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Addressing the intricacies of facial aging in forensic facial recognition, traditional
sketch portraits often fall short in precision. This study introduces a pioneering
system that seamlessly integrates a de-aging module and a sketch generator
module to overcome the limitations inherent in existing methodologies. The de-
aging module utilizes a deepfake-based neural network to rejuvenate facial
features, while the sketch generator module leverages a pix2pix-based
Generative Adversarial Network (GAN) for the generation of lifelike sketches.
Comprehensive evaluations on the CUHK and AR datasets underscore the
system’s superior efficiency. Significantly, comprehensive testing reveals
marked enhancements in realism during the training process, demonstrated
by notable reductions in Frechet Inception Distance (FID) scores (41.7 for
CUHK, 60.2 for AR), augmented Structural Similarity Index (SSIM) values
(0.789 for CUHK, 0.692 for AR), and improved Peak Signal-to-Noise Ratio
(PSNR) metrics (20.26 for CUHK, 19.42 for AR). These findings underscore
substantial advancements in the accuracy and reliability of facial recognition
applications. Importantly, the system, proficient in handling diverse facial
characteristics across gender, race, and culture, produces both composite and
hand-drawn sketches, surpassing the capabilities of current state-of-the-art
methods. This research emphasizes the transformative potential arising from
the integration of de-aging networks with sketch generation, particularly for age-
invariant forensic applications, and highlights the ongoing necessity for
innovative developments in de-aging technology with broader societal and
technological implications.
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1 Introduction

Facial aging is a multifaceted process influenced by internal factors like genes and
hormones, as well as external factors such as Sun exposure and smoking. These elements
impact the aging pace, resulting in varied outcomes among individuals. Facial changes
involve alterations in skin elasticity, muscle tone, bone density, and fat distribution. Skin
develops wrinkles, muscles lose tone, bones become less dense, and fat tissues shift, affecting
facial shape (Bocheva et al., 2019). These transformations pose challenges for facial
recognition systems, especially in applications like security and forensics, where
accuracy is crucial. Understanding facial aging extends beyond individual health,
holding broader implications for societal and technological advancements (Kyllonen
and Monson, 2020; Donato et al., 2023).
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Forensic agencies use sketch portraits, created from eyewitness
descriptions, to aid in criminal apprehension. These depictions,
crafted by forensic artists or software, employ techniques like
composite sketches, facial approximation, or facial reconstruction.
Sketch portraits help narrow down suspects, generate leads, and seek
public assistance. Despite their utility, challenges arise in accurately
identifying past criminals (Kokila et al., 2017a; Kokila et al., 2017b;
Pallavi et al., 2018). Sketch portraits often lack precision,
completeness, or fail to reflect changes over time, like aging,
hairstyles, facial features, scars, tattoos, or cosmetic alterations,
leading to potential inaccuracies in identification (Jin et al., 2018).

De-aging networks, a form of deep learning, generate realistic
images with a younger appearance, aiding forensic investigations by
enabling accurate face recognition from old sketch comparisons
(Rafique et al., 2021; Atkale et al., 2022). For instance, if a crime
suspect is identified only through an aged sketch, de-aging networks
can produce a younger version for comparison, improving the
chances of identification. These networks can also enhance the
quality and resolution of old sketches for improved face
recognition. Techniques include facial landmark detection, facial
attribute manipulation, facial expression preservation, and age
progression reversal. However, challenges like ethical concerns,
privacy issues, data availability, and model robustness exist. De-
aging accuracy depends on relevant data, as diseases or disorders
may alter a person’s appearance. Sketches simplify facial recognition
by highlighting essential features, abstracting complex details,
enhancing contrast, and preserving identity and expression,
benefiting de-aging networks (Abate et al., 2007).

Given the significant challenges posed by facial aging in
accurately identifying individuals in forensic contexts, there is a
pressing need for innovative solutions that enhance the precision
and reliability of facial recognition systems over time Our proposed
system, which integrates de-aging networks with sketch generation,
offers a novel approach to address these challenges. Specifically, it
holds promise for applications in forensic science, such as aiding in
the identification of missing persons over time and revisiting cold
cases with updated visual records, thereby potentially transforming
forensic methodologies and outcomes. The de-aging module
employs a deepfake-based neural network that can de-age faces
of any gender, race, and culture, by eliminating blemishes and
wrinkles, and enhancing facial features. The sketch generator
module utilizes a pix2pix-based GAN that can convert photos
into sketches, by extracting and preserving the structural and
contrast details of the faces (Sannidhan et al., 2019). Our system
can produce both hand-drawn and composite sketches, which are
more realistic and consistent than existing methods. We assess our
system on two standard datasets (Sannidhan et al., 2019), Chinese
University of Hong Kong (CUHK) and Aleix Martinez and Robert
Benavente (AR) and exhibit its efficiency and supremacy over other
contemporary methods.

In view of the design of the proposed system, the following are
the key contributions of this research article:

1) Integration of de-aging networks with sketch generation for
advanced forensic facial recognition capabilities, especially for
age-invariant applications.

2) Utilization of a pix2pix-based GAN for converting photos into
enhanced sketches that are more realistic and consistent.

3) Demonstration of enhanced performance and accuracy on
CUHK and AR Face Sketch Databases outperforming
contemporary methods in terms of realism and accuracy
during the training process.

4) To support diverse demographic attributes, ensuring broad
applicability in forensic applications.

