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This paper presents a mini-review of recent works in Salient Object Detection
(SOD). First, We introduce SOD and its application in image processing tasks and
applications. Following this, we discuss the conventional methods for SOD and
present several recent works in this category. With the start of deep learning AI
algorithms, SOD has also benefited from deep learning. Here, we present and
discuss Deep learning-based SOD according to its training mechanism, i.e., fully
supervised and weakly supervised. For the benefit of the readers, we have also
included some standard data sets assembled for SOD research.
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1 Introduction

Salient Object Detection (SOD) aims to identify the most important regions in an image
that capture human attention. These regions typically include objects like cars, dogs, and
people. In Figure 1, the input and output images after significant object detection are
visually represented. It is designed to mimic human attention to striking areas of the scene.
Identifying salient areas in an image can facilitate subsequent advanced visual tasks,
enhancing efficiency and resource management and improving performance (Gupta
et al., 2020). Thus, SOD can help filter irrelevant backgrounds, and SOD plays a
significant pre-processing role in computer vision applications, providing important
basic processing for these applications, e.g., segmentation (Donoser et al., 2009; Qin
et al., 2014; Noh et al., 2015; Fu et al., 2017; Shelhamer et al., 2017), classification
(Borji and Itti, 2011; Joseph et al., 2019; Akila et al., 2021; Liu et al., 2021; Jia et al.,
2022; Ma and Yang, 2023), tracking (Frintrop and Kessel, 2009; Su et al., 2014; Ma et al.,
2017; Lee and Kim, 2018; Chen et al., 2019), etc.

Existing SOD approaches can be roughly divided into two classes: 1) conventional
approaches; and 2) deep-learning-based approaches, as shown in Figure 2. Conventional
approaches exploit low-level features and some heuristics to detect salient objects,
containing local contrast-based, diffusion-based, Bayesian approach, objectness prior,
and classical supervision. In addition, deep learning-based approaches can help extract
comprehensive deep semantic features to improve performance. They can be further sub-
categorised into fully supervised learning (Wang et al., 2015a; Lee et al., 2016a; Kim and
Pavlovic, 2016; He et al., 2017a; Hou et al., 2017; Shelhamer et al., 2017; Su et al., 2019) and
weakly supervised learning (Zhao et al., 2015a; Lee et al., 2016b; Zhang et al., 2018; Shen
et al., 2018; Tang et al., 2018; Zhang et al., 2020a; Yu et al., 2021) based on the given labels.
This paper will summarise and discuss several chosen methods according to the two
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categories. Beyond concluding, the paper will briefly present recent
datasets commonly used for SOD for the interest of the readers.

2 Conventional methods

Since the Itti attention architecture has been put forward (Itti
et al., 1998). in 1998, this research on visual salient object detection
drew a high interest. Inspired by the human eye mechanism (Itti
et al., 1998) and the proposed salient object features (e.g., sharp
colours, strong contrasts, directional differences). Over the past
20 years, many salient object detection methods have been
proposed. Most of the proposed works first identify significant
subsets from the image by computing the significance graph and
then combining them to form the segment of the substantial object.
Depending on the chosen priors, one can further categorise the
conventional methods into local contrast-based, diffusion-based,
Bayesian approach-based, objectness prior-based, and classical
supervised SOD methods.

2.1 Local contrast based SOD

In the early works on salient object detection, the estimation of
element uniqueness was typically followed by pixel-level centre
positioning. This process involved utilizing one or more low-level
features to determine the orientation, colour, and contrast of image
elements relative to the surrounding environment. The concept of local
contrast, which measures the difference between a pixel and its
neighbouring pixels, played a crucial role in these approaches. Local
contrast is often calculated as a Gaussian-weighted sum of these
differences. For example, Ma and Yang. (2003) calculated local
contrast by considering the differences between a pixel and its local
surrounding pixels. They employed a Gaussian weighting scheme to

