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Introduction: Motion blur, primarily caused by rapid camera movements,
significantly challenges the robustness of feature point tracking in visual
odometry (VO).

Methods: This paper introduces a robust and efficient approach for motion blur
detection and recovery in blur-prone environments (e.g., with rapid movements
and uneven terrains). Notably, the Inertial Measurement Unit (IMU) is utilized for
motion blur detection, followed by a blur selection and restoration strategy within
the motion frame sequence. It marks a substantial improvement over traditional
visual methods (typically slow and less effective, falling short in meeting VO’s
realtime performance demands). To address the scarcity of datasets catering to
the image blurring challenge in VO, we also present the BlurVO dataset. This
publicly available dataset is richly annotated and encompasses diverse blurred
scenes, providing an ideal environment for motion blur evaluation.
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1 Introduction

Visual Odometry (VO) is pivotal in visual synchronized localization and mapping
(V-SLAM), robotic autonomous navigation, virtual/augmented/mixed reality, etc. (Nistér
et al., 2004). However, motion blur, often occurring in dynamic environments such as when
a wheeled robot traverses bumpy roads, poses significant challenges to VO by impairing the
accuracy of feature point matching between frames, as presented in Figure 1. The primary
challenge in VO under such conditions is the reduction of tracking failures due to motion
blur. Moreover, there is a notable scarcity of public datasets explicitly representing motion
blur scenarios in VO.

To enhance VO robustness, we introduce an efficient approach for filtering and
restoring blurred frames in blur-prone environments, such as rapid movements and
uneven terrains. Particularly, to assess motion blur in images, our approach leverages
IMU (Inertial Measurement Unit) data to provide a direct and efficient means of blur
estimation. To further restore the blurry sequence, an empirical debluring strategy is
proposed based on adjacent frame filtering and fusion. It should be noted that involving
IMU in VO is not unprecedented. For instance, VI-DSO (Von Stumberg et al., 2018) and
ORB-SLAM3 Monocular Inertial (Campos et al., 2021) use IMU data for pose estimation.
However, these methods fall short of reducing tracking failures in severe motion blur
scenarios. Our approach, in contrast, effectively utilizes IMU data to detect and restore
motion blur (aka. blurry sequences), thus improving the initialization speed and overall
robustness of VO. Notably, our method is compatible with various IMU sensors, enhancing
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its applicability. For the lack of dataset challenge, we introduce a new
publicly available dataset, BlurVO, for indoor and outdoor motion
blur evaluations in VO. Comprising 12 sequences from various real-
world environments, BlurVO is equipped with data from pre-
calibrated cameras and IMUs, fostering the development of more
robust algorithms for VO in blur-prone scenarios.

Our main contributions are as follows: (1) We introduce a
simple yet efficient approach for motion blur detection and
restoration based on IMU. It marks a substantial improvement
over traditional visual methods in terms of real-time
performance, high-accurate blur estimation and recovery, and
robustness of VO in challenging environments. (2) We introduce

a new dataset, BlurVO, which contains a rich collection of blurry
clips (both frames and corresponding IMU data) from various
environments to promote further research tasks toward the
robustness of VO.

2 Related work

We concisely survey existing VO and blur-related methods,
including blur detection and datasets. For more detailed treatments
of these topics, the compilation by He (He et al., 2020), and
Vankawala (Vankawala et al., 2015) offer a sufficiently good review.

FIGURE 1
Illustration of blur occurring, detecting, and restoring: (A)Motion blur often occurs on obstacles and cornering. (B) The blur trajectories are derived
from the IMU data, and the fuzzy images are screened according to the trajectory length. (C) The image perspective is transformed to the same viewing
angle and stitched for blurry restoration.
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2.1 Visual odometry

