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Recent research advances in deep neural network (DNN)-based beamformers have
shown great promise for speech enhancement under adverse acoustic conditions.
Different network architectures and input features have been explored in estimating
beamforming weights. In this paper, we propose a deep beamformer based on an
efficient convolutional recurrent network (CRN) trained with a novel ARray
RespOnse-aWare (ARROW) loss function. The ARROW loss exploits the array
responses of the target and interferer by using the ground truth relative transfer
functions (RTFs). The DNN-based beamforming system, trained with ARROW loss
through supervised learning, is able to perform speech enhancement and speaker
localization jointly. Experimental results have shown that the proposed deep
beamformer, trained with the linearly weighted scale-invariant source-to-noise
ratio (SI-SNR) and ARROW loss functions, achieves superior performance in
speech enhancement and speaker localization compared to two baselines.
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1 Introduction

Speech enhancement (SE) (Zheng et al., 2023) aims at extracting the clean speech
signals from the noisy mixture, which is essential for various applications such as hands-free
communication, hearing aids, teleconferencing, etc. However, under adverse acoustic
conditions such as reverberation and interference, the enhancement performance can
be significantly degraded. Thanks to the advent of deep neural network (DNN) technology,
learning-based monaural SE algorithms (Valin, 2018)– (Schröter et al., 2022) have emerged
with great promise in noise reduction.

DNN-based beamformers can be divided into two categories. One category is to
integrate the DNN with a beamformer, referred to in this study as the two-stage weight
estimation approach (Heymann et al., 2015; Nakatani et al., 2017)– (Boeddeker et al., 2017;
Boeddeker et al., 2018). In the first stage, the spatial covariance matrices (SCM) of speech
and noise signals are computed through time-frequency (T-F) masking estimated by a
DNN. The computed SCMs are then used in the second stage to compute array weights
according to various optimal beamforming design criteria (Capon, 1969)– (Warsitz and
Haeb-Umbach, 2007; Souden et al., 2010). However, numerical instability may arise if
matrix inversion is required. To mitigate this problem, an All Deep Learning MVDR (ADL-
MVDR) network is proposed in (Zhang et al., 2021), where the matrix operations are
replaced by two recurrent neural networks (RNNs). Another category (Xu et al., 2021)
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attempts to estimate array weights directly through the DNN. Many
DNN architectures have been suggested for estimating optimal filter
weights, e.g., the multiple-in-multiple-out (MIMO) U-net structure
(Ren et al., 2021) and the complex-valued spatial autoencoder
(COSPA) structure (Halimeh and Kellermann, 2022). Several
input features that carry spatio-spectral information for weight
estimation have also been investigated (Xiao et al., 2016a; Xiao
et al., 2016b)– (Li et al., 2022; Liu et al., 2022). However, these
learning-based methods focus only on speech enhancement and do
not consider localization issues.

Chen et al. (Chen et al., 2022) integrate an auxiliary localization
module into MIMO-Deep Complex Convolution Recurrent
network (MIMO-DCCRN) to perform speech enhancement and
localization jointly. The signal processing-based localization module
(SPLM) and the neural localization module (NLM) are compared
under different conditions. However, both localization modules
require grid search. A localization error may occur if the speaker
is not located at one of the preselected grid points.

In this study, we propose a deep beamformer capable of jointly
performing speech enhancement and speaker localization. We
believe that addressing speech enhancement together with
speaker localization provides mutually beneficial information
from an array signal processing perspective. The system is based
on a convolutional recurrent network (CRN) (Braun et al., 2021).
Instead of using an auxiliary module NLM as in (Chen et al., 2022),
we train the DNN with a loss function of weighted objectives
including a scale-invariant source-to-noise ratio (SI-SNR) and an
array response-aware (ARROW) loss. From the point of view of
array signal processing (Stoica and Moses, 2005), the ARROW loss
adopts the ground truth relative transfer functions (RTFs) of the
target speaker and interferer for better enhancement and
localization performance. In particular, the weighting parameters
used in the ARROW loss function are thoroughly examined from
the perspectives of enhancement and localization. The main
contributions of this paper can be summarized as follows.

1) We present a combination of SI-SNR and ARROW loss
functions designed for multichannel speech enhancement
and speaker localization.

2) We investigate the impact of that the weighting parameters in
the proposed loss function on speech enhancement and
speaker localization.

3) We show that the introduction of the ground truth RTFs
improves the performance and the robustness of localization in
the presence of unseen room impulse responses (RIRs).

The remainder of this paper is organized as follows. In Section 2,
the problem formulation and the signal model are introduced. In
Section 3, the proposed method is presented in detail. The
experimental setup and results are described in Section 4. The
paper is concluded in Section 5.