emphasize the contributions of nearby pixels in the contrast calculation.
Similarly, in the work by Liu et al. (2007), local contrast was extended to
image patches. The authors utilized local contrast as a feature for
learning tasks related to image analysis and processing. In the study by
Ma and Zhang (2003), they proposed color-quantized CIELuv images
subdivided into pixels blocks, and differences were computed using
local contrast. The fuzzy growth approach was then utilized to segment
points of interest and regions to generate the saliencymap. Rosin (2009)
proposed a parameter-free method that employed simple point-wise
operations, including edge detection, threshold decomposition, and
distance transformation. Furthermore, Hu et al. (2005) introduced a
linear subspace estimation approach that mapped a two-dimensional
image to a one-dimensional linear subspace following a polar
coordinate transformation. By projecting all data onto their
corresponding subspace normal, this approach considered both
feature contrast and geometric properties of the region. To enhance
robustness, Liu et al. (2007) employed pyramids to adjust the contrast at
a single scale and extended it to operate on multiple scales. Using linear
combinations, they computed multi-scale contrast features at image
pixels by combining contrasts from an L-layer Gaussian pyramid. In
another work by Liu and Gleicher (2006), block/pixel-based multi-scale
contrast features were integrated with regional information for object
localization. However, one limitation of this method was its heavy
reliance on image segmentation quality, which could impact its
performance. Additionally, it was observed that pixel-based multi-
contrast saliency maps tended to emphasize high-contrast edges
more than the overall salient objects, which could be considered a
drawback of the approach.

Additionally, Jiang et al. (2011) referenced as (Jiang et al., 2011)
utilized an image segmentation algorithm to generate multi-scale
segmentations, enabling the achievement of multi-scale local
contrast in their work. The saliency of a region at a specific scale
was determined by comparing its regional characteristics with those
of its neighbouring areas. The regional saliency values were

FIGURE 1
The input images and outputs of salient object detection (Cheng et al., 2013; Borji et al., 2014; Borji et al., 2015; Cheng et al., 2015).
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propagated to individual pixels across different scales to obtain a
pixel-wise saliency map. Klein and Frintrop (2011), as referenced in
(Klein and Frintrop, 2011), defined the saliency of image regions
using Kullback-Leibler divergence (KLD). They designed specific
scalable feature detectors to represent the distribution of feature
channels, such as intensity, colour, and orientation. KLD was
employed to quantify the difference between the central and
surrounding feature statistics, thereby estimating the centre-
surround contrast. Li et al. (2013), as referenced in (Li et al.,
2013), conducted local contrast analysis to identify salient regions
through imbalanced maximum edge learning. The regional context
of a central rectangular patch encompassed all spatially overlapping
surrounding patches. They utilized a trained cost-sensitive support
vector machine (SVM) to obtain the inter-class separability between
the central positive patch and all the surrounding negative patches.

2.2 Diffusion based SOD

The diffusion-based saliency object detection (SOD) models
utilize a graph structure on the image and employ a diffusion

matrix to propagate saliency values across the entire area. In a
patch-based approach, Gopalakrishnan et al. (2010) leverage the
equilibrium distribution of ergodic Markov chains on complete and
k-regular graphs. This generates salient and background seeds as
partial labels on the “pop-up” plot. Semi-supervised learning
techniques are then used to infer labels for unlabeled nodes.

In the work by Yang et al. (2013), manifold ranking is
incorporated as a saliency measure in a two-stage scheme.
Regional saliency maps are computed in the first stage, which
reflect the correlation of different sides of constituent superpixels
with the pseudo-background. In the second stage, foreground nodes
obtained from adaptive thresholding of the inverse initial saliency
map are used as saliency queries. Manifold ranking is applied again
to compute the final saliency score for each superpixel.

Zhang et al. (2017a) propose a method to effectively suppress
distant background regions near the image centre using a transition
probability matrix. Multiple sparse affinities with different feature
layers from a pre-trained FCN network are computed, and the
complete affinity matrix is inferred through iterative optimization.

Filali et al. (2016) extend the single-layer manifold ranking
framework to a multi-layer saliency maps framework,

FIGURE 2
Existing salient object detection methods.
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incorporating texture cues and colours to accurately detect the
boundaries of salient objects. Sun et al. (2015) identify salient
regions in the image by computing the Markov absorption
probability, which represents the probability of a transient node
being absorbed by an absorbing node. Ranking-based refinement is
performed using adaptively thresholded salient nodes in the
saliency map.

Furthermore, Jiang et al. (2019) propose a super-diffusion
framework that integrates various diffusion matrices, salient
features, and seed vectors to achieve robust and optimal
performance.

2.3 Bayesian approach based SOD

The Bayesian approach for saliency object detection (SOD)
involves estimating the probability that each pixel in an image is
significant, given the input image. Xie et al. (2012) proposed a
method that estimated the convex hull based on interest points. This
convex hull was crucial for determining saliency priors and
likelihood functions. They computed pixel-specific saliency priors
over the intersection of surrounding clusters and the convex hull.
Clustering techniques were employed to group superpixels into
more significant regions, generating bounding clusters.

