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Ensuring the swift and precise tracking of power system signal parameters,
especially the frequency, is imperative for the secure and stable operation of
power grids. In instances of faults within the distribution network, abrupt changes
in frequency may occur, presenting a challenge for existing algorithms that
struggle to effectively track such signal variations. Addressing the need for
enhanced performance in the face of frequency mutations, this paper
introduces an innovative approach—the Covariance Reconstruction Extended
Kalman Filter (CREKF) algorithm. Initially, the dynamic signal model of electric
power is meticulously analyzed, establishing a dynamic signal relationship based
on high-precision time source sampling tailored to the signal model’s
characteristics. Subsequently, the filter gain, covariance matrix, and variance
iteration equation are determined based on the signal relationship among
three sampling points. In a final step, recognizing the impact of the
covariance matrix on algorithmic tracking ability, the paper proposes a
covariance matrix reset mechanism utilizing hysteresis induced by output
errors. Through extensive verification with simulated signals, the results
conclusively demonstrate that the CREKF algorithm exhibits superior
measurement accuracy and accelerated tracking speed when confronted with
mutating signals.
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1 Introduction

As power systems continue to develop and become more complex Xiao et al. (2023)-
Huangqing Xiao (2023), the need for real-time monitoring and accurate estimation of grid
status is increasing. As an advanced monitoring method, synchronized phasor
measurement unit (PMU) technology plays a key role in power system monitoring and
control bin Mohd Nasir et al. (2019).

With the increasing scale of large-area interconnected power grids, transmission grids
are more prone to dynamic phenomena (low-frequency oscillations, amplitude and phase
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step changes, frequency fluctuations, etc.) de la O Serna et al. (2020)
than in the past. The measurement accuracy of existing phasor
estimation algorithms will decrease under dynamic conditions. A
sharp decline. With the large-scale access of distributed new energy
and the continuous expansion of the scale of distribution network,
wide-area monitoring and synchronized phasor measurement of
distribution network operating status have attracted people’s
attention in recent years Aminifar et al. (2013). Compared with
the transmission network, the electrical signals of the distribution
network have higher harmonic content and lower signal-to-noise
ratio. Therefore, it is necessary to study dynamic phasor estimation
algorithms with better dynamic response performance and strong
resistance to harmonics and noise.

In recent years, various studies have been carried out on
sampling data processing algorithms. Wang and Sun (2004)
proposed a practical and accurate frequency tracking and phasor
estimation method, contributing to fundamental aspects of
synchronized measurement algorithms Mohanty et al. (2020).
Ferrero et al. (2019) introduces the use of extended Kalman filter
(EKF) for dynamic synchrophasor estimation, demonstrating its
effectiveness in capturing dynamic system behavior. Subsequent
work extended these concepts by introducing the Taylor extended
Kalman filter method to improve the accuracy of synchrophasor
estimation Ferrero et al. (2020). The nonlinear Kalman filter has
been reviewed and applied to dynamic phasor estimation, providing
insights into its effectiveness and limitations Khodaparast (2022).
Bashian et al. (2021) proposed a Kalman filter method with
harmonic whitening function, which provides higher accuracy for
the phasor measurement unit (PMU) in the power system. Xu et al.
(2020) analyzed and applied them under distorted grid conditions,
demonstrating their robustness in challenging operating
environments. Fan and Wehbe (2013), Fan (2015) provide an in-
depth study of extended Kalman filtering for real-time dynamic state
and parameter estimation using synchronized phasor
measurements. Huang et al. (2017) DSTKF (Dynamic State
Transition Kalman Filter) is proposed as an improved Kalman
filter to meet the needs of phase estimation of power systems
under transient conditions. DSTKF takes into account the
dynamic transfer of the system state, which better handles the
measurement noise and improves the accuracy of phase
estimation under transient conditions. Dash et al. (2013) focused
on dynamic phasor and frequency estimation of time-varying power
system signals, providing insights into the complexity of accurately
tracking dynamic changes in the grid. Literature Liu et al. (2020)
provide a comprehensive comparison of Kalman filter-based
dynamic state estimation algorithms, providing a broader
perspective on the state-of-the-art in the field. Mai et al. (2011)
proposed an adaptive dynamic phasor estimator considering the
applied DC offset of the phasor measurement unit (PMU). Liu et al.
(2012) introduced an improved Taylor-Kalman filter and
demonstrated its effectiveness in instantaneous dynamic phasor
estimation. These adaptive technologies address the challenges
posed by varying operating conditions and non-ideal situations
in measurement equipment.

