognition, Aakur et al. (2018)
formulated connected structures of the detected visual concepts in
the video (e.g., objects and actions) and utilized these structures to
produce semantically coherent and explainable representations for
video activity interpretation, while Roy et al. (2019) fed the output of
a model for activity recognition to a tractable interpretable
probabilistic graphical model and performed joint learning over
the two. In the field of video anomaly detection, Wu et al. (2022)
extracted high-level concept and context features for training a
denoising autoencoder that was used for explaining the output of
anomaly detection in surveillance videos. Guo et al. (2022)
constructed a sequence-to-sequence model (based on a

Frontiers in Signal Processing frontiersin.org02

Tsigos et al. 10.3389/frsip.2024.1433388

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1433388


variational autoencoder) to detect anomalies in videos and
combined it with a visualization tool that facilitates comparisons
between normal and abnormal sequences in a latent space.
Szymanowicz et al. (2022) designed an encoder-decoder
architecture to detect anomalies, that is based on U-Net
(Ronneberger et al., 2015), thereby generating saliency maps by
computing per-pixel differences between actual and predicted
frames. Based on the per-pixel squared errors in the saliency
maps, Szymanowicz et al. introduced an explanation module that
can provide spatial location and human-understandable
representation of the identified anomalous event. Hinami et al.
(2017) employed a Fast R-CNN-based model to learn multiple
concepts in videos and extract semantic features, and applied a
context-sensitive anomaly detector to obtain semantic anomaly
scores which can be seen as explanations for anomalies. Singh
et al. (2023) developed an explainable method for single-scene
video anomaly localization, which uses learned representations of
the depicted objects and their motions to provide justifications on
why a part of the video was classified as normal or anomalous.
Working with network architectures that tackle other video analysis
and understanding tasks, Papoutsakis and Argyros (2019) presented
an unsupervised method that evaluates the similarity of two videos
based on action graphs representing the detected objects and their

behavior, and provides explanations about the outcome of this
evaluation. Gkalelis et al. (2022) used the weighted in-degrees of
graph attention networks’ adjacency matrices to provide
explanations of video event recognition, in terms of salient
objects and frames. Yu et al. (2021) built an end-to-end trainable
and interpretable framework for video text detection with online
tracking that captures spatial and motion information and uses an
appearance-geometry descriptor to generate robust representations
of text instances. With respect to explainable video summarization, a
first attempt was made in Apostolidis et al. (2022a), Apostolidis et al.
(2023), where we formulated the task as the production of an
explanation mask indicating the parts of the video that
influenced the most the estimates of a video summarization
network about the frames’ importance. In terms of
implementation, we utilized a state-of-the-art network
architecture [CA-SUM (Apostolidis et al., 2022b)] and two
datasets for video summarization [SumMe (Gygli et al., 2014)
and TVSum (Song et al., 2015)], and evaluated the performance
of various attention-based explanation signals by investigating the
network’s input-output relationship (according to different input
replacement functions), and using a set of tailored evaluation
measures. Following a different approach, Huang et al. (2023)
described a method for explainable video summarization that

TABLE 1 Surveyed works on explainable video analysis.

Work Explanation approach Video analysis task

Bargal et al. (2018) Use of spatio-temporal cues to spot fragments linked to specific action/phrase from caption Classification and captioning

Mänttäri et al. (2020) Perturbation-based detection of the most influential video fragment Classification

Li Z. et al. (2021) Perturbation-based method for spatio-temporally smooth explanation Classification

Stergiou et al. (2019) Use of heatmaps visualizing the focus of attention Action classification and recognition

Zhuo et al. (2019) Use of spatio-temporal graph of semantic-level video states Action reasoning

Han et al. (2022) Target-aware tracking strategy to estimate objects’ temporal relevance and form a scene graph Action reasoning

Aakur et al. (2018) Use of connected structures of the detected visual concepts to form explainable
representations

Activity recognition

Roy et al. (2019) Use of a tractable interpretable probabilistic graphical model Activity recognition

Wu et al. (2022) Extract high-level concept and context features to train a denoising autoencoder Anomaly detection

Guo et al. (2022) Visualization tool for comparing normal and abnormal sequences in a latent space Anomaly detection

Szymanowicz et al. (2022) Use of saliency maps to provide spatial location and representation
of the anomalous event

Anomaly detection

Hinami et al. (2017) Compute semantic anomaly scores using a context-sensitive anomaly detector Anomaly detection

Singh et al. (2023) Use of learned representations of the depicted objects and their motions Anomaly localization

Papoutsakis and Argyros (2019) Use action graphs representing objects and behaviors Similarity evaluation

Gkalelis et al. (2022) Use of weighted in-degrees of graph attention networks’ adjacency matrices Event recognition

Yu et al. (2021) Trainable framework combining spatial and motion information with
appearance-geometry descriptor

Text detection

Apostolidis et al. (2022a),
Apostolidis et al. (2023)

Use of attention weights to form video-fragment-level explanations Summarization

Huang et al. (2023) Causality graphs of input data, output scores, summarization criteria and data
perturbations

Summarization

For each work we outline the adopted explanation approach and the targeted task.
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leverages ideas from Bayesian probability and causation modeling. A
form of explanation about the outputs of this method is provided
through causality graphs that show relations between input data,
output importance scores, summarization criteria (e.g.,
representativeness, interestingness) and applied perturbations.
Finally, several works that deal with various video classification
tasks have discussed the use of different types of visual
representations [e.g., activation (Dhiman et al., 2024) or residue
(Dhiman et al., 2021) maps] to get insights about the classification
mechanism of the relevant model. Nevertheless, these
representations were neither presented as explanation methods
nor evaluated as such; thus, such works are out of the scope of
this literature review.

