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Acoustic sensing has been widely exploited for the early detection of harmful
situations in urban environments: in particular, several siren identification
algorithms based on deep neural networks have been developed and have
proven robust to the noisy and non-stationary urban acoustic scene. Although
high classification accuracy can be achieved when training and evaluating on the
same dataset, the cross-dataset performance of such models remains
unexplored. To build robust models that generalize well to unseen data, large
datasets that capture the diversity of the target sounds are needed, whose
collection is generally expensive and time consuming. To overcome this
limitation, in this work we investigate synthetic data generation techniques for
training siren identification models. To obtain siren source signals, we either
collect from public sources a small set of stationary, recorded siren sounds, or
generate them synthetically. We then simulate source motion, acoustic
propagation and Doppler effect, and finally combine the resulting signal with
background noise. This way, we build two synthetic datasets used to train three
different convolutional neural networks, then tested on real-world datasets
unseen during training. We show that the proposed training strategy based on
the use of recorded source signals and synthetic acoustic propagation performs
best. In particular, this method leads tomodels that exhibit a better generalization
ability, as compared to training and evaluating in a cross-dataset setting.
Moreover, the proposed method loosens the data collection requirement and
is entirely built using publicly available resources.
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1 Introduction

The urban environment is characterized by a complex and dynamic acoustic scene
where several agents produce overlapping sound events, some of which are artificially
designed to alert humans of emergency situations that require their attention (Marchegiani
and Fafoutis, 2022). The urban soundscape, therefore, contains information about the city
itself. From the analysis of a recorded audio signal various details can be extracted, ranging
from high level information such as a description of the recorded acoustic scene (e.g.,
whether it is a street, a station, a store etc.), to more fine-grained figures such as the weather
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condition or the time of the day when the recording was taken, and
further to the identification of specific sounds appearing throughout
the recording (e.g., the recognition of an alarm sound).

As smart vehicles start to populate the roads, major efforts are
being devoted to enhance their perceptual abilities with the aim of
improving their environmental awareness and strengthening their
capacity to interact with other road agents. Autonomous cars, in
fact, rely on information extracted in real time from multi-modal
sensors to understand the environment, take driving decisions and
interact with each other and with human drivers (Hussain and
Zeadally, 2019).

In recent years, visual perception has been the primary research
focus and it constitutes the main source of information for
autonomous vehicles (Hussain and Zeadally, 2019). Nevertheless,
the analysis of acoustic signals can provide important
complementary information to enhance their environmental
awareness. As a matter of fact, harmful situations are often
announced by a sound event: emergency vehicles such as
ambulances, police cars or fire trucks are equipped with sirens
that announce their proximity and require cars to clear the way,
whereas car horns can be used to quickly attract attention on an
acute danger. Acoustic perception, moreover, provides specific
advantages over vision: first, it is effective in situations where
occlusions (e.g., caused by presence of buildings or other
vehicles) or low-visibility conditions hinder the observation of
visual cues. Second, it allows the detection of events that are not
characterized by a corresponding visual signal, such as a car
honking. Moreover, the lower dimensionality of acoustic signals
enables a computationally efficient processing that best fits the
deployment on embedded devices for real-time on-vehicle
operation (Yin et al., 2023). Finally, in the safety-critical context
of autonomous driving, the use of different sensing modalities to
retrieve information serves as a mean to boost the reliability of the
system. Every sensor mounted on the vehicle suffers in fact from
specific limitations: visual sensors are hindered by low-visibility
conditions, whereas acoustic sensors are impacted by strong
background noise produced by wind, the ego-vehicle and the
traffic background. For this reason, the use of multiple sensing
modalities can compensate for the individual drawbacks to produce
a more reliable prediction of events happening in the surrounding,
making the use of audio analysis a useful resource for the overall
performance of the system.

These considerations fueled the research on how to identify (and
localize) emergency sounds in traffic scenarios (Tran and Tsai, 2020;
Cantarini et al., 2021; Furletov et al., 2021; Sun et al., 2021;
Marchegiani and Newman, 2022; Walden et al., 2022). In
particular, several studies have targeted acoustic siren
identification using both traditional signal processing (Meucci
et al., 2008; Fazenda et al., 2009) and deep learning (Tran and
Tsai, 2020; Cantarini et al., 2021; Marchegiani and Newman, 2022).
The problem of siren identification is a sub-task of environmental
sound classification (Piczak, 2015) (i.e., the identification of artificial
or natural audio events different from speech or music) where the
aim is to discriminate a siren signal from any other sound,
generically labeled as background noise. This task has some
application-specific challenges: first, emergency sirens have
different patterns that can be grouped into two-tone, wail and
yelp, each with different periodicity and time-frequency evolution

(Marchegiani and Fafoutis, 2022). Not only the type of sirens varies
among different countries, but within each siren type further
variations can be observed in the time-frequency behavior. In
other words, even between two instances of the same siren some
variations may occur: in Germany, for instance, the lower
fundamental frequency of the two-tone siren used can vary
within the interval [360, 630]Hz, as regulated in DIN14610:2022-
03 (2022). Furthermore, the strong and non-stationary noise that
characterizes the urban acoustic scene constitutes a major challenge
for siren identification algorithms.

Deep-learning techniques have been proven to achieve high
classification accuracy in low signal-to-noise-ratio (SNR) conditions
(Marchegiani and Newman, 2022). Several models based on
convolutional neural networks (CNNs) have been proposed and
achieve a high classification accuracy (> 95%). A large-scale CNN
based on ensemble models is proposed in Tran and Tsai (2020) and
achieves state-of-the-art accuracy, but suffers from a large model
size that hinders its deployment on embedded devices. In
Marchegiani and Newman (2022) a U-net (Ronneberger et al.,
2015) is employed to perform noise reduction and improve
robustness to low SNR levels, but still entails a large size and
requires complex training strategies. On the other hand, small-
scale models based on CNNs have been successfully used to identify
country-specific instances of a siren sound (Cantarini et al., 2021;
Cantarini et al., 2022).

