
Enhancement of single-lead
dry-electrode ECG through
wavelet denoising

Abdelrahman Abdou* and Sridhar Krishnan

Signal Analysis Research Group, Department of Electrical, Computer, and Biomedical Engineering,
Toronto Metropolitan University, Toronto, ON, Canada

Neonatal electrocardiogram (ECG) monitoring is an important diagnostic tool for
identifying cardiac issues in infants at birth. Long-term remote neonatal dry-
electrode ECG monitoring solutions can be an additional step for preventive
healthcare measures. In these solutions, power and computationally efficient
embedded signal processing techniques for denoising newborn ECGs can assist
in increasing neonatal medical wearable time. Wavelet denoising is an
appropriate denoising mechanism with low computational complexity that
can be implemented on embedded microcontrollers for long-term remote
ECG monitoring. Discrete wavelet transform (DWT) denoising for neonatal
dry-electrode ECG using different wavelet families is investigated. The wavelet
families and mother wavelets used include Daubechies (db1, db2, db3, db4, and
db6), symlets (sym5), and coiflets (coif5). Different levels of added white Gaussian
noise (AWGN) were added to 19 newborn ECG signals, and denoising was
performed to select the appropriate wavelets for neonatal dry-electrode ECG.
The selected wavelets then undergo real noise additions of baseline wander and
electrode motion to determine their robustness and accuracy. Signal-to-noise
ratio (SNR), mean squared error (MSE), and power spectral density (PSD) are used
to examine denoising performance. db1, db2, and db3 wavelets are eliminated
from analysis where the 30 dB AWGN led to negative SNR improvement for at
least one newborn ECG, removing important ECG information. db4 and sym5 are
eliminated from selection due to their different waveformmorphology compared
to the dry-electrode newborn ECG’s QRS complex. db6 and coif5 are selected
due to their highest SNR improvement and lowest MSE of 6.26 × 10−6 and 1.65 ×
10−7 compared to other wavelets, respectively. Their wavelet shapes aremore like
a newborn ECG’s QRS morphology, validating their selection. db6 and
coif5 showed similar denoising performance, decreasing electrode motion
and baseline wander noisy ECG signals by 10 dB and 14 dB, respectively.
Further denoising of inherent dry-electrode noise is observed. DWT with
coif5 or db6 wavelets is appropriate for denoising newborn dry-electrode
ECGs for long-term neonatal dry-electrode ECG monitoring solutions under
different noise types. Their similarity to newborn dry-electrode ECGs yields
accurate and robust reconstructed denoised newborn dry-electrode
ECG signals.
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1 Introduction

ECGs measure the electrical activity of the heart. Clinically,
ECGs are used to diagnose cardiac health and help physicians
identify underlying heart problems. Abnormal electrical activity,
such as atrial fibrillation and different types of tachycardias and
bradycardias, can be identified through an ECG. In preventive
healthcare, further ECG diagnosis can yield the recognition of
risk factors and assist in assessing the overall health of the
person’s cardiovascular health (Harskamp, 2019). In turn,
physicians can use the information to recommend patient-
specific treatment plans and lifestyle alterations. Currently, 12-
lead ECG is the gold standard for such diagnoses. It uses
10 electrodes placed in different locations on the body to
robustly monitor the electrical conduction activity from different
angles and provide an accurate assessment. The disadvantages of 12-
lead ECG include multiple electrodes, wires, and monitoring
equipment unsuitable for intensive care units and remote long-
term monitoring applications. These issues lead researchers to
explore single-lead ECG and develop technological approaches
that include investigating different types of dry electrodes and
power-efficient signal processing techniques and designing single-
lead monitoring systems that are comfortable, power-efficient,
robust, clinically accurate with a small form factor for remote
monitoring for preventive healthcare (Sun et al., 2015; Arquilla,
Webb, and Anderson, 2020; Shao et al., 2020; Abdou and Krishnan,
2022). Single-lead ECG is an increasingly used diagnostic tool in
day-to-day activities for monitoring post-operative patients for risk
and assessing surgical success (Yong et al., 2016).

Cardiac health monitoring in newborns is a growing research
field. After birth, newborns who are below a certain gestation period
undergo neonatal intensive care, and 3-lead ECG systems are placed
for constant cardiac monitoring in a clinical setting. Within 24 h of
birth, clinical assessments using the 3-lead ECG information are
performed by physicians, and treatment plans, if required, are
developed. Based on the findings, the physician may discharge
the patient and monitor their progress through regular check-
ups. Remote ECG monitoring for newborns can be an important
addition to the preventive healthcare measures for at-risk babies. An
example of its importance is the prevention of sudden cardiac arrest
in newborns with long QT syndrome (Saul et al., 2014; Brockmeier,
Nazal, and Sreeram, 2016). Multiple technologies are being
developed for newborn remote long-term monitoring
applications utilizing ECG and other vital signs such as
respiratory activity and temperature (Aviles-Espinosa et al., 2019;
Fraiwan et al., 2009; Taylor et al., 2022; Lin et al., 2019; Anton et al.,
2022; Henry et al., 2021).

