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The world first came to know the existence of COVID-19 (SARS-CoV-2) in
December 2019. Initially, doctors struggled to diagnose the increasing number
of patients due to less availability of testing kits. To help doctors primarily
diagnose the virus, researchers around the world have come up with some
radiology imaging techniques using the Convolutional Neural Network (CNN).
Previously some researchmethodswere based on X-ray images and others onCT
scan images. Few research methods addressed both image types, with the
proposed models limited to detecting only COVID and NORMAL cases. This
limitationmotivated us to propose a 42-layer CNNmodel that works for complex
scenarios (COVID, NORMAL, and PNEUMONIA_VIRAL) and more complex
scenarios (COVID, NORMAL, PNEUMONIA_VIRAL, and PNEUMONIA_
BACTERIA). Furthermore, our proposed model indicates better performance
than any other previously proposed models in the detection of COVID-19.
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1 Introduction

The ongoing COVID-19 pandemic was initially found in December 2019 (Hussain
et al., 2021) and was declared a global pandemic by the World Health Organization (WHO)
in March 2020 (Cucinotta and Vanelli, 2020). One of the major issues of this virus is its
contamination from human contacts. To tackle this issue, different countries had to impose
lockdown measures which ultimately affected the world economy severely (Shrestha et al.,
2020). Since its inception in 2019, more than 641 million people got infected and more than
6.6 million people died (Sadeghi Mofrad et al., 2024).

Since its initial days, testing has remained one of the major problems. Because of several
issues related to testing, the number of test cases was never enough compared to the total
population which consequently worsened the situation hiding the actual number (Li R.
et al., 2020).

To improve the situation by helping clinicians get initial ideas about patients, several
research studies have been conducted across the globe using radiology imaging techniques
for COVID-19 detection. Since X-ray machines and CT scan machines are available in
almost every healthcare center around the world, researchers worked on these images so
that doctors can start treatment at an early stage (Gharieb, 2022).
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There is a lot of quality research for COVID-19 detection with great
accuracy using X-ray images. In a research paper, Pereira et al. (2020)
proposed a technique based only on X-ray images that can detect
Pneumonia. They have developed their model and claimed their work
to have the best accuracy among other published research works. In
another study, Wang et al. (2020) suggested a customized
Convolutional Neural Network (CNN) architecture for COVID-19
detection using X-ray images and also claimed that their work was
the first of its type. They classified the X-ray images as COVID-19,
normal and Pneumonia cases. In another study, Narin et al. (2020)
proposed three models using X-ray images for COVID-19 detection
and achieved an accuracy of 98% using the ResNet50. In another
research, Cohen et al. (2020) suggested a model that predicted the
severity of Pneumonia, and COVID-19 using X-ray images. Both
COVID and non-COVID datasets have been preprocessed with
images (recompressing, centering, rescaling), then processed using
the extraction caps and network task prediction layer. In another
study, Mahmud et al. (2020) suggested a deep neural network
architecture capable of detecting COVID-19 and different types of
Pneumonia. By merging features from diverse receptive areas, efficient
depth convergence is used to analyze abnormalities in X-ray images
from many perspectives. In addition, an additional performance
stacking algorithm was also used. In another research, Ozturk et al.
(2020) designed a model using X-ray images known as DarkCovidNet
inspired by the DarkNet-19 model with fewer layers and filters. There
are 17 convolution layers in the proposed model and performance is
assessed using a five-fold cross-validation process. With 98.08% and
87.02% accuracy respectively, their developed system can perform
binary class and multiclass tasks. In another research, Asif et al.
(2020) proposed the use of the X-ray data and Inception V3 model
using CNN for COVID-19 detection. They implemented their work
with the Inception V3 model and TensorFlow. They increased the
training set to 4,000 and obtained a 96 percent accuracy on the final test.
They did, however, use transfer learning techniques to compensate for
the lack of data and training time. Moreover, they claim that their
proposed model Inception V3 architecture performs better than most
recent architecture. In another research, Panwar et al. (2020a)
conducted a study in which they employed their own built CNN-
based model called nCOVnet, which comprises 24 layers. These layers
are trained on the ImageNet dataset. They analyzed their model using
both the conventional VGG16 model, which achieved 92.7 percent
accuracy on ImageNet, and a transfer learningmodel. Additionally, they
validated themodel against Kaggle’s X-ray scans of the chest. As a result,
they achieve up to 97.62 percent training accuracy. Finally, they assert
that their suggested approach is capable of detecting patients who test
positive for COVID-19 in less than 5 s. In another study, Khan et al.
(2020) offered a technique using deep CNN to detect COVID-19 in
Chest X-ray (CXR) images to diagnose three distinct forms of
Pneumonia utilizing image data from an open-source GitHub
repository. CoroNet is their suggested model, which is built on
Xception CNN architecture with 71 layers. They employed fourfold
cross-validation in conjunction with Keras’ CoroNet implementation.
CoroNet averaged 89.6 percent accuracy. Lastly, in their study theywere
just talking about X-ray images. In another research, Sethy and Behera
(2020) developed a model using DCNN where they used the dataset of
X-ray images which are available on repositories of GitHub, Kaggle and
Open-i. They used multiple architectures to detect COVID-19. They
used SVM classifiers with features which are obtained from the CNN

