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Individuals have the remarkable ability to differentiate between speakers and focuson
a particular speaker, even amidst complex acoustic environments with multiple
speakers, background noise and reverberations. This selective auditory attention,
often illustrated by the cocktail party problem, has been extensively researched.With
a considerable portion of the population experiencing hearing impairment and
requiring hearing aids, there arises a necessity to separate and decode auditory
signals artificially. The linearly constrained minimum variance (LCMV) beamforming
design criterion has proven effective in isolating the desired source by steering a
beam toward the target speaker while creating a null toward the interfering source.
Preserving the binaural cues, e.g., interaural time difference (ITFD) and interaural level
difference (ILD), is a prerequisite for producing a beamformer output suitable for
hearing aid applications. For that, the binaural linearly constrainedminimum variance
(BLCMV) beamformer generates two outputs that satisfy the standard LCMV criterion
while preserving the binaural cues between the left-ear and right-ear outputs.
Identifying the attended speaker from the separated speakers and distinguishing it
from the unattended speaker poses a fundamental challenge in the beamformer
design. Several studies showed the ability to encode essential features of the
attended speech from the cortex neural response, as recorded by the
electroencephalography (EEG) signals. This led to the development of several
algorithms addressing the auditory attention decoder (AAD) task. This paper
investigates two neural network architectures for the AAD task. The first
architecture leverages transfer learning. It is evaluated using both same-trial and
cross-trial experiments. The second architecture employs an attention mechanism
between the speech signal represented in the short time Fourier transform (STFT)
domain and amulti-band filtered EEG signal. With the goal of alleviating the problem
of same-trial overfitting, this architecture employs a new data organization structure
that presents the neural network (NN) with a single speaker’s speech and the
corresponding EEG signal as inputs. Finally, posterior probability post-processing
is applied to the outputs of the NN to improve detection accuracy. The experimental
study validates the applicability of the proposed scheme as an AAD method.
Strategies for incorporating the AAD into BLCMV beamformer are discussed.
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1 Introduction

Humans possess the capability to distinguish between speakers
and concentrate on a particular speaker, even in environments with
multiple speakers, background noise and reverberation. The skill of
selectively focusing on specific auditory cues in intricate acoustic
settings, as exemplified by the cocktail party problem (Haykin and
Chen, 2005; Cherry, 1953) has been extensively studied. Due to the
prevalence of hearing impairment affecting a considerable portion of
the population, which often requires the use of hearing aids, there
arises a necessity to separate and decode auditory signals artificially.

The blind source separation (BSS) task is one of the fundamental
tasks in speech processing, with numerous algorithms proposed to
address this challenge (Vincent et al., 2018.; Makino. 2018) These
algorithms find applications in various devices, including hearing
aids, smartphones and virtual assistants. Array processing,
specifically beamforming, is one of the main tools to process
audio signals, specifically addressing the BSS task. It can handle
audio signals contaminated by noise, reverberation, and interfering
speakers. The beamformer’s weights are set to satisfy specific criteria,
for instance, a distortionless response to the desired speaker or a null
towards the interfering source, while minimizing the output noise
power. Additionally, beamformer design may require minimizing
the white noise gain (WNG) to enhance resilience against system
uncertainties, as discussed in Cox et al. (1987), Van Trees (2002),
Pillai (2012).

One of the main design criteria for beamformers is the
minimum variance distortionless response (MVDR) (Capon,
1969), which aims to minimize the noise variance while imposing
a distortionless response towards the desired source. The LCMV
criterion extends the MVDR criterion by applying a set of linear
constraints, e.g., on the beampattern derivative in the desired
direction (Er and Cantoni, 1983). In Markovich et al. (2009), the
LCMV was adapted to the multi-speaker problem by directing a
beam towards the desired source(s) and a null towards all
interference sources while minimizing the noise level at the
output. Preserving the binaural cues, e.g., ITFD and ILD, is a
prerequisite for producing a beamformer output suitable for
hearing aid applications. In Hadad et al. (2016), the BLCMV
beamformer is introduced, and its performance is analyzed. The
BLCMV beamformer generates two outputs that satisfy the standard
LCMV criterion and, in addition, preserves the binaural cues. In our
context, this entails steering a beam toward the desired source and
nulls toward the interfering sources while preserving the binaural
cues between the left-ear and right-ear outputs.