Visual odometry methods can be broadly categorized into
classical geometric, deep learning-based, and hybrid methods.
Classical geometric methods: such as those by Davison (Davison,
2003) and Nister et al. (Nistér et al., 2004), and popular
implementations like ORB-SLAM3 (Campos et al., 2021), rely on
feature extraction and matching. Direct methods, including LSD-
SLAM (Engel et al., 2014) and DSO (Von Stumberg et al., 2018),
optimize camera pose based on photometric consistency. However,
these methods often presuppose smooth camera motion and struggle
with motion blur. Deep learning-based methods: initiated by Roberts
(Roberts et al., 2008), aim for end-to-end pose estimation but face
challenges in real-time processing. Hybrid methods: combining
classical and deep learning approaches, seek to improve robustness
but still grapple with motion blur. Our work diverges by leveraging
sharp frames, employing a deblurring network selectively, and
enhancing VO robustness in blur-prone environments. Note that
VIO (Visual Inertial Odometry) combines image and IMU data, with
notable examples like OKVIS (Leutenegger et al., 2013) and VINS-
Mono (Qin et al., 2018). These methods achieve high accuracy but
often require high-precision IMUs and do not specifically address
motion blur. Our approach uniquely utilizes IMU data for detecting
and recovering from motion blur, thereby enhancing VO
performance with a broader range of IMU sensors.

2.2 Blur detection and restoration

Motion blur usually degrades the edges of objects in an image.
Traditional methods for detecting blur usually extract features such
as gradient and frequency to describe the changes in edges (Chen
et al., 2013). Yi and Eramian (Yi and Eramian, 2016) designed a
sharpness metric based on local binary patterns and used it to
separate an image’s in-focus and out-of-focus areas. Tang et al.
(Tang et al., 2017) designed a logarithmic mean spectral residual
metric to obtain a rough blur map. Then, they proposed an iterative
update mechanism to refine the blur map from coarse to fine based
on the intrinsic correlation of similar adjacent image regions.
Although traditional methods have achieved great success in blur
detection, they are only effective for images with simple structures
and are not robust enough for complex scenes. Due to their high-
level feature extraction and learning capabilities, deep CNN-based
methods have refreshed the records of many computer vision tasks.
Purohit et al. (Purohit et al., 2018) proposed to train two sub-
networks to learn global context and local features, respectively, and
then aggregate the pixel-level probabilities estimated by the two
networks and feed them into the MRF-based blur region
segmentation framework. Zhao et al. (Zhao et al., 2023) proposed
a heterogeneous distillation mechanism to generate blur response
maps by combining local feature representation and global content
perception. However, these methods are highly complex and
challenging to process in real-time. Our method uses IMU data
as prior information to calculate the length of each image blur
kernel. It uses these lengths to judge whether the image is blurry.
This method balances efficiency, robustness, and applicability.

Recent CNN-based deblurring networks (e.g., Kupyn (Kupyn
et al., 2019) and Cho (Cho et al., 2021)) focus only on single-frame

restoration and have difficulty achieving real-time performance for
motion blur over frame sequences. Thanks to the prior information
(frame category) from the IMU, our proposed strategy can select
appropriate operations for repair (deletion, retention, and
restoration) for different blurry frames.

2.3 SLAM dataset

In terms of blur-related datasets, as summarized in Table 1.
Most existing SLAM datasets focus on autonomous driving (Geiger
et al., 2013) (Wen et al., 2020) (Ligocki et al., 2020) or drones (Burri
et al., 2016). Some datasets are targeted at ground robots.
OpenLORIS (Shi et al., 2020) is collected in indoor environments
by a wheeled robot designed for visual SLAM, where LiDAR SLAM
is used to generate ground truth. In some cases, LiDAR SLAM can
have larger errors than visual SLAM, making the ground truth
unreliable. TUM RGBD (Sturm et al., 2012) partially uses robots as
an acquisition platform but only contains RGB and depth cameras.
Similar datasets include UTIAS MultiRobot (Leung et al., 2011),
PanoraMIS (Benseddik et al., 2020), and M2DGR (Yin et al., 2021).
Unfortunately, the above datasets do not specifically record scenes of
violent robot movements. Even if some have relevant scenes, the
number is minimal and insufficient to support dedicated motion
blur research. Our BlurVO dataset is designed for comprehensive
motion blur evaluation, covering different types and scenes of
motion blur, filling a major gap in current research.