models. However, ResNet50 and SVM give better classification results
in detectingCOVID-19.Moreover, they claim that ResNet50 alongwith
SVM achieved 95.38% accuracy which is statistically much better than
the other existing models. In another research, Tuncer et al. (2020)
proposed a model that generates features using ResExLBP. The method
for automatically detecting COVID-19 consists of three stages. At first it
processes the data. Then, it extracts the features from the data. After that
it selects from the extracted features. For training and testing, tenfold
cross-validation was used. In another research, Hussain et al. (2021)
developed a novel CNN model called CoroDet. They used a 22-layer
CNN model built with Keras and TensorFlow 2.0, as well as the
ImageNet dataset for pre-training. They used different layered CNN
models to determine which CNN model performs the best in terms of
accuracy. However, they use their model to determine two-class, three-
class, and four-class classifications.

Although all of them (Asif et al., 2020; Cohen et al., 2020; Khan et al.,
2020;Mahmud et al., 2020; Narin et al., 2020; Ozturk et al., 2020; Panwar
et al., 2020a; Pereira et al., 2020; Sethy and Behera, 2020; Tuncer et al.,
2020; Wang et al., 2020; Hussain et al., 2021) are quite successful in the
case of X-ray images, we cannot get any idea of CT scan images from
their research. In a study, Li L. et al. (2020) demonstrated that a deep
learning model, COVNet, can accurately distinguish COVID-19 from
community-acquired pneumonia using chest CT images. The model
achieved high sensitivity and specificity by leveraging a comprehensive
retrospective analysis of CT scans frommultiple hospitals, incorporating
both 2D and 3D features of the CT images. This study underscores the
potential of COVNet as an effective diagnostic tool for early and accurate
detection of COVID-19 in clinical settings. In another study, Zheng et al.
(2020) worked on 3DCT scan images to detect COVID-19 using weakly
supervised deep learning. They proposed a model, DeCoVNet, which
has three stages. However, data augmentation was used in this case to
avoid overfitting issues. Testing a CT volume took only 1.93 s after
training with 499 CT volumes. However, from both these research
(Li L. et al., 2020; Zheng et al., 2020), we do not get any idea about
the performance of X-ray images.

As far as we know, very few researches have been conducted so far
using both X-ray images and CT scan images. In a research, Panwar
et al. (2020b) developed a model for detecting COVID-19 where they
used both image types. Their model works for COVID vs. normal for
both the image types and COVID vs. Pneumonia only for X-ray images.
In another research, Maghdid et al. (2021) developed deep learning and
transfer learning algorithms for COVID-19 detection using both image
types. Due to an insufficient number of images in the existing datasets,
they created their dataset by combining images from different datasets
so that theirmodel could predictmore accurately. Theirmodel provides
98% accuracy for pre-trained AlexNet and 94.1% accuracy for
modified CNN.

However, their research (Panwar et al., 2020b; Maghdid et al.,
2021) doesn’t show anything regarding complex scenarios (e.g., viral
or bacterial pneumonia). Therefore, in our study, we proposed a
42 layered CNN model that performs efficiently for both X-ray and
CT scan images and it works better compared to the previously
published CNN models for complex scenarios using both image
types. Our proposed 42-layered model contains a Convolutional
Layer, Max Pooling Layer, Average Pooling Layer, Batch
Normalization Layer, Flatten Layer, Dense Layer, Dropout Layer,
5 CovRoot Blocks consisting of 4 Conv2D Layers and 1 Depthwise
Conv2D Layer and two activation functions (Leaky ReLU and
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Sigmoid). To evaluate our proposed model, we used some metrics
like Accuracy, Precision, Recall, F1 score, Specificity, Sensitivity, and
Confusion Matrix.