2 Problem formulation and signal
model

Consider an array of M microphones receiving speech signal
and noise signal from a farfield speaker and an interferer. The noisy

signal Y ∈ CM×1 captured by the microphone array can be written in
the short-time Fourier transform (STFT) domain as

Y l, f( ) � Rs f( )S l, f( ) + Rn f( )N l, f( ) + v l, f( ), (1)
where S(l, f) and N(l, f) denote the target speech signal and the
interferer corresponding to the frequency bin index f and the time
frame index l, Rs ∈ CM×1 and Rn ∈ CM×1 denote the relative transfer
functions (RTFs) associated with the target speaker and the
interferer, respectively. v ∈ CM×1 denotes the noise term
comprising diffuse noise such as late reverberation.

We seek to enhance the fgsignal Ŝ by using a filter-and-sum
beamformer with array weights, W ∈ CM×1:

Ŝ l, f( ) � WH l, f( )Y l, f( ), (2)
where superscript “H’’ denotes the conjugate-transpose operator.

3 Proposed system

In this section, we describe a deep beamformer (DB) that is
capable of performing jointly the enhancement and localization
tasks. Figure 1 shows the DB system diagram, where a DNN is used
to directly estimate the beamforming weights for subsequent
enhancement and localization. In the training phase (indicated by
the dashed blue box), the ground truth RTFs, the time-frequency
domain target speaker signal, and the time-domain target speech
received by the reference microphone are used to compute the
weighted loss, as detailed next.

3.1 Loss function

To perform jointly learning-based enhancement and
localization, we propose an ARray RespOnse-aWare (ARROW)
loss function for training the DNN unit in Figure 1. We motivate
the development of the ARROW by starting with the scale-invariant
source-to-noise ratio (SI-SNR) (Luo and Mesgarani, 2019) loss
function for the multichannel speech enhancement:

LSI-SNR � -10 log10
ηs
���� ����22
ŝ-ηs
���� ����22

, η � 〈ŝ, s〉
s‖ ‖2,2

(3)

where ŝ, s{ } ∈ R1×T are the vectors of the inverse STFTs of
Ŝ(l, f), S(l, f){ }, respectively, 〈·〉 denotes the inner product
between two vectors, and ‖·‖2 is the Euclidean norm. Using the
array signal model in Equation 1, the equivalent optimal solution of
the SI-SNR in the frequency domain can be written as

Ŝ l, f( ) � WH l, f( )Y l, f( )
� WH l, f( ) Rs f( )S l, f( ) + Rn f( )N l, f( ) + v l, f( )[ ]
� ηS l, f( )0 WH l, f( )Rs f( )-η[ ]S l, f( )
+WH l, f( ) Rn f( )N l, f( ) + v l, f( )[ ] � 0

,

(4)
Thus, minimizing the SI-SNR loss would only partially fulfill the

distortionless constraint

WH l, f( )Rs f( ) ≈ η, (5)
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with some of the effort going into reducing the interference
and noise.

To further improve the enhancement performance and to
provide localization information, an ARray RespOnse-aWare
(ARROW) loss function is introduced as follows:

LARROW-α :� α
1

LtpF
∑
if

I l( ) Im WH l, f( )Rs f( ){ }∣∣∣∣ ∣∣∣∣[ ]

+ 1-α( ) 1
LtaF

∑
lf

[ 1-I l( )( ) Re WH l, f( )Rn f( ){ }( )(
+(Im WH l, f( )Rn f( ){ }∣∣∣∣)] (6)

where Re{·} and Im{·} denote the real and imaginary part operators,
I(l) ∈ 0, 1{ } is the indicator of a voice activity detector (VAD),
α ∈ [0, 1] is a weighting factor that weights the target and
interference terms, Ltp and Lta are the number of frames
corresponding to the target speech present and absent periods, and
F is the number of frequency bins. In the VADmodule, time-frequency
bins with a signal-to-interference ratio (SIR) greater than 0 dB are
considered speaker active bins (α � 1), while those with an SIR below
this threshold are considered speaker silent bins (α � 0). Note that the
first term of the loss function in Equation 5 is intended to “clean up” the
imaginary part of the distortionless constraint in Equation 6, while the
second term is intended to further reduce the array response associated
with the unwanted directional interference. A natural question is why
the distortionless constraint is not directly incorporated into the loss
function in Equation 7. We found it difficult to train our DNN model
with this setting due to the scaling problem and some potential conflicts
with the SI-SNR loss.

To formulate the complete loss function, we combine the SI-
SNR and ARROW loss functions with linear weighting

L � βLSI-SNR + 1-β( )LARROW-α, (7)
where the weighting factor β ∈ [0, 1].