An important aspect of long-term monitoring solutions is the
deployment of power-efficient, real-time signal processing
techniques for embedded microcontrollers (Health Quality
Ontario, 2017; Alizadeh-Meghrazi et al., 2021; Abdou and
Krishnan, 2022), especially for single-lead ECG signal acquisition
devices with a continual operation time of 14+ days. More
specifically, the development of embedded signal denoising
techniques can assist in increasing the lifetime of medical
wearables. Many researchers have examined different denoising
approaches that are suitable for remote monitoring solutions.
Many denoising techniques are proposed, including wavelet,

empirical mode decomposition (EMD), sparsity, adaptive, deep
learning, and hybrid-based models (Tripathi et al., 2021). The
most prominent denoising model for real-time signal denoising
revolves around wavelet and adaptive filtering models due to their
embedded-friendly architecture and high power efficiency. These
models contain a low computational complexity factor O(N)
requiring low computational resources and can be implemented
in real-time bio acquisition monitoring devices.

Azzouz et al. (2024) developed a particle swarm optimization
technique for wavelet parameter selection combined with wavelet
transform to produce an ECG denoising algorithm. Their technique
is able to denoise ECG signals obtained from the MIT-BIH
Arrhythmia database, resulting in an increase of 17 dB in SNR,
and can eliminate AWGN and power line interference (PLI)
(Azzouz et al., 2024). The technique shows promise for the
Internet of Medical Things (IoMT) due to its efficiency but lacks
a newborn ECG application. Zhang et al. (2020) examined empirical
mode decomposition, sample entropy, and a proposed threshold
function implemented on the MIT-BIH Arrhythmia database. Their
work yielded improved SNR and low MSE results. However, the
application of EMD makes this process unsuitable for real-time
signal denoising.

Cuomo et al., 2016 developed a recursive filtering technique for
real-time ECG signal denoising. Their process utilized local
denoising, which allows for real-time visualization. Their work is
examined on Physionet’s long-term ST database. They investigated
the execution time and memory usage of their algorithm, showing
real-time capabilities (Cuomo et al., 2016). However, the work was
deployed on a CPU-based architecture and not on an embedded
microcontroller device. Tripathi et al. (2022) used a Fourier
decomposition method utilizing discrete cosine transform (DCT).
Their method has been implemented on the MIT-BIH Arrhythmia
and Noise Stress Test databases and real-time ECG information.
Their work yielded improved SNR and low percent root mean
square difference (PRD) values.

Singh et al. explored DWT for denoising ECG using different
wavelet families, including Daubechies, symlets, coiflets, and bio-
orthogonals, in combination with non-local means (NLM) (Singh,
Pradhan, and S. 2017). Their work used the MIT-BIH Arrhythmia
database and utilized AWGN as the added noise for determining the
denoising performance of the above-mentioned wavelet families
before deciding on symlet 7 as the candidate to be combined with
NLM. It is important to note that the db and coif wavelet families
showed competitive results when compared to symlets, indicating
that all three wavelet families may work for denoising ECG signals
(Singh, Pradhan, and S. 2017). Their proposed DWT and NLM
techniques showed high SNR improvement and low MSE and PRD
performance metrics (Singh, Pradhan, and S. 2017). Further analysis
of the computational cost of their algorithm is conducted.

Dore et al. (2022) developed an electric potential sensor-based
real-time neonatal heart rate (HR) system using a field
programmable gate array (FPGA). The authors deployed a 50-Hz
notch filter and a 200-Hz low-pass filter on the FPGA to denoise the
acquired ECG signals. Their work used the preterm infant cardio-
respiratory signals database (PICSDB) and broadcast the signals
through a phantom to examine their sensors and FPGA. The authors
were able to reduce 50 Hz noise by an average of 30 dB and provide
clean ECG signals (Dore et al., 2022). Their work did not explore
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other denoising techniques, as the focus of the work was on the
implementation of a new sensor system for neonatal HR detection.

Mason et al. (2024) created a pipeline for infant HR extraction
from their ECGs. The authors developed the pipeline using open-
source pre-processing and R-peak detection algorithms that utilize
low-pass, high-pass, band-pass, and EMD-based filtering
approaches. They used a variety of fifth-order Butterworth band-
pass and high-pass filters before R-peak detection. In addition, they
further added beat correction algorithms to their pipeline to mitigate
inaccuracies in R-peak detection due to noisy ECG signals. They
tested their work on three infant datasets with an average infant age
of 16.9 months, 8.5 months, and 7.3 months (Mason et al., 2024).
The authors concluded that their pipeline is suitable for infant HR
extraction (Mason et al., 2024). However, their work solely used
open-source tools, such as neurokit2, which contain pre-defined
filtering techniques, limiting the scope of the work to tools that may
not consider recent advances in ECG denoising techniques.
Furthermore, the work does not include denoising testing against
predetermined AWGN, PLI, baseline wander (BW), or electrode
motion (EM) noises that can provide a robust view of the denoising
performances of the algorithms.