Themajor contributions of our research include the development of a
novel 42-layerCNNarchitecture forCOVID-19 detection usingX-ray and
CT scan images, achieving significant milestones for more complex
scenarios (i.e., COVID, NORMAL, PNEUMONIA_VIRAL and
PNEUMONIA_BACTERIA). This marks the first comparative analysis
between X-ray and CT scan images across these classifications. For X-ray
images, CoroScan achieves notable accuracies of 93.33%, 97.77%, and 95%
for two class, three class, and four class classifications, respectively, while
for CT scan images, accuracies stand at 100%, 70%, and 60% for the same
classifications. These accuracies surpass current state-of-the-artmethods in
COVID-19 detection. Additionally, our research effort culminated in
assembling the largest dataset integrating both X-ray and CT scan
images for COVID-19 detection to date.

We have structured our paper by discussing our proposed model
in Section 2, analyzing results in Section 3, and finally concluding
our study with a plan in Section 4.

2 Our proposed model

In this section, we have discussed our proposed 42-layered CNN
model for COVID-19 detection using both X-ray and CT scan
images for more complex scenarios (COVID, NORMAL,
PNEUMONIA_VIRAL, and PNEUMONIA_BACTERIA).
Initially, we developed a research workflow. Figure 1 illustrates
the overall steps of our proposed model. Here 2 - Class
Classification refers to COVID and NORMAL, 3 - Class
Classification refers to complex scenarios (COVID, NORMAL,

and PNEUMONIA_VIRAL) and 4 - Classification refers to more
complex scenerios (COVID, NORMAL, PNEUMONIA_VIRAL,
and PNEUMONIA_BACTERIA). Each step of this workflow is
briefly described in the following subsections.

2.1 Dataset (CovRecker)

We have started building our proposed model by collecting the
dataset from six different data sources and named it CovRecker. It
contains both X-ray and CT scan images (i.e., chest radiology
images). Table 1 shows a summary of our collected dataset.

Table 1 shows that our dataset contains 1385 COVID images,
1486 NORMAL images, 1530 PNEUMONIA_VIRAL images and
1430 PNEUMONIA_BACTERIA images. However, in our dataset,
there are 5071 X-ray images and 760 CT scan images. So our dataset,
CovRecker, consists of a total of 5,831 images. CovRecker has been
created by collecting images from these six publicly available datasets. A
brief description of these data sources is shown in Table 2.

By comparing Table 2 with our dataset, CovRecker, we can observe
that our dataset contains less number of images. This is because the
publicly available datasets contained images of some other classes such as
SARS. But in our research, we are concerned about evaluating the results
of COVID, NORMAL, PNEUMONIA_VIRAL, and PNEUMONIA_
BACTERIA using both X-ray and CT scan images. So, all other images
except the images of COVID, NORMAL, PNEUMONIA_VIRAL, and
PNEUMONIA_BACTERIA were removed from the dataset.

From our dataset, CovRecker, four sample X-ray images have been
presented in Figure 2.We have selected one X-ray image from each class
to have an idea about our dataset. By comparing the images side by side,
we can observe their differences. X-rays of normal or non-COVID
patients show no greyish parts. The lungs’ image is clean and clear. On
the contrary, X-ray images of both COVID-19 and pneumonia patients
show hyper-lucent lung fields which indicate hyperinflation due to
obstruction of airways. We can see patchy opacities which are caused
by bacterial co-infection. Though COVID-19 patients do not develop
pneumonia, their infection areas and symptoms could be similar. If we
compare the X-ray image of COVID-19 and Pneumonia cases with that
of normal cases, we can see that the chest wall is inflated in the case of
COVID-19 and Pneumonia cases. The position of the heart, trachea and
mediastinum is also different. In the case of COVID-19 cases, the X-ray
image shows that the opacity of the chest wall and all other vital organs
are more obscure compared to Pneumonia patients. Our task with this
research is to differentiate these dissimilarities using CNN models.