In addition matrix pencil, Taylor weighted least squares
methods Khodaparast and Khederzadeh (2017) and Recursive
Discrete Fourier Transform methods Hou et al. (2020). Song
et al. (2021) have also been proposed for accurate dynamic

phasor estimation, further expanding the range of available
techniques. The work of Amirat et al. (2020) explored the
application of least squares and linear Kalman filter phasor
estimation in grid power monitoring and conducted a
comparative analysis of their performance.

In this paper, leveraging insights from the aforementioned
literature, an extended Kalman filtering algorithm is introduced
to address nonlinear challenges and enhance the algorithm’s
robustness and adaptability. This novel algorithm incorporates a
hysteresis mechanism coupled with a reset covariance matrix
strategy. The covariance matrix is dynamically reconstructed
based on the magnitude of the output error. Furthermore, an
extended Kalman filter algorithm, employing adaptive linear
combiners for frequency estimation, integrates hysteresis, the
extent of which is determined by the output error magnitude.
Dynamic adjustment based on the hysteresis band involves
triggering the reset of the covariance matrix when the error
exceeds a predefined higher threshold. Conversely, when the
error drops below a lower threshold, the flag is reset to prevent an
overly rapid reset of the covariance matrix. This innovative
approach serves to reset the covariance matrix, thereby
improving the performance of the extended Kalman filter
algorithm. To validate the measurement accuracy of the
proposed algorithm, comprehensive Matlab simulation
experiments are conducted, utilizing signal modeling
techniques.

2 Description of dynamic
electrical signals

2.1 Signal analysis based on high-precision
time-synchronized sampling

The rapid evolution of high-precision synchronized time
sources, such as GPS and 5G signals, has ushered in novel timing
concepts for wide-area synchronized measurements. Additionally,
these advancements have introduced an innovative signal-triggered
sampling mechanism capable of dynamically adjusting the sampling
rate based on specific requirements. This mechanism represents a
pivotal development in the acquisition and processing of sinusoidal
signals. By enabling the dynamic alteration of the sampling rate,
applications can seamlessly adapt to diverse signal characteristics
and meet varying requirements with enhanced flexibility. This
progressive approach not only marks a significant leap forward
in synchronized measurements but also underscores the adaptability
and efficiency achievable through dynamic sampling rate
adjustments.

The output frequency of the crystal oscillator plays a crucial role
in determining the synchronized sampling interval. To mitigate the
sampling time error outlined in the preceding section, a real-time
monitoring approach is employed for the crystal oscillator’s output
frequency. This real-time monitoring facilitates enhanced control
over the accuracy of the sampling interval. Employing a timer, the
real-time status of the crystal oscillator is continually monitored and
transmitted to the data processing unit. This information is then
utilized to dynamically adjust the sampling rate in real-time, thereby
achieving adaptive sampling. This meticulous process ensures
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precise synchronization and contributes to the overall improvement
in sampling interval control accuracy.

The frequency of a periodic signal is defined as the number of
cycles contained in the periodic signal per unit of time as follow
Eq. 1:

f � n/t (1)
where n is the number of cycles of a periodic signal in the
time interval t.

The crystal oscillator exhibits superior short-term stability,
ensuring that its output frequency remains constant within a
synchronization signal period. Leveraging this period as a
reference, the counting frequency of the timer can be determined
by measuring the number of pulses occurring between adjacent
pulse signals. Let fosc denote the nominal crystal frequency of the
v-bit master chip, and tmax is calculated as shown in Eq. 2.

tmax � 2v/ fosc × Z( ) (2)
where Z is octave factor.

When tmax is less than one synchronization signal cycle, the
timer needs to be set to auto clear and restart mode. Use the rise of
the pulse signal as the external interrupt signal, and read the values
W1 and W2 of the counter when the adjacent pulse signal is
interrupted. The actual output frequency ft of the crystal can be
expressed as follows Eq. 3:

ft � 2v × G −W1 +W2

Z
fpulsar (3)

where fpulsar is a synchronized signal frequency.
The actual pulse signal is subject to a zero-mean random error

characterized by long-term stability. However, in the short term,
jitter is inevitable, typically in the order of a few hundred
nanoseconds. To mitigate the impact of short-term jitter on
crystal frequency measurement, employing multiple pulses as a
time reference proves advantageous. This not only extends the
counting time of the counter but also provides a more robust
time reference. Let the utilization of a continuous set of m pulses
as a time reference be the approach to ascertain the crystal output
frequency as follow Eq. 4:

ft � 2v × Gm −W1 +W2

mZ
fpulsar (4)