3.2 Localization

For localization of the target speaker, the following beampattern
function is defined:

P θ( ) � 1
LtpF

∑
f

∑
l

I l( ) WH l, f( )aθ f( )∣∣∣∣ ∣∣∣∣, (8)

where W(l, f) is the array weights obtained from DNN, aθ denotes
the free-field plane-wave steering vector at the angle θ which ranges
from 30° to 150° in 15° increments and Ltp are the number of frames
corresponding to the speech present periods. Note that we only
consider the time when the target speaker is active (I(l) = 1).

It follows that the direction of arrival (DOA) of the speaker can
be obtained by finding the peak of the beampattern function:

θ̂s � argmax
θ

P θ( ), (9)

3.3 Deep beamforming network (DBnet)

The DNN unit in Figure 1 is implemented in a convolutional
recurrent neural network (CRNN) architecture illustrated in
Figure 2, hereafter referred to as the deep beamforming network
(DBnet). The beamformer weights can be estimated directly from
the microphone signals using DBnet. The stacked real and
imaginary parts of the microphone signals are the input data to
the encoder. The decoder layer produces the array weights as output.
In Figure 2, the DBnet structure consists of four symmetric
convolutional and deconvolutional encoder and decoder layers
with a 16-32-64-64 filter. To reduce computational complexity,
the separable convolution (Howard et al., 2017) is chosen for
each convolutional block. Each convolutional block is followed
by a batch normalization and ReLU activation. Tanh activation is
used at the last layer. The 1 × 1 pathway convolutions are used with

FIGURE 1
The proposed deep beamformer. O and indicate the operations of Equation 2, 5. The processing units in the dashed blue box are used only in the
training phase.
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add-skip connections (Braun et al., 2021; Schröter et al., 2022),
which allows for considerable parameter reduction with little
performance degradation. The bottleneck consists of a grouped

linear (GLinear) layer (Schröter et al., 2022). A single 256-unit
GRU layer is used to capture the temporal information. The
proposed DBnet has only 688.32 K parameters and
177.08 MMACs per second. It is worth noting that the proposed
method focuses only on the loss function to improve the
enhancement and localization performance. Consequently, the
model size and computational complexity remain unchanged
during the test phase.

4 Experimental study

The proposed DB system is evaluated through the tasks of
speech enhancement and speaker localization. To see the
robustness of the proposed system to unseen acoustic conditions,
we train our neural network using the simulated RIRs, but test it
using the measured RIRs.

4.1 Datasets

Clean speech utterances are selected from the LibriSpeech
corpus (Panayotov et al., 2015), where the subsets train-other-
500, dev-clean, and test-clean are adopted for training, validation,
and testing. The noise clip used as the directional interferer is
selected from the Microsoft Scalable Noisy Speech Dataset (MS-
SNSD) (Reddy et al., 2019) and the Free Music Archive (FMA)
(Defferrard et al., 2017). In the MS-SNSD dataset, only non-speech
and directional interferences are considered in the data preparation.
These include Air Conditioner, Copy Machine, Munching, Shutting
Door, Squeaky Chair, Typing, Vacuum Cleaner, and Washer Dryer.
Each training and testing signal mixture is prepared in the form of a
6-s clip randomly inserted with a 4-s clean speech clip. The training
and validation sets comprise the signals with signal-to-interference
ratio (SIR) randomly selected between −10 and 15 dB. The testing set

FIGURE 3
Experimental setup for (A) training and (B) testing of the
proposed deep beamformer.

FIGURE 2
The architecture of DBnet.
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consists of noisy signals with SIR = −5, 0, 5, and 10 dB. In addition,
sensor noise is added with signal-to-noise ratio (SNR) = 20, 25, and
30 dB. A four-element uniform linear array (ULA) with an inter-
element spacing of 8 cm is used in the experiment. Reverberant
speech signals are simulated by convolving the clean signals with
RIRs generated by the image source method (Habets, 2010). Various
reverberation times, (T60) = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 s, are used.
As illustrated in Figure 3A, the distance between the target speaker
and interferer is randomly selected in the frontal plane at the ring
sector bounded by radius = 0.75 and 2.1 m. In addition, any two
sources are separated at least 15° apart from each other. The
Multichannel Impulse Response Database (Hadad et al., 2014),
recorded at Bar-Ilan University using an eight-element ULA with
an inter-element spacing of 8 cm for T60 = 0.16 s, 0.36 s, and 0.61 s,
is adopted as the test set. In this study, we use only the RIRs of the
four center microphones to generate the reverberant signals for
testing. As shown in Figure 3B, the target speaker and the interferer
appear randomly in any two of nine angular directions equally
spaced between 30° and 150° in 15° increments. A total of 30,000,
3,000 and 7,200 samples are used for training, validation and testing.