From our dataset, CovRecker, four sample CT scan images have
been presented in Figure 3. We have selected one CT scan image from
each class to have an idea about our dataset. From the images, we can
identify the difference between a COVID-19 patient from a non-
COVID patient. The affected or white areas are more pronounced
and larger in COVID-19 patients compared to non-COVID and
normal Pneumonia patients. Which is also seen in X-ray images.

2.2 Data labelling

We created three subsets from the CovRecker dataset for 2-class,
3-class, and 4-class classification of both X-ray and CT scan images,
and labeled the images to train our 42-layered proposed model. We

FIGURE 1
Block diagram of our proposed model (i.e., CovRoot).
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TABLE 1 A summary of our dataset, CovRecker.

Class Number of X-ray images Number of CT scan images

COVID 1,185 200

NORMAL 1,326 160

PNEUMONIA_VIRAL 1,330 200

PNEUMONIA_BACTERIA 1,230 200

TABLE 2 Details of dataset (CovRecker).

Datasets Number of X-ray images Number of CT scan images

COVID-chestxray-dataset Cohen (2020) 468 0

COVID-CT UCSD-AI4H (2020) 0 1,250

SARS-COV-2 CT-scan dataset Eduardo (2020) 0 1,250

COVID-19 xray dataset (train and test sets) Khoong (2020) 5,451 0

COVID-19 radiography database Rahman (2020) 3,616 0

COVID-19 and common pneumonia chest CT dataset Yan (2020) 0 828

Total 9,535 3,328

FIGURE 2
X-ray images for more complex scenarios (COVID, NORMAL, PNEUMONIA_VIRAL, and PNEUMONIA_BACTERIA).

FIGURE 3
CT scan images for more complex scenarios (COVID, NORMAL, PNEUMONIA_VIRAL, and PNEUMONIA_BACTERIA).
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labeled COVID and NORMAL for 2 classes, COVID, NORMAL and
PNEUMONIA_VIRAL for 3 classes, and COVID, NORMAL,
PNEUMONIA_VIRAL and PNEUMONIA_BACTERIA for
4 class classification.

Two classes are shown in Table 3 where the number of COVID
images is 1,185 for X-ray and 200 for CT scan images. There are also
1,326 X-ray images and 160 CT scan images in NORMAL scenario in
Table 3. Table 4 shows the complex scenarios (i.e., COVID, NORMAL,
PNEUMONIA_VIRAL) where the number of X-ray images and CT
scan images remain the same for COVID and NORMAL scenarios, but
for the PNEUMONIA_VIRAL scenario, the number of X-ray images is
1,330 and CT scan images is 200. Table 5 represents more complex
scenarios such as COVID, NORMAL, PNEUMONIA_VIRAL, and
PNEUMONIA_BACTERIA where the number of X-ray images and
CT scan images remains the same as Table 4, but only for the
PNEUMONIA_BACTERIA scenario, the number is 1,230 for X-ray
images and 200 for CT scan images.

2.3 Architecture of our proposed model

CNN, a multi-layered artificial neural network, can process large
datasets with high accuracy (Shiri et al., 2023). The CNN consists of
three basic layers which are Convolution Layer, Pooling Layer, and
Dense Layer (Fully Connected Layer) (Ngan et al., 2024). However,
in addition to these three basic layers, our proposed model contains

three more widely used basic layers in CNN to make our proposed
model more accurate. These are: Batch Normalization Layer, Flatten
Layer, and Dropout Layer.

The first layer after receiving input is the Convolution Layer
which acts as the building block of CNN. It mainly focuses on the
extraction of high-level features (Zhao et al., 2024). After the
convolutional layer usually comes the pooling layer. The pooling
layer reduces the dimension of the input parameters and outputs a
downsampled layer (Ngan et al., 2024). Then comes the batch
normalization layers which is perhaps one of the most successful
architectural innovations in deep learning (Segu et al., 2023). The
main reasons for using this technique are to generate faster training
and enable a higher learning rate (Wu et al., 2024). After that, the
flatten layer is used to collapse the spatial dimensions of the input
into the channel dimension. It converts the entire feature map
matrix into a column and passes it down for further processing.
Next comes the dense layer which is responsible for deciding which
features match mostly with a specific class. The dense layer usually
works with features with a specific weight and finally determines the
class. CNN models sometimes overfit a training dataset due to an
insufficient amount of data. This issue can be solved using a dropout
layer. It acts as a regularization method and trains a lot of neural
networks keeping different architectures in parallel (Salehin and
Kang, 2023).