One of the main challenges in the design of robust siren
identification systems is the strong diversity of siren signals
across the world, that requires algorithms to have a good
generalization ability to unseen data. Although using large
recorded datasets that capture the diversity of the sirens might
benefit generalization capabilities, data collection is an expensive
and time consuming procedure that has a limited scalability to
systems that should be deployed in several different countries.
Moreover, only a few datasets for siren identification are
available, with a limited class diversity (Asif et al., 2022; Shah
and Singh, 2023), far from representing all the existing siren
variations.

Due to the strong diversity of siren sounds, in a real-world
setting it is unlikely that the data seen during training is able to
accurately represent all possible scenarios that might be faced by the
model deployed on vehicles. For this reason, evaluating the model
performance on the same dataset used for training, as is usually done
in the acoustic siren identification literature, may lead to over-
optimistic accuracy estimations. As a first contribution, in this work
we analyze the performance of different siren identification models
in a cross-dataset setting, i.e., when the dataset used for evaluation
differs from the one used for training. Under the assumption that in
realistic scenarios the data that will be seen at test time is unavailable
(or only partially available) during the design and training phases,
we then propose, as a second and main contribution, the use of
synthetic data to train siren identification models: this technique,
widely adopted in the image recognition domain (Jaderberg et al.,
2014), obviates the need to collect real-world data for training
purpose, speeding up the model design loop and cutting data
recording and labeling costs. We evaluate two different data
generation techniques: first, we generate synthetic siren signals
(of two-tone, wail and yelp type) emitted by emergency vehicles,
and simulate source motion and acoustic propagation using the
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pyroadacoustics simulator (Damiano and van Waterschoot, 2022).
Alternatively, we collect a small amount of samples of stationary
sirens (of the three types) from public databases, and feed them to
pyroadacoustics to simulate acoustic propagation and Doppler
effect. As a third contribution, we introduce several modifications
to three state-of-the-art CNN models, in order to build an effective
end-to-end siren identification system. In particular, we first
enhance an existing siren classification network (Cantarini et al.,
2021), by introducing batch normalization layers and dropout
operations to boost generalization, and global average pooling to
reduce the model complexity. We then adapt two BCResNet
architectures (Kim et al., 2021), originally proposed for the
acoustic scene classification task, to target siren identification.
These architectures, to the best of the authors’ knowledge, are
adopted for the first time in this work for the siren
identification task.

We train the CNN models on the two synthetically generated
datasets, and evaluate them on three real-world (unseen) datasets to
assess the effectiveness of the data generation procedure. We finally
show that the proposed training technique, based on the use of
recorded siren signals and synthetic acoustic propagation, leads to a
higher performance compared to models trained on a real-world
dataset and evaluated in a cross-dataset setting.

The rest of the paper is organized as follows. In Section 2 we
discuss related works on siren identification based on CNN models.
In Section 3 we describe the proposed synthetic data generation
strategies and training procedures, and introduce the CNN
architectures adopted to solve the classification task. We then
evaluate the training strategies and the different models in
Section 4, and draw conclusions in Section 5.

2 Related work

2.1 Siren identification methods

In recent years the problem of identifying sirens in an urban
environment has been addressed by exploiting traditional signal
processing approaches (Meucci et al., 2008; Fazenda et al., 2009) as
well as machine learning (Schröder et al., 2013; Nandwana and
Hasan, 2016; Carmel et al., 2017) and deep learning (Beritelli et al.,
2006; Tran and Tsai, 2020; Cantarini et al., 2021; Furletov et al.,
2021; Sharma et al., 2021; Sun et al., 2021; Cantarini et al., 2022;
Marchegiani and Newman, 2022; Walden et al., 2022) techniques.
Most state-of-the-art solutions rely on deep neural networks, due to
their proven robustness to strong background noise and complex
non-stationary acoustic scenes (Tran and Tsai, 2020; Marchegiani
and Newman, 2022). The majority of these models apply image
processing techniques to a time-frequency representation of the
audio signal, adopting short-time Fourier transforms (STFTs),
gammatonegrams or log-mel spectrograms as input features;
others, instead, use the raw audio waveform (Beritelli et al., 2006;
Furletov et al., 2021), or a combination of the two approaches (Tran
and Tsai, 2020; Sun et al., 2021). In more detail, in Tran and Tsai
(2020) a two-branch neural network is proposed for the
classification of sirens (two-tone, wail and yelp) and vehicle
horns. The first branch combines mel-frequency cepstral
coefficients (MFCCs) and log-mel spectrograms extracted from 1-

channel audio signals in a 2D image, processed via a 2D-CNN
architecture, while the second one employs a 1D-CNN to
automatically extract features from the raw audio waveform. The
ensemble of these two networks achieves an accuracy of 98.24% in
the classification task. The model is trained and evaluated on a
dataset containing both public and internal data. In Marchegiani
and Newman (2022) the classification of emergency sirens (two-
tone, wail, yelp) and vehicle horns is tackled via a multi-task learning
scheme: a U-net (Ronneberger et al., 2015) architecture is adopted to
apply semantic segmentation to gammatonegram features extracted
from 1- and 2-channel audio signals, with the goal of removing the
background noise. Fully-connected layers are added at the output of
the encoder part of the network to perform classification. The model
is trained and evaluated on synthetic data: recorded siren sounds are
fed to filters that simulate acoustic propagation and Doppler effect,
and the resulting signals are combined with custom recorded
background noise at various SNR levels. The model achieves an
average accuracy of 94% with SNR ∈ [−40,+10] dB, but the
generalization performance to unseen non-synthetic data is not
thoroughly assessed. A small-scale CNN architecture inspired by
the VGG network (Simonyan and Zisserman, 2014) is proposed in
Cantarini et al. (2021) to identify the Italian ambulance siren
(belonging to the two-tone siren type) in noisy urban scenes with
SNR ∈ [−15, 0] dB. The model takes as input the STFT of a single
channel audio signal, and reaches an average accuracy of 96.72%
when trained and evaluated on synthetic data. To create the dataset,
a single audio clip of the Italian siren is fed to a simulator that
emulates acoustic propagation and Doppler effect, and recorded
background noise is added afterwards. The authors also show that a
classification accuracy of 86.87% is achieved when the model is
exposed to SNR ∈ [−30,−20] dB, unseen during training. However,
the generalization ability to unseen siren types and real-world
datasets is not evaluated.