A primary challenge in designing beamformers is identifying the
desired speaker, essentially informing the beamformer about which
speaker is the target of interest. Several studies showed the ability to
encode essential features of the attended speech from the cortex
neural response, as recorded by the EEG signals. In Mesgarani and
Chang (2012), the method of stimulus reconstruction was used to
estimate the speech spectrogram of the attended speaker from a
spectrogram of a mixture of speakers. EEG signals can be captured
and utilized as input for an AAD to help determine the desired
speaker and the interferer (O’Sullivan et al., 2015; Biesmans et al.,
2017; Thwaites et al., 2016). Various attention decoding methods
have been proposed and studied, including models based on linear
temporal relative function (TRF). In Kuruvila et al. (2020), both least

squares (LS) and linear minimum mean squared error (LMMSE)
methods are applied to infer the relation between the EEG signal and
the envelopes of the desired and interfering sources. Another
approach Wong et al. (2018) is also using the cortical signal to
reconstruct each of the two audio speakers in the scene. Then, a
support vector machine (SVM) classifier is used to identify the
desired and interfering signals.

Recent studies have harnessed the power of deep neural
networks (DNNs) for auditory attention decoding. In Reddy
Katthi and Ganapathy (2021), a deep multiway canonical
correlation analysis (CCA) is proposed to remove artifacts from
EEG recordings. This may improve the correlation between the EEG
and the attended speaker signal, consequently resulting in enhanced
decoding. In Fu et al. (2021), a convolutional reconstruction neural
network is proposed. In Ciccarelli et al. (2019) several methods are
proposed, the first is established by regular TRF analysis, the second
estimates the TRF using neural network and the third performs a
direct classification using DNN. InMonesi et al. (2021), a long short-
term memory (LSTM) based model is proposed, and several input
features, namely, mel-spectrogram, envelope, word embedding, and
a combination thereof, are evaluated. Both linear, correlation-based,
and convolutional neural network (CNN) methods are used in
Accou et al. (2021), Vandecappelle et al. (2021) for a broad range
of time frame lengths, varying from long to very short time frames.
In Cai et al. (2020), it is proposed to apply the common spatial
pattern (CSP) algorithm for enhancing the EEG signal. The
enhanced EEG signal and audio speaker signals were then used
as input to a CNN architecture.

Overfitting is a well-known and challenging phenomenon in
deep learning. It occurs when the algorithm becomes overly tailored
to the specific details of the training data, making it difficult to
generalize to new, unseen data. Overfitting to particular trials,
subjects, or datasets can lead to impressive but ultimately
misleading results for AAD algorithms. In Cai et al. (2024),
Rotaru et al. (2024), Puffay et al. (2023), these overfitting issues
are discussed for EEG-based AAD or spatial encoding tasks.

Our study first delves into ways of using the outcomes of AAD to
provide guidance to BLCMV beamformer regarding the attended
speaker, thus informing it which speaker to extract.

We then explore two NN-based architectures for addressing the
AAD task. The first architecture leverages transfer learning,
adapting an image processing model to process both the
temporal envelope of the speech signal and the raw EEG signal.
The second, based on Li et al. (2021), employs an attention
mechanism to analyze the speech signal represented in the STFT
domain, along with multi-band filtered EEG signals.

Using two common databases Das et al. (2020) and Kuruvila et al.
(2021), we present an assessment of the ability of these schemes to
generalize to unseen data. Specifically, we will show that the transfer
learning approach performs very well if the same trials are present
during training and test stages but fails to generalize to cross-trial
experiments. Moreover, we present the attention-based approach,
which employs a new data organization scheme to alleviate same-
trial overfitting. Nevertheless, this approach is still shown to perform
very well in the same-trial case but not in the cross-trial case.

Our main contributions are: 1) applying domain adaptation for
repurposing ResNet, a widely recognized DNN architecture, to the
AAD task; 2) addressing the cross-trial scenario and testing the

Frontiers in Signal Processing frontiersin.org02

Gueta et al. 10.3389/frsip.2024.1432298

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1432298


performance of the proposed algorithms on relevant scenarios; 3)
the development of a new DNN architecture for the attention
decoding task; 4) presenting a new data organization paradigm
for DNN training, as well as a new postprocessing method, suitable
to the new organization; 5) presenting a conceptual system,
integrating binaural beamformer for source separation and AAD,
that may apply to speaker mixtures.

2 Problem formulation

We consider a scenario involving a human subject exposed to
two separate sources, namely, the first source and the second source
s1(t, k) and s2(t, k) . Throughout the paper, we assume that the
original signals are available to the AAD procedure. We only discuss
potential separation schemes in Section 6 In parallel, the subject’s
EEGmultichannel signal, e(t) � e1(t), e2(t), . . . , eCE(t), withCE the
number of EEG channels is recorded. We also define the matrix
comprising all EEG signals, E � {e(t)}T−1t�0 , where T refers to the
length of the signal. We are now addressing a classification problem
where, given the EEG signal and the speech signal(s), our goal is to
identify the attended speaker and distinguish it from the unattended
speaker. We will propose in this paper two AAD approaches and
analyze their performance, advantages, and drawbacks.