3 Our method

This part aims to detect and restore the motion blur sequence
that affects VO robustness and V-SLAM operation. As presented in
Figure 2, our method comprises two primary components: Motion
Blur Detection and Motion Blur Recovery, aiming to detect and
correct blurred frames in VO through IMU data analysis.

3.1 Motion blur detection

3.1.1 Blurry Categories
As detailed in Figure 2, we assess the blurry degree of each frame

based on the IMU data corresponding to the image sequences. Built
on that, the frames are divided into three categories: (1) Removable:
Over-blurred frames, will be dropped directly. (2) Sharp: Qualified
frames, will be kept without any changes. (3) Repairable: Slight-
blurred frames, will be restored. The reason for dividing these
categories is that the quality (640*480) and quantity (25 frames/
second) of the blurred frames to be repaired are relatively large,
which requires a lot of edge computing resources and makes it
difficult to achieve real-time results. In addition, the effect of
repairing overly blurred frames is limited, and it is impractical to
repair every frame in the sequence.

3.1.2 Blurry Detection
In videos recorded by robots, image blur is mainly generated by

camera shake. Our IMU-based method calculates the effect of
camera shake on the spatial movement distance of image points
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to determine the degree of image blur. The intuitive understanding
is: let A′ represent a point on the image, and the movement of A′
affected by camera movement (yaw, roll, and pitch) can be routinely
collected from the IMU. We call the A′ movement trajectory the
motion blur trajectory. Then, if the motion blur trajectory length is
more significant than 1/50 of the frame width, the frame is roughly
classified as “Blurred”. Otherwise, we regard it as “Sharp”. According
to the trajectory deviation in the frame sequence, the ”Blurred”
frames are subdivided into “Removable” and “Repairable”.

In a frame sequence, adjacent blurry frames record the same
scene, so the contents of these frames are very similar. It will take
much time if all these frames are deblurred using a neural network.
So, we selectively process some keyframes through the blur network
to improve repair efficiency. These keyframes are marked as
“Repairable”, and the intermediate frames between these key
frames are generated by perspective transformation and image
stitching. The blurred frames between these keyframes are
considered “Removable” and deleted uniformly. Our method uses
IMU data to track the position of point A′ on each image and uses

position differences to determine frame similarity. We define the
similarity criterion based on a displacement distance of less than
50 pixels. Specifically, the first blurry frame after a clear frame is
marked as “Repairable”. Subsequent “Repairable” frames are
identified based on their relative displacement with the frame. If
no frame within a range of ten frames has a displacement distance of
more than 50 pixels, the 10th frame is designated as “Repairable”.
This section further details calculating the position of point A′ using
IMU data and studies the impact of camera translation and rotation
on the transformation of A′. In the case of camera translation only,
the Equation 1 applies.

Pt2 � Pt1 + T
Zt1At1′ � KPt1

Zt2At2′ � KPt2

. (1)

where Pt is the posture of the camera at time t, At′ is the pixel
position of the projection of point A on the image in space at time t,
and Zt is the depth distance between point A and the camera at time
t, T and K are the motion translation and camera intrinsic matrix,

TABLE 1 Comparison of VO-related datasets.

Dataset Environment Platform IMU Motion blur

KITTI (Geiger et al., 2013) Urban Car Yes No

EUROC (Burri et al., 2016) Indoors UAV Yes No

UZH-FPV (Delmerico et al., 2019) In/Outdoors UAV Yes No

TUM VI (Schubert et al., 2018) In/Outdoors Hand-Held Yes No

NCLT (Carlevaris-Bianco et al., 2016) In/Outdoors Ground Robot Yes No

OPENLORIS (Shi et al., 2020) Indoors Ground Robot No No

M2DGR (Yin et al., 2021) Indoors Ground Robot Yes No

Our dataset Indoors Ground Robot Yes Yes

FIGURE 2
Our method consists of two main parts: Motion Blur Detection (top) and Motion Blur Recovery (down).
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respectively, t1 and t2 are the time when the camera exposure starts
and ends respectively. Since the camera’s exposure time is generally
negligible (tens of milliseconds), the translational displacement of
the camera is minimal during this period. We assume thatZt1 � Zt2,

and calculate the pixel displacement ‖At2′ − At1′ ‖ as KT/Z. This
equation shows that as the point A is located at a deeper position
(Z becomes larger, K and T remain constant, the effect of camera
translation on pixel motion becomes smaller. A real-world analogy

FIGURE 3
Blurry degree estimation based on IMU. Top: A shifting in three camera motions estimated from IMU: Yaw, Roll, and Pitch. Bottom: Estimating A
shifting trajectory (aka. motion blur trajectory) in blurred Yaw, Roll, and Pitch.