Arvinti et al. (2021) developed an algorithmic approach for
preterm infant cardiac monitoring and bradycardia detection in
neonates. They utilized wavelet decomposition to eliminate present
BW and denoise ECG signals obtained from PICSDB, a dataset

containing information from 10 preterm infants with an average
gestational age of approximately 31 weeks and weight of 1,468 g
(Gee et al., 2017). The authors utilized hard thresholding and
Daubechies mother wavelets for their approach. Their results
included an increase in average SNR of 4.2 dB, and they were
able to create a system for detecting bradycardia based on R-R
interval information (Arvinti et al., 2021). However, the authors did
not examine pre-determined AWGN, PLI, BW, and EM noise, nor
did the results include PSD information showing denoising
performance. Other examined techniques are shown in Table 1.

An evident gap in denoising ECG research is the lack of
investigative studies in dry-electrode ECG denoising, more
specifically, newborn dry-electrode ECG for remote monitoring
applications. To date, a research community-accepted wavelet-
based denoising approach for neonatal ECG is missing. This
study will explore the DWT denoising techniques and multiple
wavelet families, including Daubechies, symlets, and coiflets. The
work will utilize newborn single-lead ECGs acquired through 3D-
printed dry electrodes. AWGN, EM, and BW will be added as noise
components to create noisy ECG signals. The noisy signals will
undergo DWT denoising, and candidate wavelets will be identified
visually and through objective metrics, including SNR,
MSE, and PSD.

The article is structured as follows. Section 2 will propose the
approach for investigating wavelets and provide a brief overview of

TABLE 1 ECG denoising techniques.

Technique Dataset Noise Outcomes

PSO + WT (Azzouz et al., 2024) MIT-BIH Arrhythmia AWGN + PLI Eliminated AWGN, improved SNR by 17 dB

EMD + Sample entropy + proposed
threshold function (Zhang et al., 2020)

MIT-BIH Arrhythmia AWGN + PLI + EMG High SNR, low MSE, no real-time application

Recursive filtering (Cuomo et al., 2016) Long-term ST database BW + PLI Local denoising, real-time application

DCT (Tripathi et al., 2022) MIT-BIH Arrhythmia, Noise Stress Test
databases, and recorded real-time signals

AWGN + PLI + MA + BW Improved SNR, low PRD

Electric field sensors (EPS) + Weiner filtering
(Aviles-Espinosa, Dore, and
Rendon-Morales, 2023)

MIT-BIH Arrhythmia and real-time ECG,
EMG, and electrooculogram (EOG)
recorded signals

50 Hz noise Improved SNR, low MSE, real-time
application

Adaptive windowing (Chandrakar and
Sharma, 2014)

PTB Diagnosis ECG database EMG + PLI + BW Improved SNR, QRS complex clearly present

SWT (Kumar et al., 2021) MIT-BIH Arrhythmia Noise Stress Test,
PTB Diagnostic ECG, and QT databases

60 Hz sinusoidal signal Improved SNR, low PRD, low MSE

DWT + S-G filter (Samann and Schanze,
2019)

MIT-BIH Arrhythmia WGN Improved SNR

DWT + NLM (Singh et al., 2017) MIT-BIH Arrhythmia WGN Improved SNR, low PRD, low MSE, the
authors concluded sym, db, and coif have
competitive performance

DWT (sym5) (Lin et al., 2014) MIT-BIH Arrhythmia and recorded exercise
ECG signals

BW + MA + EM + PLI (MA
noise from recorded exercise
signals)

Improved R-peak detection, improved SNR,
high sensitivity of detecting P and T-waves

Fixed filtering (Dore, Aviles-Espinosa, and
Rendon-Morales, 2022)

PICSDB 50 Hz noise + MA (MA noise
recorded from infant ECG
signals)

Reduction in 50 Hz noise by 30 dB

Fixed filtering; fifth-order Butterworth band-
pass filters (Mason et al., 2024)

Private infant databases N/A Improved HR detection

DWT (Arvinti et al., 2021) PICSDB BW (from database) Improved SNR

Frontiers in Signal Processing frontiersin.org03

Abdou and Krishnan 10.3389/frsip.2024.1396077

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1396077


the SAR-NE dataset used in this study. Section 3 will provide the
overall results of the study, including SNR improvement and MSE
data. PSD information will be provided for EM and BW noisy ECG
signals and their reconstructed/denoised versions. In addition, R-R
interval and HR information pertaining to the denoising
performance of selected wavelets will be provided. Section 4 will
discuss the study outcomes and provide future steps in the
investigation of other ECG denoising methods, such as adaptive
filtering for real-time newborn ECG monitoring using dry
electrodes. Section 5 will conclude the work.