Even though these systems exploit synthetic data for training
siren identification networks, the effectiveness of their use is not
thoroughly assessed by evaluating the model performance on
unseen, purely real-world data. A similar assessment is carried
out in Cantarini et al. (2022), where a model pre-trained on
synthetic data is fine-tuned in a few-shot setting to recognize the
Italian two-tone ambulance siren: although this scenario represents
a realistic use-case of synthetic data and shows their effectiveness in
the real-world application, it is tailored to a specific target sound.

2.2 Data augmentation strategies for audio
classification

The use of synthetic data to train deep learning models is a form
of data augmentation that consists of artificially crafting samples,
either starting from existing datasets, or by generating data from a
signal model. Several data augmentation techniques have been
developed both in the computer vision (Shorten and
Khoshgoftaar, 2019; Man and Chahl, 2022), and audio signal
processing (Wei et al., 2020) fields. Due to the different nature of
image and audio signals, domain-specific augmentation strategies
have been developed, notwithstanding the existence of some
common methods (Wei et al., 2020). In audio applications (e.g.,
audio classification, speech recognition, audio signal denoising), the
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most common techniques involve the application of (non-)linear
transformation to either the raw audio or some time-frequency
representation (e.g., spectrogram) of a recorded sample. Two types
of transformations can be identified: the first category includes
operations on a single audio segment, like time-stretching and
pitch-shifting (Wei et al., 2020), or masking operations applied to
the spectrogram (Park et al., 2019). The second category is based on
combining multiple signals to obtain new audio samples. Adding
white (or colored) noise to an audio signal, summing or temporally
juxtaposing multiple audio samples to create a synthetic mixture,
and interpolating between two or more audio segments are the main
techniques that belong to this category (Wei et al., 2020).

A different approach to audio data augmentation is the synthetic
generation of (spatial) acoustic scenes. This approach, usually
adopted in indoor scenarios, is based on placing sound sources
in a virtual acoustic environment (i.e., a room) and simulating the
sound received by a listener located in an arbitrary point of the
acoustic scene. For this purpose, room impulse responses between
the position of the source and listener are simulated (or, alternatively
and in presence of real rooms, recorded) and applied to recorded,
anechoic audio samples representing the signals emitted by the
sound sources to create synthetic scenes. (Koyama et al., 2022).
Although this method is widely adopted in room acoustics, its use in
outdoor spaces is limited due the challenges posed by the accurate
physical simulation of moving sources, Doppler effect and realistic
sounding urban environments (Damiano and van Waterschoot,
2022; Yin et al., 2023).

Within this paper we investigate synthetic data generation
techniques for training siren identification models that generalize
well to multiple real-world datasets. We propose two different data
generation methods: the first one is based on the synthetic
generation of (stationary) siren source signals, followed by the
simulation of acoustic propagation, ground reflection and
Doppler effect to emulate the behavior of a moving emergency
vehicle. The second one, similar to (Cantarini et al., 2021;
Marchegiani and Newman, 2022), relies on the use of a small set
of recorded stationary siren sounds, collected in public databases,
followed by the simulation of the above mentioned acoustic
propagation effects. Finally, to craft realistic acoustic scenes, we
superimpose to the simulated siren real-world urban background
noise taken from the SONYC dataset (Cartwright et al., 2020) and
evaluate noise augmentation strategies. In the next section, we
introduce the details of the proposed data generation techniques
and the CNN architectures.

3 Proposed methodology

We hereby introduce two distinct data generation strategies, that
will be compared and evaluated in Section 4:

1. The first one consists in defining a parametric model for the
generation of synthetic stationary siren source signals, where
the term source signal refers to the emitted siren sound prior to
any propagation effect; the motion of the emergency vehicle is
then simulated by feeding these signals to the pyroadacoustics
simulator, that provides an accurate emulation of acoustic
propagation, ground reflection, air absorption and Doppler

effect. This method allows to generate siren sounds without
requiring any real-world recording, and the parametric model
allows to create infinitely many different source signals.

2. The second one relies on the use of a small set of recorded siren
sounds, provided as input to pyroadacoustics to emulate source
motion. The recorded signals employed in this case should be
stationary and clean from background noise. Whereas the
source signal diversity is reduced compared to the first
method, the recorded sirens provide a higher realism than
those generated synthetically.

The only difference between the two methods lies therefore in
the source signals used as input to the propagation simulator. In the
next subsections, we describe the two components of the synthetic
data generation, namely, the generation of the siren source signals,
and the definition of the acoustic scene including the simulated
moving source and the underlying background noise.

3.1 Synthetic siren signal generation

The siren sound is by its nature an artificial signal produced by
means of electromechanical components. In particular, it is a
harmonic signal composed of a fundamental frequency,
modulated over time with a certain periodicity and modulation
function that depends on the specific type of siren, and of a set of
higher harmonic components. Given a generic siren signal, its
discrete time-dependent fundamental frequency f0 is controlled
by the modulation function

f0 k[ ] � g k[ ], (1)
where k denotes the discrete time index. Higher harmonics will be
modulated similarly, and the g[k] function will be specified below
depending on the type of siren. We simulate all the three types of
sirens, including harmonic components up to the Nyquist frequency
(i.e., half of the chosen sampling frequency fs � 16 kHz), using a
parametric model of each siren type.

1. The two-tone siren has a fundamental frequency that jumps
between two constant values every half period (although more
complex duty cycles exist, they are not considered in the
current model) as

g k[ ] � flow + αflowu k − Tsfs/2[ ] 0≤ k<Tsfs, (2)
where Ts denotes the period (in seconds) and u[k] is the unit step
function. The lower frequency flow of the two-tones, the jump
parameter α and the period duration Ts can vary within intervals
specified by regional regulations. To create diversity within the class,
we use these variables as free parameters: for each generated siren
sample, we randomly draw a lower fundamental frequency flow

from a uniform distribution defined between 360Hz and 900Hz, set
α � 1/3 and randomly draw Tsfrom a uniform distribution defined
on the interval [0.5, 2]s.