Differently to most of the above discussed works that deal with
the explanation of network architectures trained for various video
analysis tasks (e.g., classification, action and activity recognition,
anomaly detection), in this work, we focus on networks for video
summarization. Contrary to the work of Huang et al. (2023), our
framework produces visual-based explanations indicating the
parts of the video (temporal video fragments and visual objects)
that influenced the most the decisions of the summarizer, rather
than providing causality graphs that need interpretation by a
human expert. Moreover, the performance of our framework is
assessed through a set of quantitative and qualitative evaluations.
As stated in the introduction, our work builds on our previous
efforts for explaining video summarization (Apostolidis et al.,
2022a; Apostolidis et al., 2023) and extends them by: 1)
examining the use of a model-agnostic approach for producing
fragment-level explanations (rather than requiring access to the
internal layers and weights of the summarization network), 2)
proposing a novel methodology for producing object-level
explanations (thus providing more clues about the content of
the video that is more important for the summarizer), and 3)

combining the different explanation approaches under an
integrated framework that offers a multi-granular, and thus
more comprehensive explanation for the output of the video
summarization process.

3 Proposed approach

A high-level overview of the developed framework for multi-
granular explainable video summarization is given in Figure 1. In
the core of this framework there is an XAI method that gets as
input the full-length video, the used summarizer and the
produced video summary (formed by the three top-scoring
video fragments by the summarizer). The XAI method can be
either model-agnostic [LIME (Ribeiro et al., 2016)] or model-
specific [attention-based (Apostolidis et al., 2022a)]; thus, our
framework supports the explanation of summarization models
that rely, e.g., on Generative Adversarial Networks (GANs)
(Rochan and Wang, 2019; Apostolidis et al., 2021a) or
structures of Recurrent Neural Networks (RNNs) (Zhao et al.,
2018; Zhao et al., 2020), as well as on the use of attention
mechanisms (Fajtl et al., 2019; Li P. et al., 2021; Apostolidis
et al., 2022b). Our framework produces three different types of
explanations: 1) a fragment-level explanation that indicates the
temporal video fragments that influenced the most the decisions
of the summarizer, 2) an object-level explanation that highlights
the most influential visual objects within the aforementioned
fragments, and 3) another object-level explanation that points out
the visual objects within the fragments that have been selected for
inclusion in the summary, that influenced the most this selection.
More details about the processing steps and the employed XAI
method for producing each type of explanation, are provided in
the following sections.

FIGURE 1
High-level overview of our framework for explaining video summarization. The XAI method can be either model-agnostic (LIME) or model-specific
(attention-based). Based on the applied analysis, our framework produces: i) a fragment-level explanation indicating themost influential video fragments;
ii) an object-level explanation (#1) highlighting the most influential objects within the most influential fragments; and iii) an object-level explanation (#2)
highlighting the visual objects within the fragments that have been selected for inclusion in the summary, that influenced the most this selection.
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3.1 Fragment-level explanation

The processing pipeline for producing fragment-level
explanations is depicted in Figure 2. As shown, the input video is
temporally fragmented into consecutive and non-overlapping
fragments. To perform this process, we employ a pre-trained
model of the TransNetV2 method for shot segmentation from
Souček and Lokoč (2024). This method relies on a 3D-CNN
network architecture with two prediction heads; one predicting
the middle frame of a shot transition and another one predicting
all transition frames and used during training to improve the
network’s understanding of what constitutes a shot transition and
how long it is. The used model has been trained using synthetically-
created data from the TRECVID IACC.3 dataset (Awad et al., 2017)
and the ground-truth data of the ClipShots dataset (Tang et al.,
2019). If the number of video fragments is equal to one (thus, the
input video is a single-shot user-generated video) or less than ten
(thus, the selection of three fragments for building the summary
would not lead to a significantly condensed synopsis of the video),
we further fragment the input video using the method for sub-shot
segmentation from Apostolidis et al. (2018). This method segments
a video into visually coherent parts that correspond to individual
video capturing activities (e.g., camera pan and tilt, change in focal
length and camera displacement) by extracting and evaluating the
region-level spatio-temporal distribution of the optical flow over
sequences of neighbouring video frames. The defined video
fragments based on the aforementioned methods, along with the
input video, the summarizer and the produced video summary, are
then given as input to the XAI method. This method can be either
model-agnostic (i.e., it does not require any knowledge about the
summarization model) or model-specific (i.e., it utilizes information
from the internal layers of the model). In this work, we considered
the LIME explanation method from Ribeiro et al. (2016) and the
best-performing configuration of the attention-based explanation
method from Apostolidis et al. (2022a), respectively.