2 Methods

2.1 SAR-NE dataset

Single-lead ECGs (3-min duration) from 19 newborns with a
mean gestational age of 37.9 ± 1.3 weeks and mean weight of 2955 ±
740.5 g were collected using a handheld HR detector prototype that
utilizes 3D-printed PLA-based dry electrodes (Abdou et al., 2023).
The detector was placed directly on the chest, closest to the heart, in
a lead-I configuration. The acquired ECGs andHR information were
obtained from healthy newborns with no cardiac issues or present
physical deformities that made device placement inaccessible
(Abdou et al., 2023). The dataset was formulated from a
community hospital servicing a diverse population. The ECGs
were sampled at 500 Hz with 12-bit resolution and underwent
3–48 Hz band-pass filtering for HR and heart rate variability
analysis. A zoomed-in normalized neonatal ECG is shown in
Figure 1 where the QRS morphology is apparent, but P- and
T-waves are not clear.

2.2 Wavelet denoising

Wavelet denoising is performed on the newborn ECGs in
combination with different types of synthetic noise. AWGN is
used to validate wavelet denoising and determine the most
appropriate wavelets for denoising the original single-lead dry-
electrode ECG signals, as shown in Figure 2. MSE and SNR
improvement metrics are utilized for wavelet denoising
performance. PSD is utilized to identify the impact of wavelet
denoising on the original neonatal ECGs in removing EM and
BW noise.

The wavelet families used in this study include a symlet, a coiflet,
and several Daubechies wavelets. More specifically, Daubechies
wavelets (db1, db2, db3, db4, and db6), symlet (sym5), and
coiflet (coif5) are examined, as shown in Figure 2. These wavelet
families are examined due to their robustness in ECG denoising in
previous literature (Poornachandra, 2008; Samann and Schanze,
2019; Zhang et al., 2019; Azzouz et al., 2024). Furthermore, the
wavelet families mentioned above provide practicability due to their
identifiable number of vanishing moments, orthogonality, and near-
symmetrical behaviors (Rashid et al., 2020). The db1, db2, and
db3 Daubechies mother wavelets are examined to determine
whether denoising performance improves with increased
vanishing moments in the Daubechies family. db4, db6, sym5,
and coif5 are chosen empirically due to their visual similarity to
the QRS complexes in this ECG dataset, as shown in Figure 3. The
choice of the above wavelets considers the DWT implementation
capabilities in real-time denoising on embedded microcontrollers
for IoMT and remote neonatal monitoring applications.

The decomposition levels are controlled across denoising
processes with three decomposition levels. Three decomposition

FIGURE 1
A zoomed-in newborn dry-electrode, single-lead ECG.
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levels are appropriate to separate high- and low-frequency noise,
such as PLI, EM, and BW. PLI and AWGN noises appear in the first
two decomposition levels for ECG denoising paradigms, as
presented in previous literature (Bodile and Talari, 2021; Azzouz
et al., 2023). BW and EM noises were experimentally identified as
being present in a minimum decomposition level 3 and higher. Note
that three decomposition levels are chosen to provide the minimum
number of levels required to separate noise while complying with the
focus of implementing real-time DWT for ECG denoising on
microcontrollers. In contrast, the thresholding methodology
varies between soft and hard thresholding to determine the best-
performing thresholding type that can provide reliable and robust
outcomes and can be deployed in an embedded hardware
architecture. Soft thresholding, as shown in Eq. 1, is defined as

the shrinkage of certain wavelet coefficients with a scaling factor that
ranges from 0 < s < 1, creating a smooth transition between the
original and the removed values. For example, attenuation of noise
can occur by multiplying s with the detail coefficients that are below
the specified threshold, t, for noise removal where s can be varied
from 1 at t to 0.1 with 0.1 intervals.

t �
�������
2 log n( )

√
p

σ�
n

√ , (1)

where σ is the noise level.
Hard thresholding is defined as the removal of certain detail

coefficients where the coefficients identified above the threshold are
scaled with a factor of s � 1, and detail coefficients below the
threshold are scaled with a factor of s � 0.

FIGURE 2
Proposed denoising examinationmethodologywhere x(n) represents the original ECG signal,w(n) is the added noise type between AWGN, EM, and
BW, h(n) is the noisy signal, x̂(n) is the denoised reconstructed signal, and ŷ(n) is the denoised reconstructed signal for the selected wavelets.