In a similar vein, Sun et al. (2012) developed a method where
they computed a prior map resembling Xie et al.‘s approach (Xie
et al., 2012). However, they introduced a weighting scheme for the
convex hull at the boundaries of superpixels, utilizing the probability
of the boundary and the colour difference between the superpixel
and the background region.

To enhance likelihood estimation, Wang et al. (2016a) proposed
a geodesically weighted Bayesian framework, incorporating fully
connected conditional random fields (CRFs). This framework,
referenced as (Wang et al., 2016a), inferred more accurate initial
saliencies through CRFs and used saliency maps from existing
methods as prior distributions.

2.4 Objectness prior based SOD

Objective-based saliency object detection (SOD) methods
leverage object proposal algorithms to identify potential object-
containing image windows (Alexe et al., 2012). Chang et al.
(2011) proposed a method (Chang et al., 2011) that jointly
estimates latent object windows’ objectness and regional saliency
by iteratively minimizing an energy function.

Jia et al. (2013) developed a technique (Jia and Han, 2013) that
utilizes object scores as saliency measures and gives greater weight to
foreground pixels compared to background pixels when propagating
saliency information using GaussianMarkov Random Fields (MRF).

Li et al. (2015) combined objective foreground labels with
boundary cues in a co-transduction framework to generate
improved saliency maps for complex images (Li et al., 2015).
Additionally, Jiang et al. (2013) explored focusability and
objectivity priors, integrating them nonlinearly with uniqueness
cues at the pixel level to enhance SOD performance (Jiang et al.,
2013). Regional objectivity scores were computed by averaging the
objectivity scores of constituent pixels.

2.5 Classical supervised SOD

Supervised models based on classical machine learning (ML)
algorithms have been proposed for saliency object detection (SOD).
These approaches typically involve several steps, First, complex
features, such as superpixels or blocks, are manually extracted
from each image region. These features capture information like
colour, location, size, and texture, which are used to create region
descriptors. Next, the extracted features are used to generate region
descriptors that represent the characteristics of each image region.
Then, a trained ML regressor or classifier, which can be linear or
nonlinear, is applied to predict saliency scores or confidence levels
based on the input region descriptors. This step involves mapping
the region descriptors to saliency scores. Finally, the saliency score of
each region is assigned to the pixels it contains, resulting in an initial
saliency map. This map highlights the salient areas of the image
based on the predicted scores.

To provide a cohesive overview of different studies in this field,
here are the descriptions of the approaches, organized more
coherently. Mehrani and Veksler (2010) incorporated standard
features such as colour, location, size, and texture to form region
descriptors. They employed a trained boosted decision tree classifier
and further refined the initial segmentation through binary graph
cut optimization to achieve accurate boundaries.

Kim et al. (2014) employed a high-dimensional colour
transformation to represent the saliency map as a linear
combination of high-dimensional colour spaces. They estimated
the initial saliency map using a random forest regressor proposed by
Breiman (2001).

Wang et al. (2013) formulated SOD as a multiple instance
learning (MIL) problem. They independently trained four MIL
classifiers using regional feature descriptors, including low-level,
mid-level, and boundary cues.

Jiang et al. (2013) utilized region descriptors and trained a
random forest regressor to map region feature vectors to region
saliency scores.

Yang and Yang (2017) developed a maximummargin method to
jointly learn conditional random field (CRF) and discriminative
dictionaries for SOD. Their hierarchical CRF model conditioned the
target variable on an intermediate layer of sparse codes of
image patches.

These studies demonstrate different approaches within the
framework of supervised ML algorithms for SOD, showcasing
variations in feature extraction, ML algorithms, and additional
refinement techniques employed.

3 Deep-learning based SOD

While hand-crafted feature-based methods can achieve real-
time salient object detection (SOD), they have limitations when it
comes to complex scenes. However, the emergence of convolutional
neural networks (CNNs) has provided new insights for SOD
researchers, leveraging the multi-level and multi-scale features of
CNNs to accurately capture salient regions without relying on prior
knowledge. CNNs can effectively localize salient object boundaries,
even with challenging factors like shadows or reflections. As a result,
CNN-based SOD methods have outperformed conventional
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approaches on various datasets and are now the preferred choice for
SOD. Deep learning-based SOD models utilize the hierarchical
nature of CNNs and introduce novel network architectures to
generate representations that enable saliency detection. These
models leverage the multi-layer features to automatically identify
highly salient regions at coarse scales while utilizing shallower layers
to capture detailed information about boundaries and delicate
structures, aiding in localizing salient objects. The versatility of
CNNs makes them convenient tools for designing and
researching novel SOD models (Gupta et al., 2020). In the
following subsections, systematically review deep learning-based
SOD models. These models can be broadly categorized into fully
supervised models, weakly supervised models, and adversarial
models, depending on their level of supervision.