LIME (Ribeiro et al., 2016) is a perturbation-based method that
approximates the behavior of a model locally by generating a
simpler, interpretable model. More specifically, LIME examines
the predictions of the model for variations of the input data. For
this, it generates a new dataset consisting of perturbed samples and

the corresponding predictions of the original model. On this new
dataset LIME then trains an interpretable model, which is weighted
by the proximity of the sampled instances to the instance of interest.
The learned model should be a good approximation of the original
model’s predictions locally. Local surrogate models with
interpretability constraint can be mathematically expressed as
shown in Equation 1 (Ribeiro et al., 2016):

Explanation e( ) � argmin
g∈G

L f, g, πe( ) +Ω g( ) (1)

The explanation model for the sampled instance e is the model g
(e.g., a linear regression model) that minimizes loss L (e.g., mean
squared error), which measures how close the explanation is to the
prediction of the original modelf, while themodel complexityΩ(g)
is kept low. G is the family of possible explanations (e.g., all possible
linear regression models). Finally, the proximity measure πe defines
the size of the neighborhood around instance e, that is explored for
the explanation. In the domain of AI-based visual analysis, LIME is
typically used for producing image-level explanations by masking
out regions of the image; thus, we had to adapt it to operate over
sequences of frames and produce fragment-level explanations. In
particular, as depicted in Figure 3, instead of masking out regions of
a video frame during a perturbation, we mask out entire video
fragments by replacing their frames with black frames. The
perturbed version of the input video is fed to the summarizer,
which then produces a new output (i.e., a new sequence of frame-
level importance scores). This process is repeated M times and the
binary perturbation masks (indicating the fragments of the video
that were masked out) are fitted to the corresponding fragment-level
importance scores (computed by averaging the frame-level
importance scores at the fragment level) using a linear regressor.
Finally, the fragment-level explanation is produced by focusing on
the fragments with the top-3 explanation scores (according to the
assigned weights to the indices of the binary masks) by this
simpler model.

The attention-based method of Apostolidis et al. (2022a) can be
applied on network architectures for video summarization that
estimate the frames’ importance with the help of an attention
mechanism, such as the ones from Apostolidis et al. (2022b),
Fajtl et al. (2019), Li P. et al. (2021). The typical processing

FIGURE 2
The proposed processing pipeline for producing fragment-level explanations. The XAI method can be either model-agnostic (LIME) or model-
specific (attention-based). The video is temporally fragmented into shots (using TransNetV2) or sub-shots (usingmotion data). The produced explanation
indicates the most influential video fragments for the output of the summarizer.
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pipeline of such networks is depicted in the upper part of Figure 4.
For a video of T frames, the attention mechanism gets as input the
deep representations of the video frames X � {xi}Ti�1 (extracted using
a pre-trained CNN) and produces the Query (Q � {qi}Ti�1), Key
(K � {ki}Ti�1) and Value (V � {vi}Ti�1) transformations of them, with
the help of linear layers (represented by WQ, WK and WV,
respectively). Then, it performs a matrix multiplication (Q × K−1,
where K−1 is the transposed version of K), and applies a softmax
conversion on the computed values. Through this process, it forms a
T × T matrix of attention weights A � {ai,j}Ti,j�1, with ai,j ∈ I. Each
row of this matrix corresponds to a different frame of the video and
the values within each row represent the significance of the
associated frame for each frame of the video according to the
context modeled by the attention mechanism. This matrix is

multiplied with the Value-based transformation of the input
representations (V) and forms a new set of context
representations (Z � {zt}Tt�1). The latter go through a Regressor
Network, which outputs estimates about the frames’ importance;
these estimates are used to compute fragment-level importance and
select the most important fragments for inclusion in the video
summary. As shown in the lower part of Figure 4, the applied
explanation method uses the computed attention weights in the
main diagonal of the attention matrix for a given input video
({ai,i}Ti�1), and forms an explanation signal by averaging them at
the fragment level. The values of this explanation signal indicate the
influence of the video’s fragments in the output of the summarizer,
and the fragments related to the top-3 scoring ones are selected to
create the fragment-level explanation.

FIGURE 3
The applied method for producing fragment-level explanations using LIME. The part within the dashed bounding box is repeated for every
perturbation.