FIGURE 3
QRS and mother wavelet similarity: (A) Acquired newborn ECG QRS waveforms, and (B) mother wavelets for db4, db6, coif5, and sym5.
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Newborn ECG and AWGN are added to determine the wavelet
denoising performance in terms of SNRimprovement, and MSE.
SNRimprovement is defined as the subtraction of the SNR of the
reconstructed signal, x̂(n), from the SNR of the original signal,
x(n). The reconstructed signal SNR can be calculated as shown in
Eq. 2.

SNRdenoised � 10 log
∑n
i�1
x n( )2

∑n
i�1

x n( ) − x̂ n( )[ ]2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)

MSE is defined as the average of the summation of the squared
difference between the original and reconstructed signals, as shown
in Eq. 3. Small MSE values represent a higher similarity
approximation between x(n) and x̂(n), while high MSE values
denote significant differences between x(n) and x̂(n). Paired t-test
statistical analysis is performed between different MSEs and SNRs to
determine the statistical significance of the differences between
wavelet denoising performances.

MSE � 1
n
∑n
i�1

x n( ) − x̂ n( )[ ]2. (3)

2.3 Wavelet validation

The AWGN features different power magnifications: 25 dB,
20 dB, 15 dB, 10 dB, 5 dB, 0 dB, −5 dB, and −10 dB. EM and BW
noises are obtained from the MIT-BIH noise stress database, which
features 30-min adult ECG noise recordings with varying
amplitudes sampled at 360 Hz for EM, BW, and electromyogram
noises (Moody et al., 1992). In this case, EM and BW noises will be
used to test the applicability of different wavelets in real-world noise
signals. The noise signals are directly added to the newborn ECG
signals, as represented in Eq. 4.

h n( ) � x n( ) + w n( ), (4)
where x(n) is the newborn ECG signal,w(n) is the noise, and h(n) is
the combined signal and noise information.

It is important to note that adult wet electrode EM noise from
the MIT-BIH Noise Stress Test database may not be suitable for
neonatal dry-electrode ECGs, which acts as a limitation to this
examination. It is also important to note that the neonatal dry-
electrode ECGs contain EM artifacts and some electromagnetic
interference leakage. The newborn ECGs are assumed to be clean
in order to examine the wavelet denoising algorithms.

R-peak detection is performed to further ensure wavelet
denoising validation for clinical relevance, and R-R intervals are
estimated for the clean, BW-added, and EM-added newborn ECG
signals. These signals will be compared to the wavelet-denoised ECG
signals’ R-R interval estimation to determine the robustness and
accuracy in identifying important cardiac information for HR and
HRV calculations. R-R intervals and HR estimations are calculated
using a fixed threshold for minimal R-peak detection distance where
detected peaks cannot be less than 200 ms apart (Yun et al., 2022). A
comparative analysis between the proposed work and previous
denoising techniques used for neonatal ECG enhancement
is provided.

3 Results

All denoising techniques showed an average linear increase in
SNRimprovement with a decrease in the AWGN, as shown in Figures 4, 5.
db4 with hard thresholding shows the highest increase in the SNR
compared to the db1, db2, and db3 thresholding techniques, as shown
in Figure 4. It is important to note that db1, db2, and db3 fail with 30 dB
AWGN; technique failure is identified when at least one newborn ECG
shows a decrease in SNRimprovement instead of an increase, resulting in
the removal of important ECG information. Coif5 with hard
thresholding provided an overall average higher SNRimprovement curve
that is statistically significant (p < 0.05) compared to all denoising
techniques, except for coif5 with soft thresholding. Coif5 with a soft
threshold provided the second highest linear SNRimprovement curve. The
Sym5 hard threshold is slightly higher than the db6 soft threshold, as
shown in Figure 5. However, they are not statistically different (p =
0.92). The db6 hard threshold showed the highest linear SNRimprovement

compared to the Sym5 thresholding technique and db6’s soft threshold
process but is not statistically different, with p-values of 0.47 and 0.19,
respectively. Although the hard threshold techniques for all denoising
processes provided better SNR improvement results, they are not
statistically significantly different from their respective soft
thresholding techniques.

The MSE values for db1, db2, db3, db4, db6, sym5, and coif5 soft
thresholding are 2.28 × 10−3, 5.76 × 10−4, 1.93 × 10−4, 7.14 × 10−5,
1.15 × 10−5, 2.79 × 10−5, and 3.2 × 10−7, respectively, for the AWGN.
The MSE values for db1, db2, db3, db4, db6, sym5, and coif5 hard
thresholds are 9.49 × 10−4, 2.45 × 10−4, 9.05 × 10−5, 3.68 × 10−5, 6.26 ×
10−6, 1.5 × 10−5, and 1.64 × 10−7, respectively.