Our proposed model follows the architecture of an EfficientNet
model with some modifications for working with COVID-19

TABLE 3 Representing the number of X-ray and CT scan images for two-class (i.e., normal scenario) classification.

Class Number of X-ray images Number of CT scan images

COVID 1,185 200

NORMAL 1,326 160

Total 2,511 360

TABLE 4Representing the number of X-ray andCT scan images for three-class classification (i.e., complex scenario) considering other viral infection such as
PNEUMONIA_VIRAL.

Class Number of X-ray images Number of CT scan images

COVID 1,185 200

NORMAL 1,326 160

PNEUMONIA_VIRAL 1,330 200

Total 3,841 560

TABLE 5 Representing the number of X-ray and CT scan images for four-class classification (i.e., more complex scenario) considering other viral and
bacterial infection such as PNEUMONIA_VIRAL and PNEUMONIA_BACTERIA.

Class Number of X-ray images Number of CT scan images

COVID 1,185 200

NORMAL 1,326 160

PNEUMONIA_VIRAL 1,330 200

PNEUMONIA_BACTERIA 1,230 200

Total 5,071 760
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detection. Figure 4 represents the architecture of our
proposed model.

Figure 4 shows that CovRoot has 24 Conv2D layers,
4 MaxPooling2D layers, 2 AvgPooling2D layers,
2 BatchNormalization layers, 5 DepthWiseConv2D layers,
1 Flatten layer, 3 Dense layers and a Dropout layer.

To come up with our proposed model, we have tried different
architectures such as VGG, ResNet, and so on. But our current
architecture yields the best result and our proposed model’s training
time has also been reduced. To build our proposed 42-layered CNN
model, we followed a build-up process where we increased the layer
count after each training session until we reached a scenario where
increasing the layer count neither increased model accuracy nor
decreased the training time. At first, we started with 4 conv2d layers,
2MaxPooling layers (max_pooling2d), 1 flatten layer, 2 dense layers,
and 1 CovRoot Block. Where each CovRoot Block is composed of
4 conv2d layers and 1 depthwise_conv2d layer. Afterward, we
increased the number of CovRoot Blocks and Pooling layers to
come up with our current CovRoot model. Here, batch_
normalization and dropout layer have been used to stabilize our
proposed model. The combination of max_pooling2d and avg_
pooling2d layers increased the accuracy of our proposed model.
We have used LeakyRelu as an activation function. We have tried
with Relu and LeakyRelu and noticed better performance for
LeakyRelu. So we opted for LeakyRelu. As a loss function, we
have used Categorical-Cross-Entropy for 3 class and 4 class
classification and Binary Cross Entropy for 2 class classification.

As an optimizer, we have applied Adam for updating weight,
calculating cross-entropy, and selecting the learning rate which is
0.001 in our case. We have used the callback function provided by
Tensorflow API to reduce the learning rate depending on
validation loss.

2.4 Training and testing dataset

Our Proposed model, CovRoot, has been trained using the
labeled dataset (see in Figure 1). We have built and applied the
proposed 42-layered CNN model on the training dataset. Then
testing dataset was used on the deep-learning model trained and
validated from the training dataset because we have used five-fold
cross-validation to get a better deep-learning model. It is to be noted
that we have used 5,071 X-ray and 760 CT scan images from the
CovRecker dataset for training and validating our proposed model.
For the evaluation of our proposed model, we have considered
15 chest X-ray images and 10 CT scan images for testing purposes
for each class.

Our proposed model, CovRoot, was implemented using
TensorFlow’s Keras API. Our proposed model follows the
architecture of EfficientNet. This approach helped to reduce
model training time and increase model accuracy. The training
time for architectures such as VGG16, VGG19 and ResNetV3 was
recorded as 122, 126, and 145 s respectively for each epoch.
However, training time for our proposed model was recorded as

FIGURE 4
Architecture of our proposed 42-layer CNN model, CovRoot.
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92–112 s depending on classification. This helped us to save up to 1 h
on each training session.