Using high-precision pulse signals, ft can be updated in real time,
which will effectively eliminate the influence of crystal frequency
offset on synchronized sampling. The corrected sampling control
parameter N(t) at moment t as follows Eq. 5:

N t( ) � ft

fs
(5)

From the aforementioned analysis, it becomes evident that if the
crystal frequency is not an integer multiple of the ideal sampling
frequency, N(t) will incorporate a fractional part. Compounding this
issue, the timer control parameter of the master chip can only be set
as an integer, resulting in a residual part due to the non-integer
division of N(t, leading to sampling interval errors. To address the
challenges posed by the non-integer division inherent in utilizing the

high transmission rate of 5G signals, the sampling rate fs is
dynamically adjusted based on the crystal frequency derived
earlier. This dynamic adjustment effectively compensates for
sampling time errors, bringing the equivalent sampling rate in
proximity to the ideal sampling rate. The operational principle of
variable interval sampling is depicted in Figure 1.

Adaptive synchronous sampling method mainly includes: real-
time measurement of crystal output frequency, sampling control
parameter adjustment, and variable sampling interval sampling.
Using high-precision time pulse as a time reference to measure
the crystal output frequency and trigger the first sampling command
of synchronous sampling, using variable sampling interval control
method, according to the real-time monitoring of the crystal output
frequency to adaptively adjust the sampling control parameters, the
specific steps are as follows in Figure 2.

(1) The real-time crystal output frequency ft is obtained at
moment t according to Equation (4);

(2) The ideal sampling control parameter N(t) is obtained
according to Equation (5);

(3) Trigger an external interrupt using a high-precision time
source to trigger the first sample;

(4) Update fs and return to step 3 until sampling in one second
is complete.

2.2 Dynamic signal model

Building upon the preceding section centered on high-precision
pulse-sampled signals, the discrete-time signal for power system
voltage or current can be expressed as follows Eq. 6:

yk � A cos kωTi + ϕ( ) + εk � ŷk + εk (6)
where yk is instantaneous signal value;A is amplitude;k is sampling
instant;Ti is ideal sampling time;omegais radian frequency;ϕ is
phase; εk is additive noise(assumed to be zero-mean Gaussian
white noise with variance σ2υ). Equation 1 can be written as Eq. 7

yk � ŷk + εk (7)
where ŷk is the estimated signal. It is known that the three
consecutive samples of this single sinusoid satisfy the following
relationship Equation 8.

ŷk − 2 cos ωTi( )ŷk−1 + ŷk−2 � 0 (8)

The system frequency can be found by accurately measuring the
angular frequency of the voltage model in Eq. 8.

The presence of harmonics and DC attenuation distort the
fundamental relationship of Equation 8 derived from the single-
sine voltage signal model. n the presence of harmonics, the equation
can be corrected as Eq. 9:

yk � ∑M
m�1

Am cos mωt + ϕm( ) + ε t( ) (9)

wherem is harmonic order;M is highest frequency component of the
signal; Am is amplitude of the mth harmonic; ϕm is phase of the
mth harmonic.
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Relationship between three consecutive samples of the corrected
signal as follow Eq. 10:

yk � 2 cos ωTi( ) · yk−1 − yk−2 + ∑M
m�1

⎡⎣Am 2 cos mωTi( )(

−2 cos ωTi( )sin mω k − 1( )Ti + ϕm( ))⎤⎦ (10)

If the measurement algorithm needs to be modified
according to Eq. 10 in order to estimate the frequency very
accurately, but in practice, the experimental results of the model
given in Equation 8 are within reasonable accuracy even in the
presence of harmonics.

In actual sampling, the actual sampling time Ts has time error
with the ideal sampling time Ti due to the reasons such as crystal

FIGURE 1
Variable sampling interval control schematic.