3 Transfer learning approach

3.1 ResNet

We first explore a classification approach which adopts the
transfer learning paradigm. In this method, we repurpose a DNN
architecture originally developed for a different task and apply it to
our AAD task.

ResNet, a widely recognized and extensively used DNN
architecture based on residual networks (Targ et al., 2016), serves
as the backbone of this method due to its proven success in image
classification and various other image processing tasks. Using the
ResNet architecture necessitates an additional fully connected layer
to adjust the output shape to the required format:

presnet ∈ R1×2. (1)

In Equation 1, the first entry indicates the probability that the
first speaker is the desired speaker, while the second entry
corresponds to the probability that the second speaker is the
desired speaker.

3.2 Implementation

The input to the ResNet consists of both audio speaker
envelopes and the cortical signal M � [senv2,E, senv1]⊤,

M ∈ R CE+2( )×T (2)
where senv1 and senv2 represent the speech stimulus envelopes of the
first and second speakers, respectively. The audio envelopes are
obtained by computing the absolute value of the Hilbert transform.

Since the ResNet was originally designed for images in a 3-
channel format (RGB), we concatenated three identical matrices
from (Equation 2) in a tensor form: M � [M,M,M], where
M ∈ R(CE+2)×T×3. Time frames of 0.5,1,2,3,4.5 s are examined,
and both the KUL and FAU datasets are employed for the
evaluation.

3.3 Cross-trial training and testing

To ensure an effective AAD mechanism, it is required that the
employed approach will be able to generalize from the training data
to real-world applications. The EEG signal inherently exhibits
dynamic characteristics, showing temporal variations.
Additionally, typical datasets consist of multiple trials for each
subject, often with intervals separating them. This structure
introduces variability between trials, suggesting distinct data
patterns within each. Therefore, we propose to evaluate the
generalization ability of the proposed network across trials.

We split the trials in the datasets into two phases: training/
validation and testing. This partitioning enables us to evaluate our
architecture’s generalization ability in both the same-trial and cross-
trial cases. This will allow us to detect potential overfitting
tendencies by training the DNN on a subset of trials and
assessing its performance on unseen trials, thus enabling us to
ascertain whether the DNN is memorizing specific trial
characteristics or effectively learning the underlying relationships
between auditory and cortical signals.

4 Multi-band attention neural network

In this section, our attention-based neural network will be
presented. The architecture, adopted from Li et al. (2021), takes
speech features extracted from the STFT representation of the
speech signals and the EEG multichannel signal, filtered out to
several frequency bands as inputs. It then utilizes multiple fully
connected (FC) layers and a cross-attention mechanism to learn the
relationship between the EEG and speech inputs. This architecture
will be henceforth referred to as multi-band attention neural
network (MB Att. NN).

4.1 Preprocessing

The EEG data (designated as E) was first downsampled to
128 Hz and then filtered in the range 1–50 Hz to filter out
irrelevant frequency content. Five frequency bands are then
considered as input features (Buzsaki and Draguhn, 2004;
Viswanathan et al., 2019):

EEG bands �

δ: 1 − 3Hz
θ: 3–7Hz
α: 7–15Hz
β: 13–30Hz
γ: 30–50Hz

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3)

The EEG signal filtered into five channels will be denoted E. To
investigate the mechanisms of speech signal processing within the
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human brain, this study employs Gammatone filtering on the audio
signals, inspired by Park and Yoo (2020). Gammatone filters
emulate the human auditory system’s response to sound,
characterized by a larger sensitivity to lower frequencies
compared to higher ones. The filtering is applied in the time-
frequency domain using a window size of Nfft � 2048 and an
overlap of 345 samples.

4.2 Neural architecture

The top-level architecture of the NN is depicted in Figure 1. The
NN has two different input features: 1) the Gammatone spectrogram
auditory signal S ∈ RMS×T, with T referring to the number of
samples, and MS � 10 to the number of Gammatone band; and
2) the cortical signal E ∈ RCE×ME×T, where CE refers to the number
of EEG channels and ME � 5 refers to the number of
frequency bands.