3.1 Fully supervised models

Fully supervised salient object detection (SOD)models are typically
developed with the assumption that a sufficient amount of human-
annotated training data, consisting of salient object masks, is available.
Zhang et al. (2016) explored the use of multi-context deep features for
SOD with abstraction-level supervision. They employed two
structurally similar convolutional neural networks (CNNs) to model
each image superpixel’s global and local context independently. Each
CNN took as input a fixed-scale window centred on the superpixel of
interest. The outputs of the two CNNs were then combined and fed
through a shared multi-layer perceptron (MLP) for regression, yielding
the final saliency score.

Zhao et al. (2015b) investigated the use of multi-context deep
features for SOD with abstraction-level supervision. They employed
two convolutional neural networks (CNNs) to model each image
superpixel’s global and local context independently. Each CNN
processed a fixed-scale window centred on the superpixel,
defining the context range. The extracted multi-context features
from the superpixels were combined and regressed using a shared
multi-layer perceptron (MLP) to generate the final saliency score.

Lee et al. (2016a) developed feature descriptors for each
superpixel by integrating encoded low-level distance maps (ELD-
Map) with deep CNN features that exhibited more robust semantic
representations. ELD-Map encoded the similarities and differences
between the queried superpixel and other superpixels. A stack of
hand-crafted feature distance maps captured these relationships,
which were then processed using a simple CNN to generate
the ELD maps.

Wang et al. (2015b) combined pixel-wise local estimation with
object-aware global search to achieve robust saliency detection.
They trained a deep CNN with patch inputs to assign saliency
values to each pixel in an image. Candidate object regions were
represented by vectors that combined global contrast, geometric
information, and local saliency measurement features. These
vectors were then processed using an MLP to obtain the final
saliency score.

Zhang et al. (2016) proposed a maximum a posteriori (MAP)-
based subset optimization approach to filter a set of scored bounding
box proposals into a compact subset of detections. They utilized a
CNN model to generate a fixed number of scoring location
recommendations for an optimizer based on MAP.

Kim and Pavlovic (2016) employed a CNN as a multi-label
classifier to estimate the proximity of region proposals for each
predefined shape class using a fixed binary representation. The final
saliency of an image pixel was computed by averaging the
predictions of all region proposals containing that pixel.

Su et al. (2019) proposed a SOD framework that addressed the
selectivity-invariant dilemma by incorporating three streams. The
first stream employed an integrated continuous dilation module to
achieve feature invariance within objects. The second stream used
hierarchical multi-scale features and boundary ground-truth
supervision for accurate salient edge localization. The third
stream modelled the challenging transition zone between object
boundaries and their interiors.

Zhao et al. (2019a) proposed a two-stage fusion scheme to exploit
the complementarity between saliency and edges. In the first stage, a
U-Net architecture with different kernel size convolutions and
nonlinearity at the decoder was utilized to extract multi-layer
saliency features at multiple scales. In the second stage, these layer-
wise saliency features were fused with image-level edge features to
generate a side-output feature set. The saliencymaps obtained from this
set were merged to get the final map.

To enhance the learning of semantic knowledge for SOD, Zeng
et al. (2019) introduced a joint learning approach for weakly
supervised semantic segmentation and SOD. Their architecture
consisted of two subnetworks operating on shared backbone
features. The first sub-network was trained to produce semantic
segmentation using image-level supervision in the first stage. The
obtained semantic segmentations were then used as pseudo-labels to
supervise the second-stage training of semantic segmentation. The
saliency aggregation subnetwork computed a weighted sum of
segmentation masks for all classes, guided by saliency ground
truth labels to generate a saliency map.

He et al. (2017a) employed subitizing as an auxiliary task to
improve SOD performance. They connected a pre-trained subitizing
subnet to the SOD subnet using an adaptive weight layer. The SOD
subnet was based on the U-Net architecture with skip connections
and hierarchical supervision. An adaptive weighting layer was
inserted between the two-halves of the U-Net, with weights
dynamically determined by the subnets. Both subnets were fine-
tuned together in an end-to-end manner during network training.