2. The wail siren has a fundamental frequency that continuously
varies between two limit values flow and fhigh. The signal
period is divided in two parts: a rise timeTrise, during which the
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frequency is increased from flow to fhigh, and a fall time Tfall

during which the opposite behavior is observed. Each half
period can be simulated using a chirp signal with arbitrary type
(linear, exponential, quadratic, or hyperbolic) that depends on
the specific siren to be emulated. In particular, for the rising
part with period Trise, the function g[k] takes the form

g k[ ] �

flow + fhigh − flow( ) k

Trisefs
linear

flow + fhigh − flow( ) k

Trisefs
( )2

quadratic

flow + fhigh

flow
( ) k

Trisefs

exponential

fhighflowTrisefs

flow − fhigh( )k + fhighTrisefs

hyperbolic.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

For the falling part, we can derive similar equations by changing Trise

with Tfall, and inverting all occurrences of flow and fhigh in (3). The
two parameters Trise and Tfall, the frequency values flow , fhigh, and
the chirp type are used as free parameters in the simulations. In
particular, for each simulated sample we randomly draw
flow ∈ [400, 800]Hz, fhigh ∈ [1000, 2000]Hz, Trise ∈ [0.1, 2.5]s,
Tfall ∈ [0.7, 7]s and a random chirp type.

3. The yelp siren behaves similarly to the wail but has a shorter
period (thus resulting in a faster alternation between the low
and high frequency); it can thus be simulated using the same
model described in (3). We draw the signal parameters as
follows: flow ∈ [400, 800]Hz, fhigh ∈ [1000, 2600]Hz,
Trise ∈ [0.01, 0.15]s, Tfall ∈ [0.01, 0.15]s, and use
random chirp type.

The probability distributions from which the parameters are
selected are uniform distributions on the above specified intervals.
Moreover, all the mentioned parameter ranges have been picked by
manual inspection of recorded real-world sirens, and randomness is
used to maximize diversity and thus foster generalization.

3.2 Synthetic acoustic scene definition

Once the source signals have been either collected or generated,
we create a synthetic acoustic scene resembling a real traffic
environment. For the siren identification task the two relevant
classes are the noise class, including all the possible sound events
that contribute to the overall urban soundscape, except for sirens,
and the siren class, including siren signals emitted by moving
emergency vehicles, on top of the background noise. We create
synthetic acoustic scenes as follows: we generate moving siren
signals using the open-source1 pyroadacoustics simulator
(Damiano and van Waterschoot, 2022). This tool enables to
simulate sound sources moving along arbitrary trajectories,
together with the Doppler effect, the sound reflection produced

by the road surface and the atmospheric sound absorption. Using
either the recorded or the synthetic source signals described in
Section 3.1 as input to the simulator, we generate 2 s-long audio
samples that emulate moving sirens. To this end, in pyroadacoustics
we consider an omnidirectional microphone and define a coordinate
system centered in its position. Even though the microphone is
stationary, the relative motion between source and microphone is
simulated, thus the presence of moving microphones can be
emulated (apart from the effect of wind noise caused by the air
hitting the moving microphone) by using proper trajectories
between the source and the receiver. For each simulated sample
we define a random, smooth trajectory within a radius of 100m from
the position of the microphone, and choose a random speed between
0 m/s and 40 m/s. For these simulations we use either rectilinear
trajectories, or quadratic Bézier curves.

Using this procedure and the two source signal types (synthetic
or recorded) detailed above, we create two synthetic siren datasets.
For the dataset based on the use of synthetic source signals (named
SynSIR in the following), we generate 24 k siren samples, each
generated using a different siren configuration (i.e., drawing
different signal model parameters). For the one based on
recorded source signals (named RecSIR), we collect a total of
47 clean, stationary siren clips (including 11 two-tone, 23 wail
and 13 yelp clips) from www.freesound.org, and use them as
input to pyroadacoustics. By drawing different random
trajectories and speeds, we generate 24 k siren samples: in this
case, even though the diversity of the source signals is significantly
more limited than in the SynSIR dataset, the samples differ in the
source trajectory and speed. We can thus interpret the simulation of
acoustic propagation as a data augmentation tool.

For the environmental noise, we rely on the SONYC dataset
(Cartwright et al., 2020), a large-scale collection of urban noise
recorded in different locations in New York City. The recorded
audio is provided in 10 s-long segments with accompanying labels
that identify the audio events appearing in each recording, without
temporal indications. We prune the dataset to exclude siren and
alarm sounds, and collect a total of 50 h of noise data.

To create synthetic acoustic scenes using these (synthetic) siren
and (recorded) noise datasets, we design a data loader, also
employed to feed data to the models when training and apply
noise augmentation. This component operates as follows.

• For each sample (of both siren and noise class), we randomly
extract a 2 s-long noise background from the collected SONYC
noise dataset.

• When performing noise augmentation, we draw a random
number nth from a uniform distribution defined on the
interval [0,1] and use it as a threshold parameter: each time
a sample is produced by the data loader, we apply the
following noise augmentation procedure if nth ≥ 0.6. First,
we extract a 2 s-long speech segment from the collected
LibriSpeech dataset (Panayotov et al., 2015) and sum it to
the background noise with a random amplitude in the range
[0, 1] (with uniform distribution). We then randomly decide
whether to further augment it by simulating motion along a
random trajectory using pyroadacoustics. The motion
simulation is performed with probability 0.5. Similarly, we
extract a random environmental noise event from the filtered1 https://github.com/steDamiano/pyroadacoustics/
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UrbanSound8K dataset (Salamon et al., 2014), randomly
augment it using pyroadacoustics (again, with probability
0.5), and sum it to the background noise mixture with
random amplitude in the range [0, 1] (with uniform
distribution) and random onset.

• For the siren class, we pick one sample from the desired siren
dataset (either SynSIR or RecSIR, depending on the
experiment), and add it to the background noise with a
random SNR drawn from an uniform distribution defined
on the interval [−20, 0]dB.