The proposed NN architecture comprises several stages. Since
the idea is to extract the relations between the audio and the EEG
signals in a latent space, the network will embed both inputs
separately using FC layers:

E′ � gE E( ) ∈ RME×C (4)
S′ � gS S( ) ∈ RMS×C,

Where gE(·) refers to the embedding layers for the EEG signal,
comprising three FC layers with GELU and Relu activation functions,
and gS(·) refers to the embedding layers for the audio, comprising two
FC layers with GELU and Relu activation functions, and C is the
embedding size of both the EEG and audio signals. The next step is to
duplicate E′ defined in (Equation 4), namely, E′ � [(E′)⊤, (E′)⊤]⊤, in
order to fit the number of frequency channels for all inputs (sinceME �
5 andMS � 10). Then, a multi-head cross-attention is applied. LetQ be
the query, K the key, and V the value. In our case, Q � K � E′ and
V � S′. The cross-attention output represents the connection between
the embedded audio and EEG signals:

A � MCA E′,E′, S′( ) ∈ RC, (5)
where MCA refers to a multi-head cross attention layer. Finally, two
additional FC layers, the second using a Sigmoid activation function,

are applied to extract the probability of s1 and s2 to be the
attended speaker:

p � FC2 FC1 A( )( ) ∈ R1×2, (6)
where p � [p1, p2] with p1 � p(#1|E, s1) referring to the probability
that the first speaker is the attended speaker, given the first speaker
signal s1 and the EEG signal, and p2 � p(#1|E, s2) referring to the
probability that the first speaker is the attended speaker, given the
second speaker signal s2 and the EEG signal, respectively.

4.3 Unique data organization

Overfitting is a prevalent challenge in neural networks,
specifically in the AAD domain (Puffay et al., 2023). The
network tends to learn patterns specific to the training set and
struggles to generalize to unseen data.

In many current AAD approaches, the data is structured by
providing two speech signals alongside the cortical signal EEG, and
with the corresponding labels (e.g., ‘0’ for the first speaker, ‘1’ for the
second), as an input to the NN. However, a significant drawback of
such a method stems from the nature of the datasets commonly
utilized in this field. Each trial in these datasets is typically associated
with a single desired speaker, leading to a fixed label throughout the
entire trial. Since timeframes from the same trial often exist both in
train and test sets, this setup allows the neural network to capitalize
on trial-specific patterns, potentially learning to recognize the
individual trials rather than focusing on the relationship between
speech and EEG signals.

We propose a novel data organization approach to overcome the
challenge of overfitting to trial-specific patterns. During training,
validation, and testing, each EEG frame is presented to the neural
network twice: once alongside the audio signal of the attended
speaker, labeled as ‘1’ to indicate the presence of the desired
speaker, and then again with the unattended speaker’s audio
signal, labeled as ‘0’. By adopting this strategy, even when using
frames from the same trial for training and testing, we alleviate the
risk of the model overfitting to specific EEG trial patterns. This
dissociation of the correct label from the unique characteristics of a
particular trial may help enhance the model’s generalization ability
in the same-trial cases.

FIGURE 1
The multi-band attention neural network (MB Att. NN) architecture involves using the Gammatone spectrogram of one of the speakers as audio
features and the filterbank channels defined in (Equation 3) as EEG features. These signals are embedded separately using FC layers. Subsequently, a
cross-attention module is applied to both embedded features and fed into additional FC layers. The two outputs represent the probability of the
processed audio signal belonging to the attended speaker.
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4.4 Implementation

As described, our architecture receives the preprocessed
audio data represented in the time-frequency domain as input,
denoted as S ∈ RMS×T. Additionally, the architecture incorporates
the EEG signals filtered into frequency bands, namely,
E ∈ RCE×ME×T. The effectiveness of the proposed architecture
was evaluated only for window lengths of 0.5, 1, and 2 s.
Window lengths of 3–5 s were not examined for this method.
Two datasets, KUL and FAU (details provided subsequently),
were employed for the evaluation.

4.5 Posterior probability

As shown in (Equation 6) the proposed network consists of
two outputs, each representing the probability that the audio
stimulus belongs to the attended speaker, as determined by the
neural response encoded in the EEG signal. Let p1 � p(#1|E, s1)
denote the probability that speaker #1 is the attended speaker,
and p2 � p(#2|E, s2) denote the probability that speaker #2 is the
attended speaker. We can further enhance the reliability of
identifying the attended speaker by jointly utilizing the two
uttered audio signals in the scene and their corresponding
EEG signals. To achieve this, we calculate the posterior
probability using the two audio stimuli:

p #1|E, s1, s2( ) � 1 − p #2|E, s1, s2( ) � p1 1 − p2( )
p1 1 − p2( ) + p2 1 − p1( ).

(7)

4.6 Comparison with Li et al.

As mentioned, our architecture builds upon the work
presented in Li et al. (2021). However, our approach
incorporates several essential modifications compared to the
original work. Firstly, in contrast to using a simple dot
product for attention weights, we leverage a dedicated cross-
attention layer equipped with learnable parameters, as detailed in
(Equation 1). Secondly, we utilize a more suitable frontend for
the EEG signal, using a 5-band filterbank. Research on EEG
signals showed a relation between these specific frequency bands,
especially the Alpha band, and auditory attention decoding as
perceived in the human brain. Such preprocessing leverages this
knowledge for better attention decoding and mitigates irrelevant
information that may deteriorate performance.