FIGURE 4
Image restoration process. The deblurring network processes the “Repairable” image to generate a clear image, performs perspective
transformation, and finally stitches the transformed image and crops the sharp image from it.
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is when driving a car and looking at an obstacle on the side of the
road - the closer this obstacle is to the vehicle, the faster it moves.
Therefore, camera rotation is the main factor that causes
blurry movement.

For rotational motion, as detailed in Figure 3, we use a spherical
coordinate system to redefine A by parameters (r, θ, ϕ). Then, the
projected coordinate (U,V) of A is calculated by Equation 2.

U � fxX

Z
� fx

tan θ

V � fyY

Z
� fy

sin θ tan ϕ

. (2)

where (fx, fy) is the camera’s focal length.
As shown in Figure 3(Bottom), let L denote the long of the

blurred track, Δθ and Δϕ denote the camera rotation angle, the A
shifting (aka. blurry trajectory) is calculated by Equation 3.

ΔU � fx
1

tan θ
− 1
tan θ + Δθ( )( )

ΔV � fy

tan ϕ
1

sin θ
− 1
sin θ + Δθ( )( )

L � ∑n
i�0

��������������
ΔVi( )2 + ΔUi( )2

√( )
. (3)

where n is the number of line segments that make up the blur
trajectory and we introduce a threshold λ of L based on the image’s
resolution. In Section 4, we set λ � 1

50 h, h is the image height in pixels.

3.2 Blurry recovery

We select some keyframes (“Repairable” frames) from the blurry
frames and use SRNDeblurNet (Tao et al., 2018) to repair these
frames. These repaired clear keyframes can be used to generate other
intermediate frames. The generation process is shown in Figure 4.
First, we perform a perspective transformation on these “Repairable”
frames so that two adjacent keyframes can have the same perspective
to facilitate image stitching. Then, the stitched images are cropped to
generate clear intermediate frames, and the blurry frames originally
at these positions in the video are deleted as “Removable” frames.

Here, we detail the restoration and stitching process on
“Repairable” frames. SRNDeblurNet (Tao et al., 2018) is
constructued by Encoder-decoder ResBlock Network. After
deblurring with SRNDeblurNet, we utilize IMU data to determine
the position of identical pixels across different frames in the image
stitching process. Subsequently, we iteratively calculate the homography
matrix to perform a perspective transformation on adjacent frames. To
ensure that the restored frames are continuous with the context, we
predict the pixel position of the center point corresponding to the frame
and use these pixels to determine the cropping position. The
perspective-transformed images are then spliced and cropped.

This approach offers two advantages over traditional methods,
which rely solely on feature point matching to calculate homography
matrices: (1) By basing the process on IMU data, our approach
substantially reduces errors caused by inaccuracies in feature point
matching during image splicing. (2) Utilizing IMU data also allows
us to infer the position of feature points at any given moment
between two frames. This capability enables the generation of
intermediate frames, resulting in a continuous and accurate
frame sequence, something traditional methods cannot achieve.

4 Experiment

In this part, we first introduce the datasets in our experiments
and then evaluate our motion blur detection approach. The
effectiveness of our motion blur restoration method is assessed
with mainstream VIO and VO methods. Limitations of our
approach are finally discussed.