FIGURE 2
Schematic diagram of the adaptive synchronous sampling method.
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offset of the master control chipΔT.The sampling time is corrected
as follows Eq. 11:

Ts � Ti + ΔT (11)

3 Algorithm inference

3.1 Derivation of extended Kalman
filter algorithm

In linear systems, Kalman filters serve as indispensable tools for
tracking and estimation. However, the realm of engineering practice
often encounters nonlinear systems, and for such cases, the extended
Kalman filter emerges as a more effective approach compared to the
conventional Kalman filter. Despite numerous algorithmic
advancements proposed since the 1960s to enhance the Kalman
filter’s performance, tackling the estimation of state equations for
nonlinear state variables remains a challenging problem, crucial for
improving algorithmic accuracy. In the context of power system
synchronization measurements, various state estimation methods are
employed within control systems. For nonlinear state estimation, the
Kalman filter is utilized as a linearized model. While it exhibits a
favorable response to weakly nonlinear systems, it may fall short in
accurately representing highly robust nonlinear systems. Presently, the
extended Kalman filter has gained widespread adoption for tracking
and state estimation. Within the Kalman filtering algorithm, predictive
modeling necessitates the incorporation of actual system and process
noise. Meanwhile, updating modeling involves adjusting the predicted
values. Consequently, the Kalman filtering algorithm operates as a pre-
calibration algorithm, encompassing time update equations (prediction
equation) andmeasurement update equations (calibration equation), as
illustrated in Figure 3.

The preceding signal model satisfies the following Kalman
filtered as follows Eq. 12 and as follows Eq. 13.

x̂k+1 �
1 0 0
0 2 cos ωTs( ) −1
0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦x̂k (12)

yk � 0 2 cos ωTs( ) −1[ ]x̂k + εk (13)

Based on the power system signal model, designing the ststa
variable matrix shown in Eq. 14,

x̂k � 2 cos ωTs( ) ŷk−1 ŷk−2[ ]T
� x̂k 1( ) x̂k 2( ) x̂k 3( )[ ]T (14)

From the measurement equations, state equations and state
variables of the system; the optimal nonlinear Kalman filtering
algorithm as in Eqs 15, 16 is designed using the basic equations
of Kalman filtering.

x̂k|k � x̂k|k−1 + Kk yk − g x̂k|k−1( )( ) (15)
x̂k+1|k � f x̂k|k( ) (16)

wheref(x̂k) � [ 2 cos(ωTs) 2 cos(ωTs) · ŷk−1 − ŷk−2 ŷk−1 ]T;
g(x̂k) � 2 cos(ωTs) · ŷk−1 − ŷk−2

The optimal gain matrix is as follows Eq. 17:

Kk � P̂k|k−1
∂gT

∂x̂

∣∣∣∣∣∣∣∣ k,k−1( )
. ∂g

∂x̂

∣∣∣∣∣ k,k−1( ) P̂k|k−1
∂gT

∂x̂

∣∣∣∣∣ k,k−1( ) +1[ ] (17)

The recursive equation for estimating the error variance matrix
is as follows Eq. 18:

P̂k|k � P̂k|k−1 −Kk
∂g

∂x̂

∣∣∣∣∣∣∣ k,k−1( )
P̂k|k−1 (18)

The prediction error variance can be expressed as follows Eq. 19:

P̂k|k+1 � FkP̂k|kFT
k (19)

where Fk � ∂f(x̂k)
∂x̂k

|xk�x̂k|k �
1 0 0

x̂k|k 2( ) x̂k|k 1( ) −1
0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦;
∂gT

∂x̂ |x̂k�x̂k|k � [ x̂k|k(2) x̂k|k(1) −1 ];
P̂k|k � E (xk − x̂k|k)(xk − x̂k|k)T{ }/σ2] ;
P̂k+1|k � E (xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T{ }/σ2] ;
x̂1|0 � �x1;
P̂1|0 � E (x1 − �x1)(x1 − �x1)T{ }/σ2] .

The filter is nonlinear and therefore, the gain Kk and the
covariance matrix P̂k|k depend on the estimate x̂k|k of the
state vector xk.

3.2 Improvement of extended Kalman filter
algorithm with covariance reconstruction

The problem with all Kalman filtering algorithms is resetting
the covariance matrix. After initial convergence, the gain Kk and
the covariance matrix Pk|k stabilise at very small values.
Subsequently, when certain parameters of the signal
(amplitude, phase and frequency) change, the covariance
matrix must be reset to obtain a higher gain in order to track
the signal quickly.