FIGURE 4
The applied method for producing fragment-level explanations using attention weights.
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3.2 Object-level explanation

The processing pipeline for creating object-level
explanations is shown in Figure 5. The selected video
fragments for creating such explanations can be either the
most influential ones according to the fragment-level
explanation or the top-scoring ones by the summarizer that
were selected for inclusion in the video summary. The utilized
XAI method in this case is LIME (Ribeiro et al., 2016), and the
goal is to apply perturbations at the visual object level in order to
identify the objects within the selected fragments, that influence
the most the output of the summarizer. Once again, we use an
adaptation of the LIME method, that takes into account the
applied spatial perturbations in the visual content of a sequence
of video frames (and not on a single frame). To make sure that a
perturbation is applied on the same visual object(s) across the
frames of a video fragment, we spatially segment these frames
using a model of the Video K-Net method for video panoptic
segmentation (Li et al., 2022), trained on the VIP-Seg dataset
(Miao et al., 2022). This method builds on the foundation of
K-Net (Zhang et al., 2024), which unifies image segmentation
through a collection of adaptable kernels. Video K-Net
capitalizes on the kernels’ ability to encode object appearances
and contextual information, combining segmentation and
tracking of both semantically meaningful categories and to
individual instances of countable objects across a sequence of
video frames.

As shown in Figure 6, the top-scoring frame (by the
summarizer) within a selected video fragment (by the
fragment-level explanation or the summarizer) is picked as
the keyframe. Once all the frames of this fragment have been
spatially segmented by Video K-Net, the appearing B visual
objects in the selected keyframe are masked out across the
entire video fragment through a series of perturbations that
replace the associated pixels of the video frames (specified by

the assigned object IDs from the Video K-Net method) with
black pixels. The perturbed version of the input video after
masking out a visual object in one of the selected video
fragments is forwarded to the summarizer, which outputs a
new sequence of frame-level importance scores. This process
is repeated N times for a given video fragment and the binary
masks of each perturbation are fitted to the corresponding
importance scores (computed as the average of the
importance scores of the frames within the selected fragment)
using a linear regressor. Finally, the object-level explanation is
formed by taking the top- and bottom-scoring visual objects
(indicated by the assigned weights to the indices of the binary
masks) by this simpler model, and highlighting the
corresponding visual objects (using green and red coloured
overlaying masks, respectively) in the keyframes of the
selected video fragments.

4 Experiments

We evaluated our framework based on the used datasets and
proposed evaluation protocol in Apostolidis et al. (2022a),
Apostolidis et al. (2023), and compared the newly suggested
LIME-based fragment-level explanations with the ones obtained
using the attention-based method from the aforementioned works.
Performance comparisons with the method of Huang et al. (2023)
for explainable video summarization (discussed in Section 2) were
not possible, as this method produces a different form of
explanations (i.e., causality graphs) that need interpretation by
a human expert and are not evaluated in a quantitative manner. In
the following, we provide details about the utilized datasets and
evaluation protocol for assessing the performance of the produced
explanations. Then, we provide some implementation details and
report the findings of the conducted quantitative and qualitative
evaluations.

FIGURE 5
Processing pipeline for producing object-level explanations using Video K-Net (for panoptic segmentation) and LIME. The selected video fragments
are themost influential according to the fragment-level explanation, or the top-scoring by the summarizer. The produced explanation indicates themost
influential visual objects for the output of the summarizer.
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4.1 Datasets and evaluation protocol

In our experiments we employ the SumMe (Gygli et al., 2014)
and TVSum (Song et al., 2015) datasets, which are the most
widely used ones in the literature for video summarization
(Apostolidis et al., 2021b). SumMe is composed of 25 videos
up to 6 min long, with diverse video contents, captured from both
first-person and third-person view. Each video has been
annotated by 15–18 users in the form of key-fragments, and
thus is associated to multiple fragment-level user summaries that
have a length between 5% and 15% of the initial video duration.
TVSum contains 50 videos up to 11 min long, containing video
content from 10 categories of the TRECVid MED dataset. The
TVSum videos have been annotated by 20 users in the form of
shot- and frame-level importance scores. For evaluation we
utilize the Discoverability ± and Sanity Violation measures
from Apostolidis et al. (2022a). The Rank Correlation measure
was not taken into account, as we are interested in the capacity of
explanations to spot the most and least influential fragments,
rather than ranking the entire set of video fragments based on
their influence to the summarization method. For completeness,
in the following we describe each measure and the way it was
computed in our evaluations.

To measure the influence of a selected video fragment
or visual object by an explanation method, we mask it out
(using black frames or pixels, respectively) and compute
the difference in the summarization model’s output, as
ΔE(X, X̂p) � τ(y, yp). In this formula, X is the set of original
frame representations, X̂

p
is the set of updated features of the

frames belonging to the selected pth video fragment (after the
applied mask out process), y and yp are the outputs of the
summarization model for X and X̂

p
, respectively, and τ is the

Kendall’s τ correlation coefficient (Kendall, 1945). ΔE ranges in
[−1,+1]; values close to +1 signify strong agreement between y
and yp (thus, a minor impact after a perturbation), values close to

−1 indicate strong disagreement between y and yp (thus, a major
impact after a perturbation), while values close to 0 denote
neutral correlation between y and yp. Based on the above, we
assess the performance of each explanation using the following
evaluation measures:

• Discoverability+ (Disc+) evaluates if the top-3 scoring
fragments/objects by an explanation method have a
significant influence to the model’s output. For a given
video, it is calculated by computing ΔE after perturbing
(masking out) the top-1, top-2 and top-3 scoring
fragments/objects in a one-by-one and sequential (batch)
manner. The lower this measure is, the greater the ability
of the explanation to spot the video fragments or visual objects
with the highest influence to the summarization model.