This procedure is performed online each time a sample is
provided as input to the model during the training stage, in
order to maximize the diversity of the samples seen by the
network. We manually set the size of the thus generated dataset
to 12 k samples: preliminary tests have shown that increasing the
number of training samples does not benefit the performance of
the models.

3.3 Siren identification architectures

To design an end-to-end siren identification system, we propose
to introduce modifications to established audio classification CNN
models in order to adapt them to our specific use-case, train them
using the proposed data generation strategy and evaluate their
performance on real datasets unseen during training. All three
models take as input log-mel spectrogram features extracted from
a 2 s-long audio segment (feature extraction will be discussed in
Section 4.2). The first architecture (that we name VGGSir), inspired
by the small-scale siren identification model introduced in Cantarini
et al. (2021), is depicted in Table 1. The CNN architecture consists of
three blocks, each containing two convolutional layers (Conv2D),
followed by a max-pooling (MaxPool) operation. The number of
convolutional filters is set to m � 16 in the layers of the first block
and is doubled after each block. After the third block, a global
average pooling (GlobAvgPool) (Lin et al., 2014) layer is used as an
interface between the convolutional part and a fully-connected (FC)
layer with 10 neurons, followed by an output layer with nc neurons,

one per target class. In addition to extending Cantarini et al. (2021)
to target three siren types, we introduce some further optimizations.
First, the GlobAvgPool layer replaces the Flatten operation used in
Cantarini et al. (2021) and is adopted to prevent overfitting via the
reduction of the number of model parameters: this constitutes a
double advantage since it improves the network generalization
ability while simultaneously shrinking the model size. Second, we
introduce batch normalization (BatchNorm) layers after all the
Conv2D and the first FC layer: this operation enhances the
network convergence stability by re-scaling and re-centering the
features after each layer. Finally, to prevent overfitting, we use
dropout layers with drop probability 0.1 after each Conv2D layer,
and with drop probability 0.5 after the first FC layer. The size of the
resulting model is 72 954 parameters.

The second model is the BCResNet model, originally proposed
in Kim et al. (2021) for the task of low-complexity acoustic scene
classification in the DCASE 2021 challenge, Task 1 A (Martín-
Morató et al., 2021), and is detailed in Table 2. This network relies on
both 2D convolutions over the spectrogram features, and 1D
convolutions over frequency-averaged embedded features. The
processed 1D features are combined with the 2D ones by means
of broadcasting operations and residual connections contained in
the BC-ResBlock element (Kim et al., 2021). In our configuration, we
introduce a dropout with drop probability 0.2 after each BC-
ResBlock, and use m � 30 channels.

The third model is the BCResNorm model, a variation of the
BCResNet originally introduced in Kim et al. (2021) for the same
task. The difference with respect to BCResNet is the introduction of
residual normalization operations for the input features and after
each BC-ResBlock. The residual normalization is defined as follows.
Given an input tensor x ∈ RN×C×F×T, whereN,C, F, T represent the
batch size, the number of channels, the number of frequency bins
and time frames respectively, the instance normalization by
frequency is defined as

FreqIN xn,c,f,t( ) � xn,c,f,t − μn,f
σ2
n,f + ε

√ , (4)

where xn,c,f,t denotes the element of x at position (n, c, f, t). We
define μ, σ2 ∈ RN×F as the frequency-wise mean and standard

TABLE 1 The modified VGGSir architecture, inspired by Cantarini et al.
(2021). The number m of filters is set to 16 in the first layer; nc denotes the
number of target classes.

Layer Number of blocks Filters/
neurons

Conv2D 3 × 3, stride 1 + BN 2 m

MaxPool 2 × 2 - -

Conv2D 3 × 3, stride 1 + BN 2 2m

MaxPool 2 × 2 - -

Conv2D 3 × 3, stride 1 + BN 2 4m

MaxPool 2 × 2 - -

GlobAvgPool - -

Fully Connected + BN - 10

Output (FC) - nc

TABLE 2 The modified BCResNet architecture, originally proposed in Kim
et al. (2021) for acoustic scene classification. The numberm is set to 30; nc
denotes the number of target classes.

Operator Number of blocks Filters/neurons

Conv2D 5 × 5, stride 2 - 2m

BC-ResBlock 2 m

MaxPool 2 × 2 - -

BC-ResBlock 2 1.5m

MaxPool 2 × 2 - -

BC-ResBlock 2 2m

BC-ResBlock 3 2.5m

Conv2D 1 × 1 - nc

GlobAvgPool - -
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deviation of the input feature x, whose element at position (n, f)
with 1≤ n≤N and 1≤f≤F is defined, respectively, as

μn,f � 1
CT

∑C
c�1

∑T
t�1

xn,c,f,t, (5)

σ2
n,f � 1

CT
∑C
c�1

∑T
t�1

xn,c,f,t − μn,f( )2; (6)

moreover, ε is a small constant introduced to avoid numerical
instability. The idea of instance normalization by frequency is
that in audio signals the domain differences are prominent along
the frequency dimension (Kim et al., 2021), whereas in image
processing they are captured by the channel mean and variance.
The residual normalization operation is finally defined as

ResNorm xn,c,f,t( ) � λ · xn,c,f,t + FreqIN xn,c,f,t( ) (7)

where the weighting parameter λ is set to 0.1 as in Kim et al. (2021).
The BCResNet and BCResNorm model have specifically been
designed to target domain generalization in a classification
problem. The choice of adopting and evaluating them for the
siren identification task is supported by the fact that, when
aiming at recognizing sirens in real-world data using models
trained on synthetic data, we face a similar domain
generalization problem. Similarly, the cross-dataset training and
evaluation setting involves the generalization to a domain unseen
during training. Both the BCResNet and BCResNorm architectures
have 45 949 parameters and to the best of the authors’ knowledge
have never been adopted for the siren identification task.

4 Experimental validation

4.1 Data description

To evaluate the performance of the architectures with real-world
data, we use three datasets specifically created for siren
identification.