Thirdly, and most importantly, we deviate from the
original work by processing only a single audio input
(i.e., single speaker) per iteration rather than dual audio
inputs as in the original work This modification necessitates
adjustments to the neural network architecture to ensure
compatibility between the input shapes. Finally, due to our
distinct data organization strategy, we employ posterior
probability post-processing, as detailed above.

5 Experimental study

5.1 Datasets

To train and test our proposed algorithms, we used two
commonly-used datasets:

5.1.1 KUL dataset
This database comprises sixteen normal hearing subjects. For

each subject, a 64-channel EEG signal was acquired and sampled
to the computer at 8,196 Hz. Each subject was exposed to two
simultaneous speakers and instructed to focus on one while
ignoring the other. The stimuli included two conditions: 1)
Audio filtered with head related transfer function (HRTF) to
emulate sound from 90° to the left and to the right of the head;
and 2) Dichotic presentation, where two speakers were played
simultaneously using earphones, one on each side. This condition
does not have acoustic reflections and is hence denoted “dry.”
Each subject performed 20 trials. The first eight are regular trials,
and the other twelve comprise partial repetitions of the former.
We have, therefore, decided to use only the first eight trials in our
evaluation. Further details about the dataset can be found in Das
et al. (2020).

5.1.2 FAU dataset
Collected from 27 subjects, all native German speakers, the

dataset comprises recordings of individuals exposed to two speech
stimuli simultaneously. Participants were instructed to attend to one
stimulus while ignoring the other. Each subject completed six trials,
each approximately 5 min long, resulting in a total of 30 min of data
per subject. The EEG device consisted of 21 channels, sampled at
2.5 kHz. Further details about this dataset can be found in Kuruvila
et al. (2021).

This study will utilize the original clean audio signals for all
experiments, deferring the exploration of the BLCMV beamformer
outputs to future investigations.

5.2 Results

5.2.1 Competing methods
Various methods for AAD using NN based architectures have

been proposed, as listed in the Introduction. To assess the
performance of our proposed models, we compare them against
previously published methods, as detailed in Table 1 for the
KUL database.

All models considered here share a common input format:
they receive two simultaneous speech stimuli and produce a
single label. However, the specific data arrangement
methodology employed by these works, particularly the cross-
trial scenario, remains unclear and is not explicitly mentioned in
the relevant papers.

5.2.2 Transfer learning approach
Here, we present the experimental results of our transfer

learning-based NN architecture.
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As shown in Table 2, the results obtained using ResNet are
impressive, highlighting the efficacy of ResNet for classification tasks
even with different types of data. However, despite the excellent
results, verifying whether ResNet can generalize the EEG-audio
relationship to unseen examples is essential. As mentioned
earlier, since each subject participates in multiple trials with
breaks between them, and given the rapid changes in the EEG
signal, testing ResNet on examples from unseen trials is crucial to
validate the reliability of the NN.

As depicted in Table 3, the results obtained in the cross-trial data
arrangement show a significant degradation compared to the
original data arrangement (with different segments of the same
trial appearing in both training and test phases). This suggests that
the success of the learning process in the previous data arrangement
may have been attributed to trial overfitting rather than a genuine
connection between the audio and EEG signals. Instead, it appears to
detect specific patterns within each EEG trial. Furthermore, since the
datasets are structured such that each trial corresponds to a specific
label, the NN can classify without necessarily considering the
auditory stimuli.

To further elucidate this problem, we evaluated the proposed
NN performance on a unique KUL data labeling scheme. In this
experiment, each trial was labeled with a distinct number. The high
accuracy achieved by the scheme in this case (exceeding 90% for all
trials) suggests significant overfitting. This implies that the NN
‘recognizes’ the specific trials based on their unique EEG patterns

and corresponding labels rather than the relations between the EEG
and the audio stimuli.

5.2.3 Multi-band attention neural network (MB
Att. NN)

This subsection presents the results of the MB Att. NN. We will
compare our findings to linear-based algorithms (O’Sullivan et al.,
2015; Geirnaert et al., 2020; Kuruvila et al., 2021,) as these methods
are not based on learning mechanisms and hence do not suffer from
trial overfitting.