• Discoverability- (Disc-) evaluates if the bottom-3 scoring
fragments/objects by an explanation method have small
influence to the model’s output. For a given video, it is
calculated by computing ΔE after perturbing (masking out)
the bottom-1, bottom-2 and bottom-3 scoring fragments/
objects in a one-by-one and sequential (batch) manner. The
higher this measure is, the greater the effectiveness of the
explanation to spot the video fragments or visual objects with
the lowest influence to the summarization model.

• Sanity Violation (SV) quantifies the ability of explanations to
correctly discriminate the most from the least influential video
fragments or visual objects. It is calculated by counting the
number of cases where the condition (Disc+ > Disc-) is
violated, after perturbing (masking out) parts of the input
corresponding to fragments/objects with the three highest and
lowest explanation scores in a one-by-one and sequential
(batch) manner, and then expressing the computed value as
a fraction of the total number of perturbations. This measure
ranges in [0, 1]; the closest its value is to zero, the greater the
reliability of the explanation signal.

FIGURE 6
The appliedmethod for producing object-level explanations using Video K-Net and LIME. The perturbations are performed on spatial regions of the
video frames, that relate to the B visual objects that were identified by Video K-Net in the keyframe of the selected video fragment.
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4.2 Implementation details

Videos are downsampled to 2 fps and deep feature
representations of the frames are obtained by taking the
output of the pool5 layer of GoogleNet (Szegedy et al., 2015),
trained on ImageNet (Deng et al., 2009). The number of applied
perturbations M for producing fragment-level explanations
was set equal to 20,000, in order to have robust and reliable
results. The number of applied perturbations N for producing
object-level explanations was set equal to 2,000, as there were only
a few visual objects within the selected keyframes and thus the
number of possible perturbations was also small. As stated
previously, the number of video fragments for producing
explanations (both at the fragment and the object level) was set
equal to three. For video summarization, we use pre-trained
models of the CA-SUM method (Apostolidis et al., 2022b) on
the SumMe and TVSum datasets. All experiments were carried
out on an NVIDIA RTX 4090 GPU card. The utilized
models of CA-SUM and the code for reproducing the reported
results, are publicly available at: https://github.com/IDT-ITI/XAI-
Video-Summaries.

4.3 Quantitative results

The results about the performance of the examined fragment-
level explanation methods on the videos of the SumMe and TVSum
datasets, are presented in Tables 2, 3, respectively. The upper part of
these Tables reports the computed Disc+, Disc+ Seq, Disc-, Disc-
Seq, SV and SV Seq scores, after taking into account videos that have
at least three top- and three bottom-scoring fragments by the
explanation method (Video Set 1). The lower part of these Tables
reports the Disc+, Disc- and SV scores for a larger set of videos
(Video Set 2), i.e., those that have at least one top- and one bottom-
scoring fragment by the explanation method, computed based on
the obtained ΔE values after perturbing (masking out) only their
top-1 and bottom-1 scoring fragments. As stated in Section 4.1, the
top-k scoring fragments (with k equal to 1, 2 or 3 for the experiments
using Video Set 1, and equal to 1 for the experiments using Video Set
2) are used for computing Disc+ and Disc+ Seq, the bottom-k
scoring fragments are employed for computing Disc- and Disc- Seq,
while both top-k and bottom-k scoring fragments are utilized for
computing SV and SV Seq. For the sake of space, in Tables 2–7 we
show the top-k and bottom-k scoring fragment in the same cell. The

TABLE 2 Performance of the considered fragment-level explanation methods on the SumMe dataset.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 Attention 0.617 — 0.951 — 0.000 —

LIME 0.879 — 0.802 — 0.600 —

Top/Bottom-2 Attention 0.888 0.546 0.980 0.930 0.400 0.200

LIME 0.891 0.785 0.966 0.759 0.400 0.600

Top/Bottom-3 Attention 0.967 0.547 0.955 0.886 0.400 0.400

LIME 0.945 0.750 0.918 0.658 0.600 0.600

Video Set 2 Top/Bottom-1 Attention 0.568 — 0.971 — 0.063 —

LIME 0.747 — 0.886 — 0.438 —

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring fragments by the explanationmethod. The lower part shows the

computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring fragment by the explanation method. The best scores are shown in

bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.