4.2 Baseline methods

The results presented in Ref. (Chen et al., 2022). have shown
that the MIMO DCCRN method can significantly outperform the
single-channel DCCRN (Hu et al., 2020) and MIMO U-net (Ren

et al., 2021) when implemented with SPLM. Therefore, this study
will focus on comparing the MIMO DBnet systems with different
loss functions. Two baselines are used for comparison with the
proposed system. All models are implemented in the DBnet
architecture. The first baseline is the DBnet trained with the SI-
SNR loss. For a fair comparison, a DBnet cascaded with SPLM
(Chen et al., 2022) is used as the second baseline, because SPLM does
not require additional parameters for training. Here, SPLM-9 refers
to the SPLM with nine predefined zones. All datasets are generated
at a sampling rate of 16 kHz. The signals are transformed to the
STFT domain using a 25-mHamming windowwith a 10-m hop size,
and 512-point fast Fourier transform. The Adam optimizer is
utilized in the training phase, with a learning rate of 0.001.

4.3 Enhancement performance evaluation

We use DNSMOS P.835 (Reddy et al., 2022) to evaluate the
speech enhancement performance. Three mean opinion scores
based on P.835 human ratings are used to assess the speech
quality (SIG), background noise quality (BAK), and overall
quality (OVRL). These metrics can be used to
comprehensively investigate the trade-off between noise
reduction and distortion caused by the tunable factors of the
proposed ARROR loss. First, we examine the effects of weighting
β between the SI-SNR loss and the ARROW loss on enhancement
performance. As can be seen in Figure 4, a large β leads to an

FIGURE 4
Enhancement performance for different ß factors to weight SI-SNR and ARROW loss.
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increased overall quality (OVL) and a signal quality (SIG) at the
expense of increased background noise (BAK). Next, we examine
the ARROW loss with different α factors, with a fixed weighting
factor β = 0.5. The results in Figure 5 show that the optimal
enhancement performance is achieved when both weighting
factors are set to 0.5. These results suggest that the target
speech and the interference terms in the loss function are
equally important for speech enhancement.

Next, we compare the enhancement performance of the
proposed system when α � 0.5, β � 0.5 with baselines. The
results in Figure 6 show that the proposed DB system
performs the best in terms of all evaluation indices. Note that
DBnet with SPLM performs worse than the original DBnet. This
is due to the fact that the steering vector used in SPLM is based on
the freefield plane wave model, which can lead to mismatch when
applied to a reverberant environment. In summary, the method
trained with the proposed ARROW loss can lead to much
improved enhancement performance compared to the original
DBnet method, by choosing appropriate weighting factors. In
addition, to further suppress interference, time-frequency
masking can indeed be applied after deep filtering. However,
the trade-off between distortion and noise reduction needs to be
carefully considered based on the specific requirements of
subsequent applications.

4.4 Localization performance evaluation

In this section, we evaluate the localization performance of the
proposed DBnet with ARROW loss in comparison with two
baselines (DBnet with SI-SNR loss and DBnet with SPLM).

FIGURE 5
Enhancement performance for different a factors to weight the ARROW loss.

FIGURE 6
Enhancement performance of the proposed method and the baselines.

FIGURE 7
Localization performance of the proposed method and
the baselines.
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To quantify the localization performance, we use the accuracy
metric defined as

Accuracy � Ltrue

Ltp
× 100%, (10)

where Ltrue is the number of frames for which the angle
estimation error is less than 15°, and Ltp is the total number
of frames with speaker active. As shown in Figure 7,
incorporating the ARROW loss results in superior speaker
localization, with an average improvement of 5%. In addition,
the DBnet with the SPLM is outperformed by the DBnet trained
with only SI-SNR loss due to the free-field steering vector used in
training. Therefore, training the DBnet with the proposed
ARROW loss allows for more robust localization than
cascading with an SPLM. Furthermore, the results presented
in Figure 7 show that the DBnet trained with the proposed
ARROW loss maintains approximately 98% localization
accuracy at an SIR of 10 dB over various RT60s. This
indicates that the localization performance of the model
trained with the ARROW loss is mainly affected by the
interferer, but less affected by the RT60.

5 Conclusion

In this study, we have proposed a deep beamforming
system capable of speech enhancement and localization. A
novel ARROW loss inspired by the distortionless constraint is
proposed to effectively address these two tasks. The results have
shown that the model trained with SI-SNR and ARROW loss
provides superior enhancement and localization even when
RIRs are not included in the training set. The future research
agenda includes challenging scenarios with moving and multiple
speakers. In future work, we will extend the proposed ARROR
loss to address multiple sources. This extension will allow the
model trained with this loss to handle scenarios with increased
interference and multiple speakers.
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