The core idea of the covariance reconstruction extended
Kalman filter algorithm is that the decision to set the
covariance matrix to its initial value is based on a lag-type
decision block. The hysteresis band is determined by the
amount of noise and the nature of convergence. If the noise
estimate is about 10% of the amplitude, then the lag band is
chosen to be 20%–60% of the amplitude to avoid frequent
resetting of the covariance matrix. A flag is set when the error
exceeds a higher threshold and reset when the error falls below a
lower threshold. If the flag is 1 and either of the Kalman gains is
very small, then the covariance is reset and the flag is reset to 0 so
that the covariance matrix is not immediately reset.

FIGURE 3
Fundamentals of the Kalman filter algorithm.
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Calculation of lag band: The hysteresis band is calculated as the
ratio of the residual’s paradigm to amplitude as shown in Eq. 20:

lag � ‖ϵk‖
Amplitude

(20)

Decide whether to set the reset flag by comparing the value of the
hysteresis band with the preset threshold as shown in Eq. 21:

ResetFlag � 1, if lag>Thresholdhigh
0, otherwise

{ (21)

If the flag is 1 and either of the Kalman gains is very small, then
the covariance is reset and the flag is reset to 0 so that the covariance
matrix is not immediately reset as shown in Eq. 22.

if ResetFlag � 1 and ‖Kk‖ is very small, thenPk|k � Pinitial (22)

Generally, the frequency variation in power systems is limited to
5 Hz. Therefore, for faster tracking, the measured frequency by the
filter is not allowed to vary beyond the 40–60 Hz band. This results in
stable operation of the filter and does not lead the filter wayward.

Based on the above theory, this paper constructs the dynamic
synchronous phase measurement algorithm based on EKF as follows
in Figure 4.

1. k = 0;
2. Project starting estimate ~x0, ~P0;
3. Calculate Kalman filter gain Kk;
4. Calculate the error covariance matrix Pk;
5. Determine the state estimation equationxk;

6. Predict the (k+1) th state variable
7. k = k+1;
8. Return to step (3);

4 Simulation analysis

4.1 Computational complexity analysis

The complexity analysis of the Covariance Reconstruction
Extended Kalman Filter (CREKF) algorithm involves its primary
steps, encompassing state prediction, state updating, covariance
matrix updating, and the computation of the decision block.

The complexity analysis of the state prediction and update steps

typically depends on the computational intricacy of the state and

observation equations. In this paper, the equations have been

linearized, resulting in a complexity denoted by O(N), where N

represents the dimension of the state vector. The computation of the

Kalman gain involves the Jacobian matrix of the observation

equation, and thus its complexity is contingent upon the form of

the observation equation, with a complexity denoted by O(N2). The

complexity of the covariance matrix update is O(N3). The lagged

decision block has a low complexity and consists mainly of the

judgement and updating of the flags, the complexity of this step is of

constant level with a complexity of O(1).

4.2 Measurement accuracy assessment

4.2.1 Static signal testing
In order to verify the dynamic performance of the algorithm in this

article, test signals were set up, and the simulation signals were
measured and compared using the CREKF algorithm, the Recursive
Discrete Fourier Transform (RDFT) algorithm, and the Matrix pencil
algorithm. In this section, the measurement accuracy of the proposed
algorithm is evaluated using different types of steady state and dynamic
test signals according to IEC/IEEE 60255- 118-1.

The following signals are set up and the simulated signals were
measured and compared by three methods. Themeasurement errors
of the three methods are shown in Figures 5–7. Testing signal model:

a. Considering that the actual measured electrical signals contain
noise, Gaussian white noise is added to the sinusoidal test
signal to achieve a signal-to-noise ratio of 40 dB. The matrix
beam algorithm cannot be measured accurately when the
signal contains noise, so the matrix beam algorithm is not
considered in the performance comparison.

b. Harmonic noise has always been amajor challenge to most power
system measurements. Low-order harmonics are not filtered by
analog filters, and they usually appear in the waveform entering
the measurement device, setting up harmonic signals.

c. During transient states, the voltage waveform of a power
system may experience amplitude fluctuations of a certain
Chen degree. The mathematical model of signal flicker is as
(t) � A(1 +m sin(2πfmt))sin(2πfct).For a typical power
system model, the modulation index will be less than 10%
and the modulation frequency will be around 1 Hz. Therefore

FIGURE 4
Flow chart of the extend Kalman filtering method.
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the generation of the input waveform is set up according to the
above power system criteria and the frequency measurement of
the input waveform is performed.