TABLE 3 Performance of the considered fragment-level explanation methods on the TVSum dataset.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 Attention 0.561 — 0.984 — 0.000 —

LIME 0.795 — 0.940 — 0.308 —

Top/Bottom-2 Attention 0.967 0.519 0.990 0.963 0.333 0.000

LIME 0.909 0.696 0.954 0.875 0.308 0.282

Top/Bottom-3 Attention 0.964 0.483 0.982 0.943 0.333 0.026

LIME 0.960 0.618 0.969 0.834 0.461 0.333

Video Set 2 Top/Bottom-1 Attention 0.579 — 0.983 — 0.000 —

LIME 0.798 — 0.952 — 0.298 —

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring fragments by the explanationmethod. The lower part shows the

computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring fragment by the explanation method. The best scores are shown in

bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.
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results in Tables 2, 3 show that the attention-based method performs
clearly better compared to LIME, in most evaluation settings. The
produced fragment-level explanations by this method are more
capable to spot the most influential video fragment, while they
perform comparably with the LIME-based explanations at spotting
the second and third most influential ones; though the attention-
based explanations are better at detecting the fragments with the

lowest influence (see columns “Disc+” and “Disc-”). The
competitiveness of the attention-based method is more
pronounced when more than one video fragments are taken into
account, as it performs constantly better than LIME in both datasets
(see columns “Disc+ Seq” and “Disc- Seq”). Finally, the produced
fragment-level explanations using attention are clearly more
effective in discriminating the most from the least influential

TABLE 4 Performance of the object-level explanation method on the SumMe dataset using the selected video fragments by the attention-based and LIME
explanation methods.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 Attention 0.976 — 0.963 — 0.639 —

LIME 0.937 — 0.878 — 0.666 —

Top/Bottom-2 Attention 0.988 0.968 0.981 0.958 0.555 0.639

LIME 0.962 0.915 0.921 0.839 0.833 0.750

Top/Bottom-3 Attention 0.994 0.962 0.989 0.952 0.750 0.555

LIME 0.959 0.897 0.956 0.828 0.611 0.805

Video Set 2 Top/Bottom-1 Attention 0.969 — 0.949 — 0.694 —

LIME 0.941 — 0.910 — 0.603 —

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring visual objects by the explanationmethod. The lower part shows

the computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring visual object by the explanation method. The best scores are

shown in bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.

TABLE 5 Performance of the object-level explanation method on the TVSum dataset using the selected video fragments by the attention-based and LIME
explanation methods.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 Attention 0.940 - 0.981 - 0.277 -

LIME 0.908 - 0.962 - 0.444 -

Top/Bottom-2 Attention 0.956 0.908 0.995 0.980 0.111 0.111

LIME 0.948 0.909 0.968 0.907 0.277 0.611

Top/Bottom-3 Attention 0.990 0.889 0.998 0.978 0.111 0.000

LIME 0.961 0.879 0.996 0.907 0.111 0.500

Video Set 2 Top/Bottom-1 Attention 0.954 - 0.989 - 0.211 -

LIME 0.949 - 0.987 - 0.162 -

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring visual objects by the explanationmethod. The lower part shows

the computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring visual object by the explanation method. The best scores are

shown in bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.

TABLE 6 Performance of the object-level explanation method on the SumMe dataset using the selected video fragments by the summarization method.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 0.769 — 0.977 — 0.357 —

Top/Bottom-2 0.985 0.692 0.995 0.912 0.365 0.516

Top/Bottom-3 0.999 0.881 0.994 0.715 0.484 0.476

Video Set 2 Top/Bottom-1 0.894 — 0.990 — 0.397 —

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring visual objects by the explanationmethod. The lower part shows

the computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring visual object by the explanation method. The best scores are

shown in bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.
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fragments of the video, as indicated by the significantly lower sanity
violation scores in all settings (see columns “SV” and “SV Seq”).

To assess the competency of the examined fragment-level
explanation methods to correctly rank the most and least
influential video fragments on the summarization model’s output,
we took into account the computed Disc+ and Disc- scores for the
videos of the SumMe and TVSum datasets with at least three top-
and three bottom-scoring fragments by the explanation method,
after masking out these fragments, in a one-by-one and sequential
manner. With respect to the top-scoring fragments, we anticipate a
higher drop in Disc+ for the top-1 fragment (which should have the
highest influence on the summarizer) and progressively lower drops
for the top-2 and top-3 fragments, when masking out is performed
in a one-by-one manner. Moreover, we expect to see a major drop in

Disc+ Seq for the top-1 fragment and additional more minor drops
for the remaining two top-scoring fragments, when masking out is
performed in a sequential manner. With regards to the bottom-
scoring fragments, we foresee a lower drop in Disc- for the bottom-1
fragment (which should have the lowest influence on the
summarizer) and larger drops for the remaining two, when
masking out is performed in a one-by-one manner. In addition,
we expect to observe a minor drop in Disc- Seq for the bottom-1
fragment and additional more noticeable drops for the remaining
two fragments, when masking out is performed in a sequential
manner. The obtained scores for the videos of the SumMe and
TVSum, presented in Figures 7, 8, respectively, show that both
methods are able to correctly rank the most influential fragments, as
in most cases they lead to Disc+ scores that are gradually increasing

TABLE 7 Performance of the object-level explanation method on the TVSum dataset using the selected video fragments by the summarization method.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)
Video Set 1 Top/Bottom-1 0.883 — 0.879 — 0.255 —

Top/Bottom-2 0.655 0.506 0.997 0.832 0.222 0.155

Top/Bottom-3 0.964 −0.184 0.999 0.841 0.344 0.133

Video Set 2 Top/Bottom-1 0.772 — 0.996 — 0.195 —

The upper part shows the computed scores after taking into account videos that have at least three top- and three bottom-scoring visual objects by the explanationmethod. The lower part shows

the computed scores after taking into account a larger set of videos, i.e., those that have at least one top- and one bottom-scoring visual object by the explanation method. The best scores are

shown in bold. The arrows indicate the optimal (lower or higher) value for each evaluation measure.