• The dataset for emergency siren classification presented in
Asif et al. (2022) (we will refer to this dataset as LSSiren in the
following), that contains 1800 files with duration ranging from
3 s to 15 s equally divided into siren and noise clips. The audio
is either recorded in the wild, in a controlled environment or
retrieved from online sources, and sirens of all the three types
(two-tone, wail and yelp) are included (although only the
binary labeling siren/noise is used).

• The sireNNet dataset presented in Shah and Singh (2023) and
built for the classification of emergency vehicles. It contains
1,675 3 s-long files, 421 belonging to the noise class and the
remaining ones to three different types of emergency vehicles
(ambulance, fire-truck and police); however, the different
vehicle types do not correspond to the three types of sirens
(i.e., vehicles of the same type can present different siren
patterns). We use the police and ambulance samples for the
siren class: the fire-truck files are not considered for the
experimental validation as they involve a massive presence
of honking sounds, that have not been explicitly included in

the data generation procedure and whose analysis is left for
future work. Each siren sample in the sireNNet dataset is
presented in two variants, one corresponding to the original
recording, and the other one artificially augmented. To
prevent the augmentation patterns from being learned by
the networks, we use only the non-augmented files.
Therefore, we use 847 files of this dataset (421 noise
samples, and 426 siren samples) in total.

• An internal dataset recorded by Bosch (we will refer to this
dataset as BoschSiren in the following), consisting of 2,970 3s-
long siren files (including two-tone, wail and yelp sirens) and
400 noise files. The data has been recorded both in the wild
and in a controlled environment in Germany, using a single
microphone. Each file has been manually labeled as either
siren or noise.

All files have been resampled to 16 kHz and converted to mono.
Since we use 2 s-long audio segments as input to the CNNs, we apply
the following pre-processing operations: for the LSSiren dataset we
create 2 s splits of each file using a sliding window with length 2 s and
no overlap; for the remaining two datasets we extract, from each file,
a 2 s segment with a random onset. All datasets have been divided
into train, validation and test data with ratios [0.8, 0.1, 0.1]: for the
LSSiren dataset, the split is performed on the 1800 full-length files,
and all the 2 s segments extracted from the same file have been
assigned to the same split. In this manner we avoid assigning
segments of the same file, that may have a high correlation, to
different splits (this might in fact affect the performance evaluation).

4.2 Implementation details

To evaluate the different CNN architectures and training
strategies, we implement the models described in Section 3.3
using the Pytorch (Paszke et al., 2019) framework. We choose
the log-mel spectrogram as input feature (Figure 1): to compute
it, we use torchaudio (Yang et al., 2021) and set a sampling frequency
fs � 16 kHz, a window length of 0.064 s, a hop size of 0.032 s,
128 mel channels with fmin � 300Hz and fmax � fs/2. The choice
of fmin is justified by the fundamental frequency of all sirens types
being higher than 300Hz: cutting the lower frequencies is thus
exploited as a noise reduction technique. Furthermore, we normalize
the input features using peak normalization to constrain the
amplitude of the input features between 0 and 1, and we apply
feature masking using SpecAugment (Park et al., 2019). In
particular, we use two time masks and three frequency masks
with maximum width of 10 consecutive frames for both dimensions.

When training models using synthetic data, we use four output
units in all architectures (nc � 4), corresponding to the noise, two-
tone, wail and yelp siren classes. Due to the prominent difference
among the time-frequency patterns of the three siren types,
preliminary tests have shown that training the network to solve
this multiclass classification problem, and thus to explicitly learn the
differences among different siren types, leads to a higher accuracy
also when evaluating the model on the binary classification problem
(siren vs. noise), after training. In this case, the outputs of the two-
tone, wail and yelp classes are merged into the single siren super-
class. Since in the three real-world datasets only binary labels are
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available, it was not possible to evaluate the models in the multiclass
scenario, that is therefore used only when training on synthetic data.
Therefore, all the results shown throughout this section will refer to
the binary classification task.

We train all models for 15 epochs using the Adam optimizer
(Kingma and Ba, 2015), the cross-entropy loss, and a batch size of
32. For each training process involving synthetic data, we split the
training data into a training and validation set with ratio [0.8, 0.2]
and select the best model based on the loss on the validation set. We
choose accuracy as evaluation metric in all the experiments
(i.e., ratio between the correctly classified samples and the total
number of samples).

4.3 Experimental evaluation

To set a reference for the evaluation of the training
procedures employing synthetic data, as a first experiment we
evaluate the performance of the three architectures in a cross-
dataset setting. For this purpose, we only consider the three real-
world datasets (BoschSiren, LSSiren, sireNNet): we train each
model using one of them, and evaluate the performance on the
other two. The results are reported in Figure 2, where we show,
for each model and each training set, the accuracy range (min-
max) on the two unseen test datasets, together with the average
accuracy. Since the models are evaluated on data extracted from
an unseen domain, which may have an underlying distribution
different from that of the training set, the accuracy is degraded
compared to models trained and evaluated on data extracted
from the same dataset. This is illustrated in Table 3, where we
compare the average accuracy obtained by the three
architectures in the cross-dataset setting with the accuracy
obtained on the test split of the same dataset used for
training. We remark that, in this case, the train and test
splits, though extracted from the same dataset, are disjoint.
The results obtained on in-domain data (i.e., from the test
split of the same dataset used for training) are comparable to
those reported in the siren identification literature, where a
similar evaluation setup is generally used. In the second

column of this table we report the results averaged over all
possible cross-dataset combinations (in total they amount to
three, since we use one of the three datasets for training, and the
other two for evaluation). From these two experiments we
observe that the BCResNet model and its normalized
variation achieve a higher accuracy compared to VGGSir, in
accordance to the fact that these architectures are specifically
designed to maximize the domain generalization performance.
These architectures are thus promising for the task of siren
identification. From Figure 2 we also observe that the
BCResNorm model is characterized by narrower accuracy
ranges, proving its higher robustness to data distribution shifts.

FIGURE 1
Log-mel spectrograms of three siren instances extracted from the LSSiren data. The log-mel spectrogram is adopted as input feature for the
CNN models.