Furthermore, Islam et al. (2018) introduced a skip connection
strategy in their model for SOD. This strategy facilitated top-down
progressive refinement of the coarsest feature map generated by the
encoder. The refinement process was supervised by ground-truth
masks designed for the subitization task and pixel-wise saliency
annotations. High-level auxiliary features of one layer were obtained
by gating its features with the coarse hierarchy features. Finally, a
fusion layer combined multi-scale saliency predictions to generate
the final saliency map.

3.2 Weakly supervised models

Fully supervised salient object detection (SOD) models rely on
human-annotated training data, which is both labour-intensive and
time-consuming. To mitigate these challenges, researchers have
explored alternative approaches using weak supervision and
generative adversarial networks (GANs) for SOD.
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Weakly supervised SOD models utilize sparse annotations
such as bounding boxes, scribbles, or image-level labels instead of
pixel-level annotations. Wang et al. (2017a) proposed a weakly
supervised SOD model that primarily uses image-level labels for
supervision. They jointly trained classification and foreground
feature inference networks (FIN) under image-level supervision.
The FIN captures salient regions independent of specific object
categories. In the second stage, a SOD subnet merges the FIN
graph with deeper side features from the backbone network to
generate initial saliency predictions. These predictions are
refined using iterative conditional random fields (CRFs) for
self-training of the SOD branch.

Another weakly supervised approach involves utilizing scribble
annotations. Zhang et al. (2020b) developed a SOD model that
incorporates scribble annotations. They employed edge detection
subnets alongside SOD flows to address the limitations of boundary
localization in SOD caused by the lack of fine details and structure in
scribble annotations.

GANs have also been applied to SOD to enhance saliency
boundaries and generate realistic saliency maps. Cai et al. (2020)
introduced a dynamic matching module in the GAN framework to
improve the accuracy of salient object boundaries. Their model
integrates low-level colour and texture features using superpixel-
based methods to refine regional saliency scores.

Tang andWu (2019) proposed a cascaded CNN-based generator
for SOD that implicitly enhances saliency boundaries through
adversarial learning. They adopted the conditional GAN strategy,
incorporating adversarial losses to enforce clear boundaries and
spatial consistency. Local image patches were leveraged to capture
the regional structure of salient regions.

Furthermore, Sym et al. (Zhu et al., 2018) incorporated a
correlation layer in the discriminator of their GAN-based SOD
model. This correlation layer enables local patch-based
comparisons between synthetic saliency maps and
corresponding saliency masks, enhancing the model’s ability
to capture salient object boundaries.

In contrast to other SOD models, Liu et al. (2019a) specifically
tackled the issue of feature dilution through a progressive refinement
approach. They recognized that in some SOD models, features can
become diluted as they pass through multiple layers, leading to a
degradation in performance. To overcome this, Liu et al. proposed a
progressive refinement strategy that iteratively refines the saliency
predictions, allowing the model to focus on more informative
features and improve the overall accuracy.

Context extractionmodels, such as the one proposed by Liu et al.
(2018a), have also made significant contributions to the field of
SOD. These models employ extensive computational operations to
capture contextual information and have achieved state-of-the-art
results. Considering the context surrounding salient objects, these
models can refine the saliency predictions and enhance the
detection accuracy.

Furthermore, leveraging additional SOD learning
information that is related to the task can be beneficial in a
multi-task learning environment. For example, Zhao et al.
(2019b) and He et al. (2017b) explored the use of additional
information in SOD tasks, which can aid in improving the
performance of both functions. By jointly learning related

tasks, the model can leverage shared knowledge and enhance
the performance of individual tasks.

These weakly supervised and GAN-based approaches offer
alternatives to fully supervised SOD models, reducing the reliance
on pixel-level annotations and addressing the labour-intensive and
time-consuming nature of the annotation process.

4 Datasets

In this section, let us delve into some of the commonly used
datasets in Salient Object Detection (SOD). These datasets have
played a crucial role in advancing the field and evaluating the
performance of different SOD algorithms.

One of the widely used datasets is the MSRA Dataset. Created
by Liu et al. (2007), it is divided into two parts: MSRA-A and
MSRA-B. This dataset provides a large-scale collection of images
with salient object annotations in bounding boxes. Researchers
often rely on this dataset to evaluate and benchmark SOD
algorithms.