FIGURE 7
The computed Disc+ and Disc- scores for the examined fragment-level explanation methods on the videos on the SumMe dataset, after masking
out the three top- and bottom-scoring fragments in a one-by-one and sequential manner. We anticipate a higher/lower drop in Disc ± for the top/
bottom-1 scoring fragment, and lower/higher drops in Disc ± for the remaining top/bottom-scoring fragments.
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when moving from the top-1 to the top-3 scoring fragment (as
expected). More specifically, the attention-based method seems to be
more appropriate at spotting the fragment with the highest influence
to the summarization model (as indicated by the significantly lower
Disc+ value for the top-1), while its performance is comparable with
the one of LIME when finding the second and third most influential
fragment. Moreover, the effectiveness of both methods to rank the
most influential fragments is also illustrated by the observed values
when masking out these fragments in a sequential manner. The
inclusion of additional fragments in the explanation leads to lower
Disc+ values (as expected), while the impact of the second and third
top-scoring fragments is quantifiable but clearly smaller than the
one of the top-1 scoring fragment. Overall, the attention-based
explanation method performs better on both datasets, as it leads
to significantly lower Disc+ scores compared to LIME (especially on
the SumMe dataset). With respect to video fragments that influence
the least the output of the summarizationmodel, both methods seem
to be less effective at spotting them. The obtained Disc- scores show
that, in most cases, the bottom-scoring fragment has a higher impact
on the summarization model, compared to the impact of the second
and third bottom-scoring fragment (contrary to the expected
behavior). Nevertheless, this weakness is less pronounced for the
attention-based method, as the produced explanations lead to
similar Disc- scores for the bottom-1, bottom-2 and bottom-3
fragment on both datasets. On the contrary, the LIME method
indicates a fragment with clearly higher impact than the other two,
as the least influential one (especially on the SumMe dataset). The

competitiveness of the attention-based method is also highlighted by
the generally higher Disc- scores compared to LIME, after masking
out more than one of the least influential video fragments
(i.e., sequentially) on the videos of both datasets. “Disc- Seq”
scores around 0.9 even after masking out even three fragments of
the video, point out the competency of this method to spot
fragments with very small influence on the output of the
summarization model.

The performance of the developed method for object-level
explanation was initially evaluated using video fragments that were
found as the most influential ones by the considered fragment-level
explanation methods. The results of our experimental evaluations on
the videos of the SumMe and TVSum datasets are presented in Tables
4, 5, respectively. Once again, the upper part of these Tables reports the
computed Disc+, Disc+ Seq, Disc-, Disc- Seq, SV and SV Seq scores,
after taking into account videos that have at least three top- and three
bottom-scoring visual objects by the explanationmethod (Video Set 1).
The lower part of these Tables reports the Disc+, Disc- and SV scores
for a larger set of videos (Video Set 2), i.e., those that have at least one
top- and one bottom-scoring visual object by the explanation method,
computed based on the obtained ΔE values after perturbing (masking
out) only their top-1 and bottom-1 scoring visual objects. These results
show that, the object-level explanations for the selected video fragments
by the two different explanation methods exhibit comparable
performance. In general, the LIME-based fragments allow the
object-level explanation method to be a bit more effective when
spotting the most influential visual objects, while the attention-

FIGURE 8
The computed Disc+ andDisc- scores for the examined fragment-level explanationmethods on the videos on the TVSumdataset, aftermasking out
the three top- and bottom-scoring fragments in a one-by-one and sequential manner. We anticipate a higher/lower drop in Disc ± for the top/bottom-
1 scoring fragment, and lower/higher drops in Disc ± for the remaining top/bottom-scoring fragments.
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based fragments lead to better performance when spotting the visual
objects with the least influence on the model’s output. The comparable
capacity of the fragment-level explanation methods is also shown from
themostly similar sanity violation scores. A difference is observedwhen
the applied perturbations affect more than one visual objects, where the
produced object-level explanations using the attention-based fragments
are associated with clearly lower sanity violation scores. Therefore, a
choice between the fragment-level explanation methods could be made
based on the level of details in the obtained object-level explanation. If
highlighting a single visual object is sufficient, then using the LIME-
based fragments could be a good option; however, if the explanation

needs to include more visual objects, then the attention-based
fragments would be more appropriate for use. In any case, the use
of the LIMEmethod is the only option when there are no details about
the video summarization model and thus, the explanation of the
model’s output must be done through a fully model-agnostic
processing pipeline.