The analysis of the results depicted in the figure reveals that the
matrix tree algorithm encounters challenges in accurate
measurements when the signal contains noise. Similarly, the
recursive discrete Fourier transform demonstrates suboptimal
measurement efficiency in the presence of noise. However,
noteworthy is the observation that the three algorithms exhibit
proximity to each other, with errors not exceeding 10–4,
particularly in handling harmonic signals and flicker signals.

4.2.2 Dynamic signal testing
To further assess the dynamic tracking capability of the

algorithm, a ramp signal, as defined in (Eq. 23), is employed.
The algorithm’s performance is tested concerning its ability to
adapt to frequency variations when the grid signal frequency
undergoes gradual changes. The sampling frequency of the
algorithm is fixed at fs = 1,200 Hz. Drawing from the preceding
measurements’ analysis, the influence of white noise is not taken into
account in the analysis of the slant wave signal.

y t( ) � A cos 2πft( ), t< 1
A cos 2πft + 2πRft

2( ), t≥ 1{ (23)

FIGURE 5
Signal contains white noise measurement results.

FIGURE 6
Results of the harmonic component measurements.
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FIGURE 7
Magnitude modulation test.

FIGURE 8
Comparison of frequency measurement results.
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where Rf is rate of change of frequency, set amplitude A = 1, The
normal frequency of the power system is set to f = 50 Hz.

The performance comparison results of each algorithm for the
above slant wave signal are shown in Figure 7.

According to the analysis of the results presented in Figure 8, the
Kalman filtering algorithm demonstrates rapid tracking capabilities
when the signal undergoes a sudden ramp change. In contrast, both
the RDFT algorithm and the matrix-pencil algorithm exhibit
difficulty accurately tracking the frequency following a recognized
change in the signal’s frequency during a ramp transition.

4.2.3 Grid real signal testing
Utilizing the power grid signal for verification. The grid voltage

signal is acquired using UGA, the sampling rate of UGA is set to
6,000 Hz and the device is shown in Figure 9. The acquired voltage
signals are measured using the algorithm of this paper to verify the
performance of the algorithm on a real data set.

Based on the analysis of the test results of real grid signals, the
proposed algorithm canmeet the standard requirements on real data
sets. The test results are shown in Figure 10.

In terms of real-time performance, Table 1 illustrates the
running time of the algorithm for each of the 10 signal
calculations, comparing it with the other two algorithms. It is
evident that the average processing time of the algorithm
proposed in this paper is approximately 0.0189 s, significantly
shorter than the processing times observed for the other two
algorithms.

5 Conclusion

This paper explores the limitations of Kalman filtering in
dealing with nonlinear systems and highlights the correlation
between the algorithm’s tracking ability and the update of the
covariance matrix. To this end, this paper proposes an extended
Kalman filtering algorithm tailored for synchronized
measurements of power system signal frequencies that
contains a hysteresis band reset covariance matrix determined
by the magnitude of the output error. A signal model based on
high-precision time-synchronized sampling is studied in depth,
and the control principle of high-precision synchronized signal
sampling rate is analyzed. The dynamic characteristics of the

FIGURE 9
Dynamic phase measurement device.

FIGURE 10
Real signal measurement results.

TABLE 1 Algorithm execution time comparison.

Algorithm Average time (s) Maximum time (s)

RDFT 0.4345 0.4549

Matrix-pencil 0.1796 0.2030

CREKF 0.0189 0.0213
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signal are studied in depth based on the sampling data, the
characteristics of the dynamic signal model are established,
and the initial state of the dynamic signal of the grid is
determined. Recognizing the inherent challenges of Kalman
filtering in nonlinear system scenarios and acknowledging the
impact of covariance matrix updating on algorithm tracking, an
extended Kalman filtering algorithm is introduced in this paper.
The algorithm is designed for synchronized measurements of
power system signal frequencies and features a lagband reset
covariance matrix, determined by the magnitude of the output
error. Practical insight into power system operation guides the
development of a corresponding mathematical signal model. A
wide range of measurements are performed using the proposed
algorithm to verify the accuracy and real-time performance of
the algorithm.

1) Construct the extended Kalman filtering algorithm based on
adaptive linear combiner to solve the problem that traditional
Kalman filtering can not deal with nonlinear systems, and
combine it with the hysteresis band updating covariance
matrix which is determined by the size of the output error
to improve the accuracy and real-time performance of
the algorithm.

2) Measurement of various types of power system signal models.
Simulation results show that for all types of mathematical
signal models, the algorithm proposed in this paper has good
accuracy and real-time performance, and can track the system
frequency better.
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