As depicted in Tables 4 and 5, the neural network demonstrates
the ability to decode the attended speaker for both datasets
accurately. As anticipated, accuracy decreases for shorter time
frames, particularly evident in the KUL dataset, as the network’s
ability to focus on shorter patterns becomes more challenging. By
analyzing the results obtained for both databases, it is evident that
our proposed MB Att. NN NN model outperforms the linear
methods. This is consistent with the known limitations of the
latter models in capturing the complexities of short-frame data.

We stress that these results were obtained using the new and
challenging data organization in which only a single speaker was
available to the network during training, potentially circumventing
the same-trial overfitting.

The comparison between the results obtained by baseline NN-
based methods in Table 1 and the results achieved by the proposed
algorithm in Table 4 reveals noteworthy findings. Despite being
evaluated in a challenging experimental setup, the performance of
the proposed MB Att. NN is comparable to that of (Cai et al., 2022;
Su et al., 2021) and slightly inferior to that of (Pallenberg et al., 2023).

6 Informed source extraction system

AAD algorithms require two separate audio sources, as
proposed in this manuscript; however, in real-life scenarios, we

TABLE 1 Auditory attention detection accuracy (%) of three NN-based
architectures for the KUL dataset.

Time frame (s)

0.5 1 2

Cai et al. (2022) - 83.6 86.9

Su et al. (2021) 84.3 86.5 88.3

Pallenberg et al. (2023) 92.8 92.8 93.0

TABLE 2 Auditory attention detection accuracy (%) using pre-trained
ResNet for various time-frame sizes.

Time frame (s)

0.5 1 2 3 4 5

KUL Dataset 87.1 88.2 82.4 88.7 87.9 88.3

FAU Dataset 90.5 90.9 91.9 92.6 91.2 94.5

TABLE 3 Auditory attention detection accuracy (%) using pre-trained
ResNet for cross-trial approach, over different time-frame sizes.

Time frame (s)

0.5 1 2 3 4 5

KUL Dataset 50.7 45.7 52.5 45.1 51.8 51.3

FAU Dataset 54.1 53.7 48.5 34.3 49.5 48.1

TABLE 4 Auditory attention detection accuracy (%) using the proposed MB
Att. NN, compared for different time-frame lengths using the KUL dataset.

Time frame (s)

0.5 1 2

Linear: O’Sullivan et al. (2015) — 58.1 61.3

Linear: Geirnaert et al. (2020) — 80.0 —

MB Att. NN 76.8 85.4 92.7

TABLE 5 Auditory attention detection accuracy (%) using the proposed
multi-band attention NN, compared for different time-frame length, using
FAU dataset.

Time frame (s)

0.5 1 2

Linear: Kuruvila et al. (2021) — — 79.8

MB Att. NN 81.7 86.9 82.4
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typically only have access to a mixture of these sources. Therefore, it
is necessary to first apply a speaker separation algorithm, preferably
one that preserves spatial information, particularly binaural cues, in
the context of hearing aids.

In this section, we provide a system perspective in which the
AAD algorithm is incorporated into a beamformer design to
determine the attended speaker, directing only this speaker to the
ears of the hearing aid user. We propose utilizing the BLCMV
beamformer (Hadad et al., 2012; Hadad et al., 2016) as the backbone
for the separation algorithm, capable of separating the two sources
while preserving their binaural cues.

6.1 Signal model

We discuss the problem of binaural hearing aids mounted on
the left and right ears. Each device is equipped with a microphone
array, featuring ML microphones in the left ear and MR

microphones in the right ear. Therefore, the total number of
microphones isM � ML +MR. We can formulate the scenario in
the STFT domain:

z t, k( ) � s1 t, k( ) + s2 t, k( ) + n t, k( ), (8)
with t the time frame index and k the frequency index. The vector of
received microphone signals is denoted z(t, k), s1(t, k) and s2(t, k)
are the two sources of interest in the scene as received by the
microphones, and n(t, k) is the additive noise. Define

a k( ) � aL,1 k( ) . . . aL,ML k( ), aR,1 k( ), . . . , aR,MR k( )[ ]⊤
b k( ) � bL,1 k( ) . . . bL,ML k( ), bR,1 k( ), . . . , bR,MR k( )[ ]⊤

the acoustic transfer functions (ATFs) between the uttered
signals s1(t, k), s2(t, k), and the microphone array, respectively.
Then we can rewrite (Equation 8) as:

z t, k( ) � a k( )s1 t, k( ) + b k( )s2 t, k( ) + n t, k( ), (9)
where

z t, k( ) � zL,1 t, k( ) . . . zL,ML t, k( ), zR,1 t, k( ), . . . , zR,MR t, k( )[ ]⊤
is the measurement vector comprising all the left and right
microphone signals. We assume the ATFs, a(k) and b(k), to be
time-invariant, or at most slowly-time varying, and therefore omit
the time index. For brevity, we will omit the time and frequency
index hereinafter.