The performance of the developed object-level explanation
method on the aforementioned sets of videos of the SumMe and
TVSum datasets, when using the three top-scoring fragments by
the summarization method, is reported in Tables 6, 7, respectively.
As a note, in this case, the Disc ± evaluation measures are

FIGURE 9
(A) A keyframe-based representation of the visual content of the original and the summarized version of a SumMe video, titled “Kids playing in
leaves.” (B) The produced explanations by the proposed framework. Green- and red-coloured regions in object-level explanations indicate the most and
least influential visual objects, respectively.
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computed by taking into account only the importance scores of the
frames within the selected fragments. A pair-wise comparison of
the Disc+ and Disc- scores shows that our method distinguishes
the most from the least influential object in most cases, a fact that is
also documented by the obtained sanity violation scores.
Moreover, it is able to spot objects that have indeed a very

small impact on the output of the summarization process, as
demonstrated by the significantly high Disc- scores. Finally, a
cross-dataset comparison shows that our method is more effective
on the videos of the TVSum dataset, as it exhibits constantly lower
sanity violation scores for both evaluation settings (one-by-one
and sequential).

FIGURE 10
(A) A keyframe-based representation of the visual content of the original and the summarized version of a TVSum video, titled “Smage Bros.
Motorcycle Stunt Show”. (B) The produced explanations by the proposed framework. Green- and red-coloured regions in object-level explanations
indicate the most and least influential visual objects, respectively.
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4.4 Qualitative results

Our qualitative analysis is based on the produced explanations
for two videos of the SumMe and TVSum datasets. The top part of
Figures 9, 10 provides a keyframe-based representation of the visual
content of the original and the summarized version of the video,
while the bottom part shows the produced explanations by the
proposed framework. The green- and red-coloured regions in the
frames of the object-level explanations, indicate the most and least
influential visual objects, respectively. To avoid confusion, these
regions are demarcated also in segmentation masks, right below.

In the example video of Figure 9, which is titled “Kids playing in
leaves,” the generated video summary contains parts of the video
showing the kids playing with the leaves near a truck. The produced
fragment-level explanation from the utilized attention-based method
shows that the summarization model paid attention on instances of the
kids playingwith the leaves (second and third fragment), and the part of
the scene where the event ismainly taking place (second fragment). The
obtained object-level explanation using the selected fragments by the
attention-based explanationmethod demonstrates that the summarizer
concentrates on the truck (second fragment) and the kids (third
fragment) - while it pays less attention on the house (first fragment)
and the yard (second and third fragment) - thus further explaining why
these parts of the video were selected for inclusion in the summary and
why other parts of the video (showing the yard right in front of the
house, the black car in the parking and the lady) were not. Finally, the
produced object-level explanation using the selected fragments by the
summarizer seems to partially overlap with the aforementioned one, as
it shows that the truck and the house were again the most and least
important visual objects for the summarizer (second and third
fragment); though, it indicates that the summarizer paid attention to
the yard where the kids are playing at.

In the example video of Figure 10, which is titled “Smage Bros.
Motorcycle Stunt Show,” the created video summary shows the riders of
the motorcycles and one of them being interviewed. The obtained
fragment-level explanation from the employed method indicates that
the summarizer concentrates on the riders (second and third fragment)
and the interview (first fragment). Further insights are given by the
object-level explanation of the aforementioned fragments, which
demonstrates that the motorcycles (second and third fragment) and
the participants in the interview (first fragment) were the most
influential visual objects. Similar remarks can be made by observing
the produced object-level explanation using the selected fragments from
the summarizer (see the first and second fragment). These findings
explain why the summarizer selected these parts of the video for
inclusion in the summary and why other parts (showing the logo of
the TV-show, distant views of the scene and close-ups of the riders)
were found as less appropriate. These paradigms show that the
produced multi-granular explanations by the proposed framework
could allow the user to get insights about the focus of the
summarization model, and thus, assist the explanation of the
summarization outcome.

5 Conclusion and future steps

In this paper, we presented a framework for explaining video
summarization results through visual-based explanations that

are associated with different levels of data granularity. In
particular, our framework can provide fragment-level
explanations that show the temporal fragments of the video
that influenced the most the decisions of the summarizer,
using either a model-specific (attention-based) or a model-
agnostic (LIME-based) explanation method. Moreover, it can
produce object-level explanations that highlight the visual
objects with the highest influence to the summarizer, taking
into account the video fragments that were selected either by the
fragment-level explanation method or the summarizer. The
performance of the produced explanations was evaluated
using a state-of-the-art method (CA-SUM) and two datasets
(SumMe and TVSum) for video summarization. The conducted
quantitative evaluations showed the effectiveness of our
explanation framework to spot the parts of the video
(fragments or visual objects) with the highest and lowest
influence on the summarizer, while our qualitative analysis
demonstrated its capacity to produce a set of multi-granular
and informative explanations for the results of the video
summarization process. In terms of future steps, we plan to
test the performance of our framework using additional state-of-
the-art methods for video summarization. Moreover, we aim to
leverage advanced vision-language models [e.g., CLIP (Radford
et al., 2021) and BLIP-2 (Li et al., 2023)] and extend our
framework to provide a textual description of the produced
visual-based explanations, thus making it more user-friendly
for media professionals.
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