The db4 hard threshold showed the smallest MSE value of 3.68 ×
10−5, which is statistically significant (p < 0.05) compared to db1,
db2, and db3. The db1 soft threshold showed the highest MSE of all
denoising techniques with a value of 2.3 × 10−3. db4, db6, sym5, and
coif5 produceMSE values that are all significantly different from one
another with p < 0.05. The smallest MSE of 1.65 × 10−7 is provided by
the coif5 hard threshold, which is statistically significant (p < 0.05)
compared to the other denoising techniques and their thresholds.
This value is approximately 38 times lower than that of db6 hard,
with an MSE of 6.26 × 10−6, which is the second lowest MSE.

3.1 Wavelet selection

Based on the denoising performance analysis with the AWGN,
the specified wavelets, db6 and coif5, are identified as reliable
candidates for denoising neonatal dry-electrode-based ECGs with
added EM and BW noise. These wavelets showed overall promise
with their high SNRimprovement linear curves and the lowest MSE
values under AWGN. In addition, the db6 and coif5 mother wavelets
feature a similar QRS morphology, which makes them more
appropriate for denoising purposes.

However, significant changes in noise type removal are evident
in their respective PSDs. A small subset of newborn ECGs is used to
show the difference in noise removal on EM- and BW-type noises.
For both db6 and coif5 hard thresholds, EM noise is evidently
removed, as shown in Figure 6 where the denoised newborn ECGs
showed lower power in dB than the noisy signals. The substantial
noise removed around the 3–27 Hz range across all three subjects
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contains important QRS information for HR determination. On the
other hand, BW noise is removed for both db6 and coif5 hard
thresholds, as shown in Figure 7. BW of 1 Hz has been removed in
the reconstructed signals. BW noise reduction appears to occur in

the first few Hz of the signal. Both db6 and coif5 showed an MSE
value of 1 for denoising BW noise. Coif5 denoising produces an
approximate newborn ECG signal for both EM and BW noises, as
shown in Figures 8, 9 for Subject 14, respectively.

FIGURE 4
SNRimprovement curves for db1, db2, db3, and db4 with varying soft and hard thresholding in denoising AWGN at different power levels.

FIGURE 5
SNRimprovement curves for db6, sym5, and coif5 with varying soft and hard thresholding in denoising AWGN at different power levels.
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FIGURE 6
Three subjects’ PSD plots (A–C) for db6 and (D–F) for coif5 hard thresholding in denoising EM.

FIGURE 7
Three subjects’ PSD plots (A–C) for db6 and (D–F) for coif5 hard thresholding in denoising BW.
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R-R interval and HR estimations are provided for both db6 and
coif5 in Table 2. db6 and coif5 showed similar denoising performance
for BW noisy ECG signals where the differences between original and
denoised versions are 2.00 × 10−3 ms and 1 BPM for averaged R-R
intervals and HR, respectively. For EM noisy ECG signals, db6 and
coif5 provided denoised signals with higher HR, 156 BPM, and lower
R-R intervals, 0.384 ms, than the original signals, as shown in Table 2.
Table 3 offers a comparative view of the different denoising techniques
presented in neonatal ECG enhancement. Our proposed work is
compared to techniques utilizing fixed and adaptive filtering and
DWT-based paradigms. Previous literature in neonatal ECG
denoising does not focus on investigating different types of noises,
such as the AWGN, and solely explores the application of denoising
techniques for sensor development and/or obtaining certain clinical
information, such as bradycardia detection, as shown in Table 3.

4 Discussion

4.1 Validation performance

DWT denoising is performed on 19 newborn ECGs with the
goal of identifying the appropriate wavelet and thresholding
techniques for denoising different types of noise. All newborn
ECGs underwent the AWGN, resulting in noisy signals ranging
in noise levels from 25 dB to −10 dB. The signals are later denoised/
reconstructed using db1, db2, db3, db4, db6, sym5, and coif5 with
either a soft or hard threshold methodology. This process yielded a
linear increase in denoising performance represented in

SNRimprovement from the high noise present at 25 dB to the low
noise presence provided in −10 dB, as shown in Figures 4, 5. The
MSE shows a decrease from the db1 soft threshold method, with the
highest MSE of 2.3 × 10−3, to coif 5 with a hard threshold and the
lowest MSE of 1.65 × 10−7. In addition, 30 dB AWGN is added to
determine the limitations of the DWT wavelets. db1, db2, and
db3 removed vital ECG information where SNRimprovement in at
least one newborn ECG was negative where the denoised ECG
showed a lower SNR than the original signal. Meanwhile, db4, db6,
sym5, and coif 5 yielded positive SNRimprovement across all newborn
ECGs at 30 dB white Gaussian noise (WGN) removal. This process
assisted in eliminating db1, db2, and db3 from further wavelet
selection. These results validate that AWGN can be removed in
newborn dry-electrode ECG signals on different noise levels.
Wavelet denoising operated effectively for db4, db6, sym5, and
coif5 for all noise levels, including the 30 dB WGN, where no
newborn ECG information is lost in the denoising process. WGN
removal assists in identifying the limitations of certain mother
wavelets with different AWGN noise levels. In turn, this process
allows us to accurately reject certain wavelets due to their
inefficiencies. If certain wavelets cannot function properly with
AWGN, then the expectation of their role in real-signal
applications is limited. However, DWT denoising as a modality is
optimal for WGN, where uniform noise characteristics can be
eliminated effectively from the desired ECG signals due to their
non-stationarity and skewed distribution. On the other hand, the
selection of wavelet family and mother wavelet selection is
paramount in developing subject and sensor-specific signal
processing techniques.