4.1 Datasets

Existing datasets are mainly collected for evaluating VO
methods, and a dedicated dataset for motion blur scenarios is
lacking. While datasets like EuRoC (Burri et al., 2016) contain
partially blurred sequences, the variety and annotation of blur
types are insufficient for comprehensive testing. Thus, we present
BlurVO, a dataset featuring 12 motion blur sequences with four

FIGURE 5
Our ground robot for data collection.
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distinct types (jitter, pitch, roll, and yaw) at varying levels. The
extrinsic parameters between the IMU and the camera were
calibrated using the Kalibr tool (Furgale et al., 2013). The
positions of all the installed equipment are shown in the
Figure 5. A stereo camera and a fisheye camera are used. We use
lidar to scan the surrounding environment to obtain infrared
images, and a consumer-grade IMU is also installed. We use a
laser scanner to track the robot.

To obtain the ground truth of the trajectory, we placed some
small wooden bars as obstacles in the room for data collection. As
shown in the Figure 6, we manipulated the robot through these
obstacles to generate a dataset containing different motion blurs. It
should be noted that it is difficult for a wheeled robot to simulate a
scene with only jitter blur (i.e., the camera only moves without

rotation), so we did not deliberately collect jitter blur scenes. We
generate different scene sequences by permuting and combining
various types of blur. The comparison between BlurVO and EUROC
(Burri et al., 2016) datasets is shown in Table 2.

4.2 Metrics

We benchmarked our method against ORB-SLAM3 and DSO.
For evaluation, we used absolute trajectory error (ATE) and frame
loss percentage (FD) to measure accuracy and robustness. It takes 1 s
for the SRN network to process a 640*480 blurry image. At the same
time, our method cleverly combines traditional techniques and
neural network methods, using SRN to process a small number
of keyframes (Repairable frames) to guide contextual image repair.
So, on average, we only need to use the SRN network to repair one of
the ten blurry images, so our method dramatically improves the
repair efficiency, with an average processing speed of 200 ms. It
should be noted that the time here is only calculated as the time to
process the blurry image. The average speed of processing the entire
sequence on Jetson Nano can reach 30 ms, which fully meets the
robot’s real-time requirements.

4.3 Blur detection comparison

Since it is difficult to find a suitable indicator to judge the
blurriness of an image, in this paper, we define the frames that make
SLAM tracking fail as blurry images and manually annotate the
blurry photos in three sequences. Using these annotations, we tested
the recall and accuracy of different blur detection methods. The
results are shown in Table 3. Our method can identify blurry frames

TABLE 2 Statistics of datasets used in our experiment.

EuRoC (Burri et al.,
2016)

BlurVO

Total Scenes 2 5

Motion Blur Sequences 6 12

Motion Blur Types Shake Pitch, Roll
Yaw, Shake

Camera Resolution 752*480 640*480

Frame Rate (FPS) 20 25

IMU Sampling
Rate (Hz)

200 200

IMU Data Acceleration
Angular Velocity

Acceleration
Angular
Velocity

FIGURE 6
(A) When both robot wheels pass an obstacle simultaneously, pitch blur will occur. (B) A roll blur will occur when only one robot wheel passes an
obstacle. (C) When the robot turns quickly, a yaw blur will occur.
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in the video well and perform targeted repairs. We compared the
IMU-based detection method with the image-based method on the
BlurVO dataset. As shown in Table 4, our method achieved an
accuracy of more than 90% and a recall of 85% in detecting blurry
images, which is superior to the image-based method in terms of
efficiency and effectiveness.

4.4 Overall performance

Our approach significantly improves all metrics on the
BlurVO dataset, especially in ATE and FD reduction. In
challenging blur scenes, our method consistently outperforms
ORB-SLAM3 (Campos et al., 2021) and DSO (Engel et al., 2017),

TABLE 5 Results of different VO and VIO methods on BlurVO dataset.

Dataset:BlurVO Scene_1 Scene_2 Scene_3

ATE FD ATE FD ATE FD

ORB-SLAM3 (Campos et al., 2021)
Monocular (Campos et al., 2021)

2.32 45.9% 2.74 48.7% 3.05 66.7%

DSO (Engel et al., 2017) - 80.5% - 75.6% - 82.1%

ORB-SLAM3 (Campos et al., 2021)
Monocular Inertial (Campos et al., 2021)

2.41 52.3% 2.35 51.3% 2.74 50.7%

Proposed 0.12 21.7% 0.19 5.7% 0.11 22.7%

Values in bold in the table indicate that the data corresponds to the best method.