To facilitate the development of the binaural beamformer, we
reformulate (Equation 9) w.r.t. to the parameters of the left and right
arrays. Let Mr,Ml be the indexes of the reference microphones on
the right and left arrays, respectively, and aMl, aMr, bMl, bMr the
corresponding ATFs. Thus, the measurement vector in (11) can be
reexpressed in terms of both the left and right reference
microphones.

z � a
aMl

s1aMl( ) + b
bMl

s2bMl( ) + n � a
aMr

s1aMr( ) + b
bMr

s2bMr( ) + n.

We are now ready to define the relative transfer functions
(RTFs) as the ATF normalized by the left and right reference
microphone, respectively:

~al � a
aMl

, ~ar � a
aMr

, ~bl � b
bMl

, ~br � b
bMr

,

and the respective normalized signals:

~s1,l � s1aMl
, ~s1,r � s1aMr, ~s2,l � s2aMl

, ~s2,r � s2aMr.

Finally, the measured microphone signals can be explicitly
rewritten in terms of the left and right RTFs:

z � ~al~s1,l + ~bl~s2,l + n � ~ar~s2,r + ~br~s2,r + n. (10)
We stress that in (Equation 10), the same measurement vector

z(t, k) is written in terms of both the left and right RTFs, thus
enabling the development of the BLCMV beamformer that preserves
the binaural cues of the desired and interference sources (Hadad
et al., 2012; Hadad et al., 2016).

6.2 The binaural linearly constrained
minimum variance (BLCMV) beamformer

The BLCMV beamformer extends the regular LCMV
beamformer (Markovich et al., 2009) to the binaural case. It is
designed with two sets of linear constraints. The first constraint,
applied to the desired source, is a distortionless response:

wH
l ~al � 1, wH

r ~ar � 1. (11)

The second constraint set, applied to the interferer source, is
responsible for its attenuation:

wH
l
~bl � η,wH

r
~br � η (12)

with η the attenuation factor of the interferer satisfying
0< η≪ 1. Applying this dual constraint set also guarantees the
preservation of the binaural cues of both the desired and
interference sources when introduced to both hearing aid devices.
Based on the constraints on (Equations 11, 12), the left and right
RTF constraint matrices can now be defined:

~Cl � ~al ~bl[ ], ~Cr � ~ar ~br[ ],
and the corresponding response vectors for extracting source

#1 are given by:
g1l � 1, η[ ]⊤, g1r � 1, η[ ]⊤. (13)

Alternatively, we can define the response vectors for extracting
s2 rather than s1 as:

g2l � η, 1[ ]⊤, g2r � η, 1[ ]⊤. (14)

The left and right BLCMV weights are given by following
constrained optimization using either the left or right
response vector:

w1/2
l � argmin

wl

wH
l RNwl{ } s.t. ~C

H

l wl � g1/2l ,

w1/2
r � argmin

wr

wH
r RNwr{ } s.t. ~C

H

r wr � g1/2r

with RN � E{nnH}. The closed-form solution of the BLCMV
beamformer is given by Hadad et al. (2016):
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w1/2
l � R−1

N
~Cl

~C
H

l R
−1
N C̃l[ ]−1g1/2l (15)

w1/2
r � R−1

N C̃r
~C
H

r R
−1
N C̃r[ ]−1g1/2r . (16)

The binaural outputs are then given by:

ŝ1,l � w1
l( )Hz, ŝ1,r � w1

r( )Hz, (17)
ŝ2,l � w2

l( )Hz, ŝ2,r � w2
r( )Hz (18)

Depending on the definitions of gl and gr (either (Equation 13)
or Equation 14). The two alternative implementations extract either
source s1 or source s2.

6.3 The system perspective

The implementation of (B)LCMV beamformer necessitates a
control mechanism to determine the speakers’ activity patterns. In
Chazan et al. (2018), an NN-based control mechanism is proposed to
determine the activities of the speakers by classifying speech segments
into three classes: 1) no active speaker, 2) only one speaker is active, and

3)more than one speaker is active. During class #0, the noise correlation
matrix RN can be estimated; during class #1, the RTF of the active
speaker is determined, and during class #2, no estimation takes place.
The BLCMV beamformer is illustrated in Figure 2

While such a system is sufficient for implementing the
beamformer in (Equation 15, 16), it remains to determine which
of the speakers is desired and which is the interferer, i.e., to select
between the two alternatives of gl and gr, or in other words, selecting
between (Equation 13) and (Equation 14). As explained below, this
issue can be resolved by implementing an AAD.