TABLE 2 db6 and coif5 R-peak detection comparisons.

Mother
wavelet

Type of
noise

Original R-R
interval (ms)

Noisy signal
R-R
interval (ms)

Denoised signal
R-R interval (ms)

Original
HR (BPM)

Noisy
signal
HR (BPM)

Denoised
signal
HR (BPM)

db6 BW 0.398 0.402 0.400 151 149 150

EM 0.398 0.341 0.384 151 176 156

Coif5 BW 0.398 0.402 0.400 151 149 150

EM 0.398 0.341 0.385 151 176 156

TABLE 3 Neonatal ECG denoising comparisons.

Technique Sensor
type

Dataset Noise Big O
notation

Signal quality
outcomes

Clinical relevance
outcomes

Fixed Filtering (Dore,
Aviles-Espinosa, and
Rendon-Morales, 2022)

EPS PICSDB 50 Hz noise
+ MA

O(1) Reduction in 50 Hz
noise by averaged 30 dB

Signal generated and calculated HR are
within 1 BPM

DWT (Arvinti et al., 2021) Gel-electrodes PICSDB BW O(N) SNR improvement
averaged 4.2 dB

Detected R-R intervals >0.6 s for
manual bradycardia detection

Adaptive Kalman Filtering
(Vullings, De Vries, and
Bergmans, 2011)

Textile
electrodes

Private
2 neonates

N/A O(N) N/A N/A

DWT (Proposed Work) 3D-printed dry
electrodes

Private
19 neonates

AWGN +
BW + EM

O(N) SNR improvement Original and denoised signal HRs are
within 1 BPM and 5 BPM for BW and
EM denoising
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FIGURE 8
Coif5 DWT denoising of added EM noise for a newborn dry-electrode single-lead ECG.

FIGURE 9
Coif5 DWT denoising of added BW noise for a newborn dry-electrode single-lead ECG.
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4.2 EM and BW noise removal performance

The selected wavelets for EM and BW noise are db6 and coif5.
Sym5 and db4 are eliminated due to the lack of visually similar mother
wavelets with the acquired dry-electrode ECG signals. db6 and
coif5 showed similar QRS morphology to the signals, where the
similarity is entailed in the high zero crossing rate of the newborn
signals, which is obvious due to the use of dry electrodes and a narrowed
QRS complex that provides evidence of higher HRs in newborns. Both
db6 and coif5 showed approximate PSDs and MSE values. coif5 and
db6 yielded similar denoising performance as shown in Figures 8, 9. PSD
plots for a sample of newborn ECG signals show the elimination of EM
artifacts where overall noise removal mainly occurred in the range of
3–72Hz, as shown in Figure 6. It is important to note that added
significant EMnoise is only present between 1 Hz and 10 Hz. EMnoise is
featured prominently in that range where the maximum decrease in the
noisy and denoised signal power is approximately 10 dB at 4 Hz, while
the minimum decrease of 7.5 dB occurred at 10 Hz. It is important to
note that EM noise underwent 3–48 band-pass filtering that aligns with
the signal acquisition, thus eliminating any EM noise below 3 Hz. The
other range of removed noise from 10Hz to 72Hz can be attributed to
dry-electrode inherent noise that occurs due to the lack of a gel layer for
decreasing electrical impedance, creating jagged peaks in the assumed-
clean ECG. Above 48 Hz, further attenuation of electromagnetic
interference noise present in the original signal can be observed. The
denoised reconstructed signal still maintained a high similarity to the
original signal, as shown in Figure 8, where QRS waveforms are clearly
present. However, MSE values for coif5 and db6 are higher than WGN-
removal MSE values. This concept shows MSE limitation in identifying
similarities between denoised and original signals when real noise that
contains a non-zero variance and is non-stationary is added. MSE is
sensitive to outliers found in the inherent noise of dry-electrode ECGs.
Overall, DWT denoising using the selected wavelets is significant for EM
noise removal in the 3 Hz–10 Hz, as shown in Figure 6. Due to mother
wavelet similarity and QRS waveforms, coif5 and db6 are appropriate
DWT wavelets for denoising added EM noise and some inherent dry-
electrode ECG noise from newborn dry-electrode ECGs. However, the
R-R interval and HR estimations reveal an average difference increase of
5 BPM from the original signals’ averageHR. This concept shows that the
denoised signalsmay still contain some EMnoise that is considered in the
elevated HR and lowered R-R interval calculations, as shown in Table 2.