TABLE 6 Results of different methods on EuRoC (Burri et al., 2016) dataset.

Dataset:EuRoC (Burri et al., 2016) MH 04 MH 05

ATE FD ATE FD

ORB-SLAM3 (Campos et al., 2021)
Monocular (Campos et al., 2021)

0.1494 0.20% 0.0656 0%

DSO (Engel et al., 2017) 0.1810 0% 0.1064 0%

ORB-SLAM3 (Campos et al., 2021)
Monocular Inertial (Campos et al., 2021)

0.1276 8.62% 0.0643 13.57%

Proposed 0.1441 0% 0.0466 0.45%

Values in bold in the table indicate that the data corresponds to the best method.

TABLE 4 Results of different methods on different blur segments in BlurVO dataset.

Dataset BlurVO Scene_1 Scene_2 Scene_3

Precision Recall Precision Recall Precision Recall

Image-based (Kim et al., 2018) 92.3% 88.9% 95.7% 73.9% 92.0% 81.8%

Proposed 96.2% 96.2% 91.9% 86.8% 97.0% 97.4%

Values in bold in the table indicate that the data corresponds to the best method.

TABLE 3 Results of different methods for blur detection on BlurVO.

Dataset:BlurVO Pitch Roll Yaw

Pitch_1 Pitch_2 Pitch_3 Roll_1 Roll_2 Roll_3 Roll_4 Yaw_1 Yaw_2 Yaw_3

ORB-SLAM3
Monocular (Campos et al., 2021)

- 29.5% 0% 69.7% 55.0% 0% - 47.5% 0% 88.0%

DSO (Engel et al., 2017) - 90.5% - 10.6% 23.9% 17.0% 30.0% 89.5% - -

ORB-SLAM3 (Campos et al., 2021)
Monocular Inertial (Campos et al.,

2021)

74.5% 0% 14.5% 49.5% 38.0% 0% 40.0% 49.5% 20.0% -

Proposed 10.9% 0% 0% 19.5% 12.0% 0% 33.5% 11.1% 0% 0%
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demonstrating its effectiveness in handling motion blur. The
detailed FD results of different methods under different BlurVO
scenarios (Roll, Pitch, Yaw) are shown in Table 4. On the BlurVO
data set, the initialization success rate of ORB-SLAM3 (Campos
et al., 2021) and DSO (Campos et al., 2021) is meager, causing
them to fail to initialize successfully. Although ORB-SLAM3
Monocular Inertial (Campos et al., 2021) combines IMU data to
improve accuracy, it still does not reduce its dependence on
images, so they do not improve the robustness much. Unlike this,
our method makes good use of IMU data to restore blurred
images and successfully enhances the robustness of VO.
Excellent results are achieved in Pitch and Yaw, the two most
common types of motion blur. An overall comparison of these
methods on BlurVO and EuRoC (Burri et al., 2016) is shown in
Table 5, 6. In BlurVO, DSO (Campos et al., 2021) has the worst
robustness, so we cannot effectively measure the accuracy of
DSO (Campos et al., 2021) on BlurVO through experiments, and
the accuracy of ORB-SLAM3 (Campos et al., 2021) is also
interfered with by blurred images. Our method effectively
eliminates these interferences, thereby improving the
accuracy. On the EuRoC (Burri et al., 2016) dataset, since
there is not much motion blur, the improvement of our
method is not apparent. ORB-SLAM3 monocular inertial
(Campos et al., 2021) has high requirements for the quality of
IMU data and images, which may lead to tracking failure at
some nodes.

5 Conclusion

This paper presents a novel and practical approach to
enhance VO in motion blur scenarios. Our method uniquely
leverages an inertial neural network to analyze IMU data,
enabling the detection of various types of motion blur with
high precision. This approach facilitates the intelligent
recovery of blurred sequences, thereby significantly improving
the robustness and reliability of VO. Furthermore, we introduce
BlurVO, a comprehensive motion blur dataset designed for VO
research. Future research focuses on optimizing the inertial
neural network and exploring the integration of our method
with VO and VIO systems, expanding the scope and applicability
of robust VO solutions.
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