FIGURE 2
Baseline accuracy obtained with the three architectures (VGGSir,
BCResNet, BCResNorm) evaluated in a cross-dataset setting: the
models are trained using a single dataset and the accuracy score is
computed on the other two. The markers show the average
accuracy on the two test sets unseen during training, the whiskers
denote the min-max interval.
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We then run an extensive evaluation campaign to assess the
proposed training procedures based on the use of synthetic data.
We thus train each model using either the SynSIR or the RecSIR
datasets, and jointly evaluate the impact of applying noise
augmentation. At training time, the best model is selected
based on the minimum loss computed on an independent
validation set generated from the same dataset used for
training. In Table 4 we report, for each trained model, the
accuracy obtained on the three real-world datasets, together
with the average accuracy. First, we observe that training
using the RecSIR data leads to a higher performance for all
models: using recorded source signals represents therefore a
better solution than generating synthetically, notwithstanding
the limited diversity of the recorded sirens. This might be
explained by the fact that the synthetic siren generation
produces some artifacts that could be learned by the network,
hindering its ability to generalize to real-world data, where these
artifacts are not present. Second, we observe that the BCResNet
and BCResNorm models achieve a higher performance than
VGGSir, in line with the results of the previous experiment.
Generalizing from synthetic to real-world data is in fact a
different form of the same task of domain generalization
tackled in the cross-dataset setting. BCResNorm shows also,
once more, a narrower min-max accuracy range. Lastly, we
observe that the impact of the noise augmentation strategy
depends on the model and training data, and should thus be
evaluated on a case-by-case basis when designing the training
setup. The best-performing model is the BCResNet trained on
RecSIR with noise augmentation, with an average accuracy of
93.73%: this constitutes a 4.64% improvement over the best
model for the cross-dataset evaluation run in Table 3
(BCResNorm) and proves the effectiveness of the proposed
training strategy. For each architecture, we select the best
training configurations for training on SynSIR and RecSIR
data from Table 4, based on the highest average accuracy.
These models are compared with the cross-dataset training/
evaluation setup in Figure 3. It can be observed that training
using RecSIR always results in a higher accuracy compared to
the cross-dataset training setup (+5.73% for VGGSir, +5.58%
for BCResNet, +4.39% for BCResNorm), confirming the
effectiveness of the proposed training strategy. For VGGSir
and BCResNet, also the min-max range is reduced in this
configuration. The proposed RecSIR data generation
technique is therefore a preferable option for training siren
identification models compared to the use of real-world
datasets: with an extremely limited amount of training
samples (47 publicly available audio clips) and an open-
source sound propagation simulator, it is in fact possible to

generate data that yield more robust and better performing
models than using recorded datasets. On the other hand,
training using SynSIR is not beneficial in terms of accuracy
gain compared to the cross-dataset case. A study on how to
improve synthetic source signal generation techniques is left for
future work.

We finally evaluate the use of real-world data for the selection of
the best model when training using synthetically generated data. For
this experiment we re-train from scratch the BCResNet architecture
using the RecSIR data with noise augmentation (i.e., the top-
performing configuration from Table 4). This time, we select four
different models by minimizing the validation loss computed on the
RecSIR, BoschSiren, LSSiren, sireNNet validation sets, and evaluate
them on the three real-world datasets. The results are reported in
Figure 4. Surprisingly, selecting the model using data from the same
dataset used for evaluation leads to the highest test accuracy only
for the sireNNet dataset. For the LSSiren data, the best model is
selected using the same RecSIR data, while for BoschSiren the four
selection strategies lead to comparable performance. We also
observe that selecting the model using the RecSIR data, though
leading to the best choice only for the LSSiren test set, always
produces a model with a performance close to that of the best
choice: for BoschSiren data the accuracy drop is 1.04%, for
sireNNet 1.88%, while for LSSiren the accuracy exhibits a gain
of 0.49%. Using the RecSIR data constitutes an effective and robust
choice, that keeps the training completely decoupled from the use
for real-world datasets.

4.4 Performance investigation

In this section, we further investigate the performance of the best
model selected in Table 4, namely, BCResNet trained using RecSIR
data and noise augmentation (with RecSIR data used also for model
selection). To this aim, we first compute, for each considered real-
world dataset, the confusion matrix and evaluate the precision and
recall scores. The precision metric is defined as

P � TP

TP + FP
, (8)

where TP represents the number of true positives and FP the
number of false positives, whereas the recall is defined as

R � TP

TP + FN
, (9)

where FN denotes the number of false negatives. The precision and
recall values for the three models are reported in Table 5. To
establish a baseline for comparison, we compute the same

TABLE 3 Comparison of the accuracy obtainedwhen evaluating themodels on in-domain data (i.e., using the test split of the same dataset used for training)
and in a cross-domain setting (i.e., using the two datasets unseen during training). In the cross-domain evaluation, the results are averaged over all dataset
combinations and the performance is degraded.

Model In-domain accuracy [%] Cross-domain accuracy [%]
VGGSir 98.01 83.10

BCResNet 98.08 88.14

BCResNorm 97.43 89.09
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metrics using the same architecture trained on real-world data in a
cross-domain setting. To this aim, for each test dataset we average
the metrics achieved with the model trained on each of the other two

datasets. Training with synthetic data always yields a higher
precision than training with real data in a cross-dataset setting
Although the recall score on the LSSiren and sireNNet datasets
obtained using cross-dataset training is higher, the one on the
BoschSiren data is strongly degraded. This might be caused by
the sireNNet and BoschSiren data having a more similar underlying
distribution among each other, and shifted from the BoschSiren one.
The recall obtained on BoschSiren using synthetic training is instead

TABLE 4 Synthetic data evaluation procedure: the three analyzed architectures (VGGSir, BCResNet, BCResNorm) are trained using the synthetic datasets
SynSIR and RecSIR. Augmentation of the background noise via the introduction of stationary and moving speech and environmental noise is evaluated for
all combinations. The model selection is operated on validation data extracted from the same dataset used for training; the evaluation is performed on the
three real-world datasets (LSSiren, BoschSiren and sireNNet), and the average accuracy is reported in the last column. The best models (i.e., the ones that
yield the highest average accuracy) trained using RecSIR data are highlighted in bold; the best ones trained using SynSIR data are highlighted in italic.