Another important dataset is BSD-SOD, derived from the
Berkeley Segmentation Dataset (BSD) (Movahedi and Elder,
2010). BSD-SOD consists of 300 images with pixel-level
annotations for salient objects. The dataset poses challenges due
to low contrast between objects and the background and objects
touching the image boundaries.

The Complex Scene Saliency Dataset (CSSD) and its extended
version (ECSSD) (Yan et al., 2013a) are also widely used in SOD
research. CSSD contains 200 images, while ECSSD consists of
1,000 images. These datasets focus on scenes that are both
semantically meaningful and structurally complex, providing
diverse challenges for evaluating SOD algorithms.

The PASCAL-S Dataset, proposed by Li et al. (2014), comprises
850 complex scene images extracted from the PASCAL VOC dataset
(Everingham et al., 2010). This dataset offers a diverse range of
scenes with salient objects, making it suitable for evaluating and
comparing different SOD algorithms.

Lastly, the DUTS Dataset, introduced by Wang et al. (2017a),
has gained popularity in recent years. It includes a training set with
10,553 images and a test set with 5,019 images. The DUTS dataset
serves as a benchmark for evaluating SOD models and has
significantly contributed to advancing the field.

These datasets serve as valuable resources for training,
evaluating, and comparing SOD algorithms, allowing researchers
to assess the performance and generalization capabilities of different
approaches.

5 Comparison and analysis

Runtime Performance: To assess the runtime of various saliency
detection models, we considered representative methods from
different categories: traditional models [e.g., Significant Filter (SF)
(Perazzi et al., 2012)], Manifold Ranking (MR) (Yang et al., 2013),
Robust Background Detection (RBD) (Zhu et al., 2014), classical
machine learning-based models (e.g., Discriminative Region Feature
Integration (DRFI) (Jiang et al., 2013)], and deep learning-based
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models [e.g., Abstraction-level Supervision (MCDL) (Zhao et al.,
2015b), Side Feature Fusion, Context Extraction].

Traditional SODmodels, such as Significant Filter (Perazzi et al.,
2012), rely on low-level cues, while models like Manifold Ranking
(Yang et al., 2013) and Robust Background Detection (Zhu et al.,
2014) utilize background priors in different ways. Classical machine
learning-based model Discriminative Region Feature Integration
(Jiang et al., 2013) integrates heuristic region descriptors using
classical machine learning-based techniques.

Deep learning-based SOD models fall into various subcategories.
For example, Abstraction-level Supervision models focus on improving
predictive performance, while Side Feature Fusion models [e.g.,
AMULet (Zhang et al., 2017b), EGNet (Zhao et al., 2019a), CPD
(Wu et al., 2019a)] incorporate context extraction strategies to
capture high-level contextual information. Simple encoder-decoder
enhancement models [e.g., UCF (Zhang et al., 2017c)] aim to
improve efficiency, and context extraction models [e.g., PiCANet
(Liu et al., 2018b)] utilize LSTM or multi-scale convolutional
kernels. Progressive feature refinement models [e.g., RAS (Chen
et al., 2018), PoolNet (Liu et al., 2019b), AFNet (Feng et al., 2019),
BASNet (Qin et al., 2019)] refine features at different scales, and multi-
task models [e.g., SCRN (Wu et al., 2019b)] address multiple saliency-
related tasks. Weakly supervised SOD models [e.g., C2S-Net (Li et al.,
2018)] are also considered for evaluation.

Runtime evaluations were conducted on a workstation with
an Intel Xeon(R) Bronze 3104 CPU@1.70GHz × 12 and Nvidia
Quadro-P5000 GPU (with 17 GB RAM). As shown in Table 1,
traditional SOD models, without any accelerators, exhibited long
runtimes. However, despite their popularity, these models, which
rely on low-level features and saliency priors, struggle to capture
the high-level contextual information necessary for accurate
saliency detection. As a result, their performance on saliency
metrics (e.g., MAE: above 0.163 and max Fβ: below 0.685) is

relatively low, and they generate subpar saliency maps for
complex scenes. While some deep learning-based models
explicitly address the runtime issue [e.g., RAS (Chen et al.,
2018), CPD (Wu et al., 2019a)] and demonstrate high
performance, others [e.g., MDCL (Zhao et al., 2015b),
PiCANet (Liu et al., 2018b), EGNet (Zhao et al., 2019a)] have
longer inference times due to their context extraction strategies.
Models that reduce channel dimensions or discard high-
resolution information [e.g., RAS (Chen et al., 2018), SCRN
(Wu et al., 2019b), BASNet (Qin et al., 2019)] achieve a
balance between efficiency and predictive performance.
Improving model efficiency involves introducing novel
techniques [e.g., RAS (Chen et al., 2018), AFNet (Feng et al.,
2019)] to reduce computational complexity or discard certain
information while maintaining satisfactory predictive
performance.