2.5 Performance evaluation

For each class, we have discussed the performance of our
proposed model for both X-ray and CT scan images by selecting
some parameters in the following subsections.

2.5.1 Evaluation metrics
We have evaluated our proposed model based on well-known

metrics such as specificity, sensitivity, accuracy (Parvez and Paul,
2014), precision and F1-Score (Hussain et al., 2021). These
metrics are important for measuring most of the models
available nowadays.

2.5.2 Performance on X-ray images
Table 6 illustrates the performance of X-ray images for 2 class,

3 class, and 4 class classification where the metrics for multi-class
classification are computed using micro-averaging. It shows that in
the case of X-ray images, the accuracy of our proposed model for
three-class classification is 98% which is more than the accuracy for
two-class and four-class images. That means given X-ray images, our
model is capable of successfully detecting COVID, NORMAL and
PNEUMONIA_VIRAL with a higher accuracy rate. Moreover, other
metrics like Specificity, Precision and F1 score also illustrate that our
42-layered proposed model has a better performance in the case of
three-class classification.

However, this is because, in the 4-class classification, there are
two types of Pneumonia images. And these two images
(PNEUMONIA_VIRAL and PNEUMONIA_BACTERIA) vary a
little. That is why our model can not distinguish these two types
of images as accurately as our model can distinguish COVID,
NORMAL, and PNEUMONIA_VIRAL images.

The training and validation accuracy and the training and
validation loss graphs of X-ray images for 3 class classification
are shown in Figure 5. In the training and validation accuracy
graph, X-axis represents the number of epochs which is 50 in our
case. And the Y-axis represents accuracy. Here we can see that the
accuracy fluctuated a bit for the first few epochs and then the
accuracy started to increase gradually. And after 23 epochs, the value
remains almost constant which is around 98%. And in the training
and validation loss graph, epochs are presented in X-axis and the
loss in Y-axis. Here we can see that the loss function has gradually
decreased to become close to 0. As there is little difference between
training loss and validation loss, it can be stated that our 42 layered
proposed model is trained perfectly and it can predict better instead
of being over-fitted or under-fitted.

2.5.3 Performance on CT scan images
Table 7 illustrates the performance of CT scan images for 2 class,

3 class and 4 class classification.
Our 42-layered proposed model performs best for two-class

classification of CT scan images, achieving the highest values in each
evaluation metric. However, the accuracy goes down as we add more
classes to our model for CT scan images. This happens because there
is little difference between the other 2 classes to be distinguished by
our proposed model.

In Figure 6, the training and the validation accuracy and the
training and the validation loss graphs of 3 class classification for CT
scan images are shown. In case of training and validation curves, we
can clearly see that there are huge fluctuations in between training
accuracy and validation accuracy. And also the same result goes for
training and validation loss graph.

3 Experimental results and discussion

In this section, we have discussed the experimental results of
our proposed model CovRoot. We have compared it with some
previously published models for each class for detecting
COVID-19. For a more precise evaluation, we took help from
a doctor.

TABLE 6 Performance evaluation of X-ray images.

Class Specificity (%) Sensitivity (%) Accuracy (%) Precision (%) F1 score

2 class 87 100 93 88 0.94

3 class 100 93 98 100 0.97

4 class 100 80 95 100 0.89

FIGURE 5
Training and validation accuracy and loss graph of X-ray images
for 3 class classification.
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3.1 Comparison with the existing models

As previously mentioned, other research in this area is also
impressive. Many of them also tried to propose models which can
also detect COVID-19 using image processing techniques. We
evaluated our proposed model’s accuracy by comparing it with
previous works. Tables 8–10 represent the summary of different
studies that are conducted for COVID-19 detection using X-ray
images, CT scan images and both types of images respectively.

Table 8 illustrates that Narin et al. (2020) and Sethy and Behera
(2020) worked solely with X-ray images. They have only worked for
COVID-19 and non-COVID-19 patients. Apostolopoulos and
Mpesiana (2020) and Ozturk et al. (2020) also worked on X-ray
images only, but they went one more step. They have conducted
their research for detecting non-COVID, COVID-19 and
Pneumonia. The research that we have discussed so far only used
X-ray images. Table 9 shows that Shah et al. (2021), Zheng et al. (2020)
and Li L. et al. (2020) worked on CT scan images. However, they were
also limited in detecting only non-COVID and COVID-19 patients.
Moreover, except for the work done by Li L. et al. (2020), others’
accuracy was not so great. Table 10 illustrates that there are a few studies
where COVID-19 was detected using both image types. Among them,
Panwar et al. (2020b) and Maghdid et al. (2021) classified only COVID

and non-COVID cases. Rahman et al. (2021) also used both of these
image types and classified normal, COVID, and viral pneumonia cases.