BW is noted to be present in the 0–1 Hz frequency range.
coif5 and db6 showed high denoising performance in eliminating
BW noise. Note that BWwill be removed in the original ECG signals
due to the band-pass filtering ranging from 3 to 48 Hz, eliminating
BW completely and partially eliminating EM noise. However, BW
noise is added, without filtering, in the above range to examine the
denoising performance of coif5 and db6. BWnoise removal is shown
to be eliminated where 0.25 Hz noise power decreases by 14.1 dB,
whereas 1 Hz BW noise drops by 12 dB, as shown in Figure 9. These
results show the effectiveness of eliminating BW noise added to
newborn ECGs. The significance relies on DWT’s performance in
identifying low-frequency information using coif5 and db6. Both
wavelets are appropriate for eliminating EM and BW noise present
in ECG information. DWTwith coif5 and db6 has shown to perform
well with the above-mentioned noise. Other noise removal occurs
throughout the signals, as shown in the PSD plots. The signals are
assumed to be clean but may contain further random spikes that are

being removed during the denoising process, yielding a clear, robust
signal for QRS detection and HR estimation algorithms. The
differences between coif5 and db6 are visually minor, which
explains their similar denoising performance. It is evident that
coif5 and db6 are suitable for denoising newborn dry-electrode
ECGs. DWT with coif5 or db6 can be used in denoising neonatal
dry-electrode ECGs that contain EM or BW noise. By eliminating
ECG noise in a signal processing step, cardiac information such as
QRS complexes or R-peaks can be clearly identified, which in turn
can be used in accurately determining surrogate information such as
HR, HRV, and improved real-time arrhythmia detection.

DWT is becoming a prominent denoising technique for
denoising neonatal ECGs. However, other techniques show good
results that should be further examined, as shown in Table 3. Most
neonatal ECG denoising techniques offer a big O notation ofO(N), a
metric used to determine operational complexity, except for the
fixed filtering approach. Compared to previous literature, our
proposed work provides an objective, holistic framework in
investigating DWT for neonatal dry-electrode ECG denoising where
different noise types are added to ECGs and examined under MSE, SNR,
and clinically relevant features such as HR and R-R intervals.
Furthermore, algorithmic complexity is provided to relay its
applicability on embedded microcontrollers. It is obvious that most
denoising techniques for neonatal ECGs are feasible in real-time
microcontroller deployment where O(N) operation is realizable.
Further embedded-friendly filtering techniques should be examined to
determine the most appropriate process for denoising newborn dry-
electrode ECGs. Other denoising techniques that should be explored
include adaptive filtering processes such as Savitzky–Golay and recursive
least squaresfiltering. In addition, other future directions in neonatal ECG
denoising should focus on determining power requirements and real-
application investigation of the above-mentioned techniques through
microcontroller deployment. This work is an investigation of DWT as a
tool in denoising newborn dry-electrode ECGs and should be further
investigated to include other denoising techniques, different number of
levels for wavelet decomposition, DWT’s microcontroller deployment
feasibility, applicability inmulti-lead neonatal ECGmonitoring, and their
general role in obtaining clinically relevant features like HR and HRV for
diagnostic purposes such as neonatal arrhythmia detection and remote,
long-term, neonatal post-operative cardiac monitoring.

5 Conclusion

Wavelet denoising is a pre-processing step in denoising the ECG
signals. DWT is determined for its computational and power efficiency
metrics and its applicability in IoMT for remote, long-term, newborn
single-lead ECG monitoring applications using dry electrodes. DWT
can be deployed directly on microcontrollers, making it suitable for the
above-mentioned applications. In this study, we explored DWT with
multiple wavelet families, including Daubechies, symlets, and coiflets.
Decomposition levels are controlled to three levels, whereas
thresholding varies between soft and hard thresholding techniques.
The mother wavelets determined for denoising are db1, db2, db3, db4,
db6, sym5, and coif5. WGN is added to 19 newborn ECG signals, and
denoising is performed to validate DWT as a modality for denoising
dry-electrode ECGs. SNR improvements and MSE are used as metrics
to determine DWT validity. Following this process, db1, db2, and
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db3 are eliminated due to their removal of important newborn ECG
information when at least one newborn signal showed a decrease in
SNR improvement at 30 dB WGN and high MSE values. The db4 and
sym5 mother wavelets did not show similarities to the newborn ECG
QRS complex, further eliminating them from the added BW and EM
noise denoising analysis. db6 and coif5 are used in denoising and show
approximate PSD plots and MSE values. Both showed similar QRS
morphology to the present newborn ECGs, making them the
appropriate wavelets for denoising purposes. They performed
similarly and yielded denoised reconstructed ECG signals similar to
the original ECGs.
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