Recent deep-learning-based saliency object detection (SOD)
models, including MINet (Pang et al., 2020), SACNet (Hu et al.,
2020), GateNet (Zhao et al., 2020), U2 − Net (Qin et al., 2020), LDF
(Wei et al., 2020), DSRNet (Wang et al., 2020), EGNet (Zhao et al.,
2019a), PoolNet-Edge (Liu et al., 2019b), AFNet (Feng et al., 2019),
MLMS (Wu et al., 2019), PAGE (Wang et al., 2019), CPD (Wu et al.,
2019a), BDPM (Zhang et al., 2018), JDF (Xu et al., 2019), RAS (Chen
et al., 2018), PAGR (Zhang et al., 2018), C2S-Net (Li et al., 2018),
PiCANet (Liu et al., 2018b), DSS (Hou et al., 2017), UCF (Zhang
et al., 2017c), MSRNet (Li et al., 2017), ILS (Wang et al., 2017b),
NLDF (Luo et al., 2017), AMULet (Zhang et al., 2017b), SCRN (Wu
et al., 2019b), BANet (Qin et al., 2019), BASNet (Qin et al., 2019),
CapSal (Zhang et al., 2019), DGRL (Wang et al., 2018), SRM (Wang
et al., 2017), have been quantitatively evaluated using four evaluation
metrics across SOD dataset ECSSD (Yan et al., 2013b). The
evaluation metrics used are maximum F-measure (Achanta et al.,
2009), S-measure (Fan et al., 2017), E-measure (Fan et al., 2018), and

TABLE 1 Average running time of several salient object detection (SOD)models.

Models SF (82) MR (45) RBD (83) DRFI (57) MCDL (64)

Time(s) 0.16 0.25 0.25 9 2.41

GPU Support NO NO NO NO Yes

Learning NO NO NO CML DL

Code C++ Matlab Matlab Matlab Caffe

Models PiCANet (87) RAS (88) PoolNet (89) AFNet (90) EGNet (66)

Time(s) 0.19 0.0291 0.033 0.023 0.11

GPU Support Yes Yes Yes Yes Yes

Learning DL DL DL DL DL

Code Caffe Caffe Caffe pytorch pytorch

Models AMULet (84) UCF (86) C2S-Net (93) CPD (85) BASNet (91)

Time(s) 0.07 0.046 0.034 0.016 0.014

GPU Support Yes Yes Yes Yes Yes

Learning DL DL DL DL DL

Code Caffe Caffe Caffe pytorch pytorch
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mean average error [MAE (Perazzi et al., 2012)]. Based on the
evaluation results shown in Table 2, the more recent models such as
SACNet (Hu et al., 2020), MINet (Pang et al., 2020), GateNet (Zhao

et al., 2020), and EGNet (Zhao et al., 2019a) outperform others in
terms of various evaluation metrics across the dataset.

6 Future recommendations

Future SOD networks should be able to achieve the primary
goals of SOD in the most complex scenarios. This chapter discusses
some future directions for SOD.

Feature aggregation: Many deep learning models need help
extracting compelling features and aggregating them despite pre-
training multi-scale, multi-level features of the CNN network. On
the one hand, for feature aggregation, the crude method of
combining all levels of features into the transfer layer (Zhang et al.,
2017b) may introduce information redundancy and noisy feature
interference into the model. On the other hand, excessive control
over the exchange of information between stages (Zhang et al.,
2018) may severely hinder the network’s learning ability. These
outstanding issues in feature aggregation suggest that when merging
features from different layers, the focus should be placed on reducing
aliasing effects and noise interference to generate useful features for
saliency detection.

Inspiration from traditional models: Very few superoxide
dismutase models based on deep learning use the saliency map of
the traditional superoxide dismutase model as a saliency map to guide
the saliency process (Wang et al., 2016; Chen et al., 2018). On the one
hand, it (Wang et al., 2016), the saliency prior is used to initialize a
recurrent framework, while in (88), the prior saliency map can replace
the coarse saliency map for reverse attention. Optimization. On the
other hand, literature (Feng et al., 2019) implements dilation and
erosion operators through max-pooling to create turning attention
maps. Leveraging differentmethods to integrate heuristic saliency priors
or tools into deep SOD is expected to improve its training and inference.