As far as we know, there has been no research work done till now
where both these images have been used for more complex scenarios
(COVID, NORMAL, PNEUMONIA_VIRAL, and PNEUMONIA_
BACTERIA). So, we have developed a CNN architecture for
eliminating this barrier. We are the first one to propose a CNN
model where we have used both these image types to detect
COVID, NORMAL, and two types of Pneumonia (PNEUMONIA_
VIRAL and PNEUMONIA_BACTERIA). For our proposed study, we
have generated the dataset CovRecker by gathering data from six
different sources. Our proposed model has performed better in
terms of accuracy compared to previously proposed models from
different studies. Here, we found that for CT scan images, the
performance of our model is best only for two-class classification
with an accuracy of 100%. For three-class and four-class CT scan
images, the performance is comparatively weak (70% and 60%
respectively). However, our proposed model has shown a consistent
performance for all the classes of X-ray images. Tables 8–10 explain that
we have achieved the highest accuracy in three-class (97.77%) and four-
class (95%) classification by using X-ray images with our proposed
model compared to any other previously proposed models.

As we have briefly discussed already our proposed model has a
better performance on X-ray images overall, we have tried our best to
find out the most possible reason for that. In Figures 2, 3, we have
shown X-ray and CT scan images of different classes. From these two
figures, we can see the difference between X-ray and CT scan images.
COVID-affected areas are defined by the white or greyish part. This
portion is more prominent for CT scan images. For this reason, our
proposed model could easily pick the features from CT scan images.
Thus accuracy of 2 class classification is higher for CT scan images. On
the contrary, X-ray images of both classes of pneumonia patients show
quite dissimilarities which could be picked up by our model. However,
this is not the case with CT scans of pneumonia patients. For this
reason, the accuracy of our model drops for 3-class and 4-class
classification of chest CT scan images.

3.2 Clinical evaluation

We have already mentioned that our proposed model cannot
substitute the prevailing testing system. Rather it may help
doctors to make an appropriate decision. To evaluate our
proposed model’s performance more efficiently, we took help
from a doctor and used some images randomly from our dataset.
Figures 7–10 shows the obtained results of X-ray images and
Figures 11–14 shows the obtained results of CT scan images.
Then these images are diagnosed and explained by the doctor

TABLE 7 Performance evaluation of CT scan images.

Class Specificity (%) Sensitivity (%) Accuracy (%) Precision (%) F1 score

2 class 100 100 100 100 1.0

3 class 55 100 70 53 0.69

4 class 73 30 60 30 0.2

FIGURE 6
Training and validation accuracy and loss graph of CT scan
images for 3 class classification.
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based on radiographical symptoms, such as focal consolidation,
ground glass appearance, disseminated opacity of lung fields, etc.

At first, the doctor has seen some of the X-ray images.
According to her, Figure 7 represents a COVID-19 infected
person. We can see that our proposed model also indicates that
COVID-19 with 92% confidence. She says that Figure 8 is the
X-ray image of a normal person. Our proposed model also
indicates that as NORMAL with 93.21% confidence. She states
that Figure 9 is the X-ray image of a PNEUMONIA_VIRAL
patient. Our proposed model is 85.21% confident about it. She
mentions that Figure 10 is the X-ray image of a
PNEUMONIA_BACTERIA patient. Our proposed model
also indicates it as PNEUMONIA_BACTERIA with
89.33% confidence.

TABLE 8 Accuracy comparison of our proposed model, CovRoot, with other existing models for X-ray images.

Reference Image
type

Model 2 class
(X-ray) (%)

2 class (CT
scan)

3 class
(X-ray)

3 class (CT
scan)

4 class
(X-ray)

4 class (CT
scan)

Narin et al. (2020) X-ray InceptionV3 97 — — — — —

Sethy and Behera (2020) X-ray ResNet-50
+ SVM

95.38 — — — — —

Apostolopoulos and
Mpesiana (2020)

X-ray VGG-19 98.75 — 93.48% — — —

Ozturk et al. (2020) X-ray Darknet 98.08 — 87.02% — — —

Proposed study X-ray and CT
scan

CovRoot 93.33 100% 97.77% 70% 95% 60%

TABLE 9 Accuracy comparison of our proposed model, CovRoot, with other existing models for CT scan images.