Model Siren
signal

Noise
augmentation

Accuracy
LSSiren [%]

Accuracy
BoschSiren [%]

Accuracy
sireNNet [%]

Average
accuracy [%]

VGGSir SynSIR - 87.17 52.86 76.88 72.30

SynSIR Yes 88.32 63.54 79.06 76.97

RecSIR - 87.83 87.76 90.94 88.84

RecSIR Yes 88.32 83.33 93.44 88.36

BCResNet SynSIR - 80.43 77.08 59.06 72.19

SynSIR Yes 82.73 54.69 65.94 67.79

RecSIR - 91.28 88.80 83.13 87.74

RecSIR Yes 96.71 91.67 92.81 93.73

BCResNorm SynSIR - 88.65 88.02 73.44 83.37

SynSIR Yes 88.65 86.72 72.19 82.52

RecSIR - 93.75 96.09 90.62 93.49

RecSIR Yes 91.94 95.57 83.44 90.32

FIGURE 3
Performance comparison between moodels trained on the two
synthetic datasets (SynSIR, RecSIR) and evaluated on the three real-
world datasets: training on RecSIR always produces the highest
average accuracy. The training dataset is specified in the legend,
model selection is performed using validation data from the same
dataset. The average accuracy on the real-world datasets is indicated
by the markers, the whiskers denote the min-max interval. The
average accuracy and min-max range obtained in a cross-dataset
scenario are reported: in this case, the models are trained on one real-
world dataset and evaluated on the remaining two.

FIGURE 4
Performance of BCResNorm model trained on the RecSIR
dataset and tested on the three real-world datasets (LSSiren,
BoschSiren, sireNNet). The dataset used to select the best model
during the training process is specified in the legend.
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comparable with the performance achieved on the other two
datasets. This suggests that the synthetic training strategy is more
robust to a data distribution shift, confirming its potential to train
models that can generalize to unseen distributions.

We finally analyze the precision-recall (PR) curves obtained
using the BCResNet model trained on RecSIR data with noise
augmentation, plotted for the three datasets in Figure 5, where the
area under the curve (AUC) is also reported. We highlight three
operating points on the PR curve: the equal error rate point, where
R � P, and the two points in which either the precision or the recall
exceeds a threshold of 0.95. For the autonomous driving use-case,
safety arguments suggest that a higher recall is more relevant than
a higher precision: a missed detection is in fact more dangerous
than a false positive. Furthermore, in a multimodal context in
which information collected from more than one sensor is merged
to compute the final prediction, a missed detection from one
sensor may reduce the overall robustness of the system. To get
a higher recall at the cost of a reduced precision (i.e., the risk of
having more false positives) the operating point where R≥ 0.95
might therefore be preferred. On the other hand, if the system is
used to alert human drivers, false positives may be less tolerable as
they might distract the driver. Thus, a higher precision might be
preferred, assuming that missed detection can still be caught by the
driver. In this case, the operating point where P≥ 0.95 might
be preferred.

5 Conclusion

In this work we have addressed the task of emergency siren
identification for automotive applications using deep learning.
Though the topic is well-known in the literature, state-of-the-art
models are usually trained and evaluated on data extracted from the
same dataset. Due to the prominent differences that can be observed
among siren sounds and background noise mixtures in different
locations around the world, collecting a dataset that accurately
represents all the variations is in practice unfeasible. To reduce
the burden of data collection, we hence proposed to train models
using synthetic data: we introduced two synthetic data generation
strategies, the first one based on the synthetic generation of
stationary siren signals, and the second one based on the
collection of a limited number of samples of stationary sirens
from public repositories. In both procedures, sound propagation
and Doppler effect are then emulated using a road acoustics
simulator to create synthetic datasets that can be used to train
siren identification models. To evaluate the two methods, we
selected state-of-the-art CNNs for siren identification and
acoustic domain generalization: we introduced several
modifications to enhance the performance of these models on
our target task, and trained them using synthetic datasets crafted
by means of the two proposed data generation strategies. Finally, we
showed that using recorded stationary sirens as source signals and
simulating acoustic propagation to create an augmented dataset
yields the best performance using all analyzed networks. In
particular, training all models using synthetic data generated
using stationary recorded sirens and synthetic acoustic
propagation is effective: the accuracy obtained using this
proposed training method is in fact higher than the one obtained
when training the models using real-world data and evaluating them
in a cross-dataset setting. As an additional advantage, training using
synthetic data cuts the costs of data collection. The
combination of the

The proposed training strategy paves the way for future research:
first, the proposed method can be extended to target the
identification of additional alarm signals (e.g., car horns) in
urban environments. Furthermore, the trade-off between the

TABLE 5 Evaluation of precision and recall scores for the BCResNet model
trained onRecSIR datawith noise augmentation and evaluated on the three
real-world datasets. Training on the RecSIR dataset leads to the best
average scores, highlighted in bold.

Test data RecSIR Cross-dataset

Precision Recall Precision Recall

LSSiren 0.9876 0.9336 0.9156 0.9453

BoschSiren 0.9922 0.8951 0.9731 0.7570

sireNNet 0.9926 0.8590 0.8311 0.9743

Average 0.9908 0.8959 0.9066 0.8922

FIGURE 5
Precision-recall (PR) curves obtained with the BCResNet model trained on RecSIR data with noise augmentation and evaluated on the three real-
world datasets. Three operating points, where P � R, P ≥0.95 or R≥0.95, are highlighted with markers. The AUC is also reported for the three datasets.
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model complexity and performance has not been investigated: the
synthetic data generation comes with the advantage of enabling to
generate datasets with arbitrary sizes and to define arbitrarily
complex acoustic scenes. The design of more elaborate acoustic
scenes, together with the generation of larger (and more diverse)
datasets, might therefore foster the generalization performance of
the analyzed models or, alternatively, promote the design of larger
models, at the cost of a higher complexity. Finally, the use of
generative models to improve the quality of the simulated data
might boost the effectiveness of the methods discussed
throughout this work.
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