Dataset-related issues: The availability of large datasets with less
bias is crucial for developing SOD models. The bias present in the
training data set affects the model’s ability to generalize to salient
targets in complex scenes. Existing SOD data sets can be quickly
browsed to observe whether central bias and data selection bias exist.
It is essential to develop datasets with more realistic scenarios and
less bias while keeping the scale large. The proposed model performs
better on some selected images than the ground truth. A more
stringent annotation procedure should be developed to improve this
situation, emphasizing acceptable annotation.

Real-time performance: Recently, DNN models (Chen et al.,
2020; Qin et al., 2020) have been proposed for the needs of mobile
and embedded applications. Achieving this through convolutional
layers with fewer channels results in compact models and high
efficiency. Qin et al. (Qin et al., 2020)designed a two-layer nested
U-shaped structure lightweight network, which trained SOD from
scratch. Recently, literature (Zhang et al., 2019) also proposed a
pixel-wise saliency prediction based on knowledge distillation to
solve the problem of a large memory footprint.

7 Conclusion

We have presented a comprehensive overview of Salient Object
Detection (SOD), a computer vision task that aims to identify and

TABLE 2 Quantitative Performance of recent state-of-the-art deep
learning-based SODmethods on one popular dataset. Performancemetrics
of maximum F-measure, S-measure, E-measure and Mean Absolute Error
(MAE) is represented bymaxFβ, Sm, Em, andMAE, respectively. Superscript in
the first column: “X”, “S”, “D” ResNeXt-101, ResNeXt-101 and DenseNet
backbone. ↑ and ↓indicate that the larger and smaller scores are better
respectively.

VGG

Model maxFβ ↑ Sm ↑ Em ↑ MAE ↓

ILS (106) 0.855 0.811 0.868 0.103

MSRNet (105) 0.911 0.895 0.918 0.054

NLDF (107) 0.905 0.875 0.912 0.063

Amulet (84) 0.915 0.894 0.912 0.059

UCF (86) 0.903 0.884 0.896 0.069

DSS (18) 0.899 0.873 0.907 0.068

PiCANet (87) 0.931 0.914 0.926 0.046

RAS (88) 0.921 0.893 0.922 0.056

C2S-Net (93) 0.910 0.893 0.914 0.054

PAGR (104) 0.927 0.889 0.917 0.061

JDF (103) 0.927 0.906 0.931 0.049

BDMP (102) 0.929 0.910 0.915 0.044

CPD (85) 0.936 0.910 0.943 0.040

MLMS (100) 0.928 0.911 0.916 0.045

PAGE (101) 0.931 0.912 0.943 0.042

AFNet (90) 0.935 0.912 0.940 0.042

PoolNetEdge (89) 0.941 0.917 0.942 0.041

EGNet (66) 0.942 0.918 0.941 0.041

MINet (94) 0.943 0.919 0.947 0.036

ResNet-50/ResNet-101/DenseNet/ResNeXt-101/RSU

SRM (110) 0.917 0.895 0.928 0.054

DGRL (109) 0.925 0.906 0.943 0.043

BASNet (91) 0.942 0.916 0.921 0.037

CapSals (108) 0.862 0.826 0.866 0.074

PoolNetEdge (89) 0.949 0.926 0.948 0.035

BANet (22) 0.945 0.924 0.953 0.035

SCRN (92) 0.950 0.927 0.942 0.037

DSRNetD (99) 0.950 0.922 0.953 0.031

LDF (98) 0.950 0.923 0.950 0.034

U2NetRSU (97) 0.951 0.928 0.925 0.032

MINet (94) 0.947 0.925 0.953 0.033

GateNetX (96) 0.952 0.929 — 0.035

SACNetS (95) 0.954 0.930 0.958 0.028
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segment the most prominent objects or regions in images. We have
discussed the evolution of SOD methods from traditional ones that
rely on hand-crafted features or heuristic priors to deep learning-
based ones that leverage robust neural networks and large-scale
datasets. We have also introduced the main challenges and
evaluation metrics of SOD, as well as the most influential and
recent models in the field. We hope this mini-review can provide
a valuable reference for researchers and practitioners who are
new to SOD.
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