Reference Image
type

Model 2 class
(X-ray)

2 class (CT
scan) (%)

3 class
(X-ray)

3 class (CT
scan)

4 class
(X-ray)

4 class (CT
scan)

Shah et al. (2021) CT scan CTnet-10 — 82.1 — — — —

Zheng et al.
(2020)

CT scan UNet
+ 3D

— 90.8 — — — —

Li L. et al. (2020) CT scan COVNet — 95 — — — —

Proposed study X-ray and CT
scan

CovRoot 93.33% 100 97.77% 70% 95% 60%

TABLE 10 Accuracy comparison of our proposed model, CovRoot, with other existing models for both X-ray and CT scan images.

Reference Image
type

Model 2 class
(X-ray) (%)

2 class (CT
scan) (%)

3 class
(X-ray)

3 class (CT
scan)

4 class
(X-ray)

4 class (CT
scan)

Maghdid et al.
(2021)

X-ray and CT
scan

Modified
CNN

94 94.1 — — — —

Panwar et al.
(2020b)

X-ray and CT
scan

Modified
VGG-19

89.47 95 — — — —

Rahman et al.
(2021)

X-ray and CT
scan

CoroPy 95.73 99.17 92.45% 68.81% — —

Proposed study X-ray and CT
scan

CovRoot 93.33 100 97.77% 70% 95% 60%

FIGURE 7
Representation of X-ray image of COVID.
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After commenting on the X-ray images, the doctor has seen
some CT scan images. According to her, Figure 11 represents a
COVID-19 infected person. Our proposed model is also 58.22%
confident that it was the CT scan image of a COVID-19-infected
person. She says that Figure 12 is the CT scan image for a normal
person. And our proposed model also indicates it as NORMAL with
51.3% confidence. So, these two CT scan images were classified
correctly by our proposed model though it was not fully confident
about the classification. However, she states that Figure 13 is the CT
scan image of a PNEUMONIA_VIRAL patient. Unfortunately, our
proposed model was not confident about it and therefore wrongly

classified that image as a COVID-19-infected CT scan image.
Though the professional indicated it as PNEUMONIA_VIRAL,
our proposed model was 52.31% confident that it was a COVID-
19 case. At last, she mentions Figure 14 as a PNEUMONIA_
BACTERIA case. However, again our proposed model was
almost confused to classify that correctly as the CT scan image of
a PNEUMONIA_BACTERIA infected person as the confidence of
PNEUMONIA_VIRAL and PNEUMONIA_BACTERIA class is
almost the same.

FIGURE 8
Representation of X-ray image of NORMAL.

FIGURE 9
Representation of X-ray image of PNEUMONIA_VIRAL.

FIGURE 10
Representation of X-ray image of PNEUMONIA_BACTERIA.

FIGURE 11
Representation of CT scan image of COVID.

FIGURE 12
Representation of CT scan image of NORMAL.

FIGURE 13
Representation of CT scan image of PNEUMONIA_VIRAL.
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4 Conclusion

In this paper, we have proposed a novel CNN model named
CovRoot which works successfully in more complex scenarios
(i.e., COVID, NORMAL, PNEUMONIA_VIRAL, and
PNEUMONIA_BACTERIA). From our result analysis, we have
found that the performance of our proposed model is better for
two-class classification where it can diagnose with 100% accuracy
using CT scan images and 93.33% accuracy using X-ray images. We
have also found that the performance of our proposed model is
better for X-ray images in the case of three-class and four-class
classifications. In the case of three-class classification, our proposed
model can diagnose with 97.77% accuracy using X-ray images and
70% accuracy using CT scan images. In the case of four-class
classification, the accuracy is 95% using X-ray images and 60%
using CT scan images. In our experiment, we have achieved an
overall better performance for X-ray images. In this research, we had
limited hardware resources and less availability of dataset. Our
future goal is to use updated models for better accuracy. We also
have a goal of applying our model to analyze medical images of other
diseases in the future.
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