In our prospective integrated BLCMV-AAD system, the AAD
algorithm identifies the user’s attended speaker, acting on the
separated audio streams generated by the beamformer and the
EEG channels.

As illustrated in Figure 3, the separated streams are fed into the
AAD for identifying the attended speaker, which is then presented to
the user. The input to the AADmodule will be the EEG signal alongside
either separated signal. The AADwill determine the signal of interest in
the acoustic scene by comparing the classification results of proposed
scheme (see Equation 7). The attenuation factor η can take two values.
For determining the attended speaker, it is preferred to set η � 0, so that
only the candidate speech signal is presented to the AAD. For rendering
the acoustic scene, it is recommended to set η to a higher value, typically
η ≈ 0.1, to ensure that the binaural cues of the unattended speaker are
preserved, although it is significantly attenuated.

In the current manuscript, we stress that only the original
uttered signals are used as inputs, namely, s1(t), s2(t). In the
envisioned system, we will feed the AAD with the two alternative
outputs of the BLCMV beamformer either ŝ1,l(t), ŝ2,l(t) (or
ŝ1,r(t), ŝ2,r(t)), as defined in (Equations 18, 17), and determine
which of them is the attended speaker (see Section 4.5).1

7 Discussion and conclusion

Decoding attention in real-life scenarios remains a challenging
and active research area. Although the analysis of cortical signals
holds promise for addressing this challenge, practical solutions are
still unavailable. Linear models have traditionally shown high
decoding accuracy over long time frames. However, their
performance tends to suffer in real-time scenarios, especially with
short utterances, resulting in reduced reliability. In recent years, the
emergence of nonlinear DNNs has opened up new avenues for
tackling this issue, offering various architectures to explore.

Accurate AAD holds particular significance for beamformer
guidance tasks, where the objective is to identify the user’s desired
speaker in multiple speaker scenarios. By decoding auditory attention
from the user’s EEG signal, such an algorithm can provide real-time
feedback regarding the target speaker. This information can then be
used to direct the beamformer (in our case, the BLCMV beamformer
(Hadad et al., 2012; Hadad et al., 2016) to provide the desired audio
stream to the hearing device wearer. Furthermore, such an AAD

FIGURE 2
The block diagram of the BLCMV beamformer.

1 Validation of such a system will require online implementation of the

separation algorithm and AAD for presenting the correct speech utterance

to wearer of the EEG sensors, and is left for a future implementation study.
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algorithm can be integratedwith the beamformer to create a closed-loop
system. The AAD module could continuously identify the desired
speaker, informing the beamformer to adjust the audio stream
accordingly. This real-time feedback loop would facilitate the user’s
ability to focus on the target speaker by enhancing the desired audio
stream and suppressing interfering speech. Nevertheless, in this
contribution, we only used the original attended and unattended
speech signal in the experimental study. Substituting these signals
with the outputs of the BLCMV beamformer is left for a future
study, as it requires significant implementation efforts. We still
believe that the proposed system perspective elucidates the potential
of AAD-controlled hearing aid algorithms.

In this paper, we have proposed two DNN-based AADmethods.
The first is based on transfer learning. We propose leveraging the
power of ResNet architecture, which is known for its robustness in
image-processing tasks. A thorough analysis indicates that this
method demonstrates favorable outcomes when segments from
the same trial are available for both training and testing phases
(same-trial scenario). However, performance declines significantly
in the cross-trial scenario. These findings are in line with the finding
in Rotaru et al. (2024), which recognizes the biases introduced by
EEG-based auditory attention decoder (AAD).

We then proposed a new method, adopted from Li et al. (2021),
with several critical architectural modifications, e.g., using an attention
mechanism to extract the relations between the EEG and audio
embeddings. Moreover, recognizing the risk of overfitting related to
assigning unique labels to each EEG trial, we implemented a novel data
organization strategy. Under this data structure, the desired and
interfering audio signals are alternately, rather than concurrently,

presented to the NN alongside the EEG signal. While this strategy
effectively addresses challenges associated with the same-trial setup, it is
unable to handle the cross-trial scenario.

Our AAD approaches were extensively tested using two widely-
used datasets, namely, the KUL Das et al. (2020) and Kuruvila et al.
(2021) datasets, and achieved advantageous results compared with
baseline methods, both linear and DNN-based.

While achieving promising results, there is still room for
improvement. Future work will pursue two orthogonal directions.
First, we will implement and analyze the influence of substituting the
original attended and unattended speakers’ signals by the outputs of
the BLCMV beamformer and propose methods for robustifying the
overall integrated system. Next, we aim to tackle more challenging
problems such as cross-trial or even cross-subject learning. This
endeavor is intended to enable the seamless integration of advanced
hearing aids with minimal subject-specific optimization.
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