2 Related works

Recent developments in facial recognition technology showcase
a broad range of interdisciplinary techniques, extending from the
creation of innovative neural architectures to the implementation of
advanced imaging methods that elucidate aspects of the aging
process. Gupta and Nain (2023) offer an exhaustive analysis
comparing single and multi-attribute learning models. Single-
attribute models analyze specific features such as age or gender
in isolation, while multi-attribute models amalgamate various
characteristics to improve predictive accuracy. These models are
particularly beneficial in complex application environments, such as
demographic studies and security systems, where a nuanced
understanding of the interrelationships among different facial
attributes is essential. Furthermore, the authors introduce
groundbreaking neural frameworks that significantly enhance the
performance of existing facial recognition technologies, marking a
progressive stride in the evolution of this field.

Pezzini et al. (2023) explore facial aging through a
dermatological lens, employing non-invasive, high-resolution
imaging techniques to scrutinize the subtle skin changes across
different age groups. Their thorough analysis of 140 facial skin
images spanning seven age groups establishes a detailed correlation
between visible signs of aging and underlying imaging
characteristics. This research not only enhances our
understanding of dermatological aging but also pioneers new
diagnostic tools and methodologies for early detection and
intervention in skin-related conditions. By gaining a deeper
understanding of these age-related changes, the study provides
invaluable insights into the fields of dermatology, cosmetic
science, and geriatric care, potentially revolutionizing skincare
and anti-aging treatments.

Henry et al. (2023) integrates insights from psychology,
neuroscience, and gerontology within the Social Cognitive
Resource (SCoRe) framework to examine facial aging. This
innovative approach facilitates a detailed exploration of how
cognitive processes interact with physiological aspects of aging,
influencing facial expressions and muscle dynamics over time.
The holistic perspective provided by this research illuminates the
complex dynamics of aging, offering a more comprehensive
understanding of how aging impacts human facial features from
a neurobiological standpoint.

Building on these thematic concerns, Chandaliya and Nain
(2023) explore the technological advancement of facial
recognition systems through the development of an aging
framework that utilizes a wavelet-based Generative Adversarial
Network (GAN). This model is meticulously designed to enhance
the realism and precision of age progression in digital images. By
integrating wavelet transformations, their framework adeptly
captures intricate facial details and textures, which are crucial for
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achieving realistic transformations and accurate age estimations.
This advancement significantly boosts the performance of facial
recognition systems, particularly in environments where precise age
determination is critical.

In a related stripe, Du et al. (2019a) introduces the Cycle Age-
Adversarial Model (CAAM), a novel neural network architecture
designed to enhance cross-age face recognition. This model employs
a cyclic adversarial learning strategy to minimize the perceptual
differences between age-progressed and actual images of the same
individual, thereby improving the model’s ability to accurately
recognize faces across significant age variations. The CAAM
demonstrates superior performance on benchmark datasets,
underscoring its potential to bolster security systems and other
applications that require reliable age-invariant recognition
capabilities.

Furthermore, Du et al. (2019b) expand their research into age-
invariant facial recognition with the development of the Cross-Age
Face Recognition (CAFR) technique, which incorporates the Age
Factor Removal Network (AFRN). This approach leverages
adversarial and transfer learning strategies to isolate age-related
features while preserving individual identity, demonstrating a high
level of robustness and adaptability across diverse datasets. The
effectiveness of this system in various practical applications signifies
a significant advancement in the field, opening new avenues for the
development of increasingly sophisticated facial recognition
technologies.

The research contributions advance further with Chandaliya
and Nain (2022), who introduced PlasticGAN, an advanced
generative framework that utilizes a conditional Generative
Adversarial Network (cGAN) combined with a deep residual
variational autoencoder. This innovative model excels in
generating post-surgery facial images with high authenticity and
variability, proving particularly valuable in clinical decision-making,
forensic science, and the entertainment industry.

Expanding the scope of generative models, Atkale et al. (2021)
delve into facial aging through regression analysis and progression
modeling using a sophisticated deep GAN architecture. Their
research highlights the generation of high-quality images that
portray realistic aging effects, aiming to improve the training and
performance of age-progression models across various age groups
and amidst dataset variability.

Contributing to technological diversity, Olivier et al. (2023) have
developed FaceTuneGAN, a novel method for crafting 3D face
models from textual descriptions. This model exhibits high
versatility in transferring facial features across different age
groups and proves particularly useful in digital entertainment
and virtual reality applications, where customizable facial
expressions and features are crucial.

Building on the advances in facial recognition and aging models
discussed earlier, the developments in sketch conversion
technologies, such as those by Jo and Park with SC-FEGAN
(2019) and Yang et al. with S2FGAN (2022), represent further
strides in generative modeling. These technologies enhance the
ability to create realistic images from sketches by integrating
sophisticated loss components and attribute mapping networks
into their designs. This enhancement in sketch conversion
parallels the improvements seen in age-progression and face
modeling technologies, showing a consistent trend towards more

precise and adaptable image generation across various applications,
from digital entertainment to forensic science.

Upon conducting an exhaustive literature study, targeting on the
shortcomings of existing techniques, the proposed system builds
upon previous advancements in facial recognition and aging
technologies by integrating a de-aging module and a sketch
generator module, aimed at overcoming the limitations of
traditional forensic facial recognition. Utilizing a deepfake-based
neural network and a pix2pix-based Generative Adversarial
Network (GAN), this system significantly enhances the accuracy
and realism of facial sketches across diverse datasets, demonstrating
substantial improvements in key performance metrics. These
innovations not only refine age-invariant recognition capabilities
but also set new standards in forensic applications, highlighting the
transformative potential of combining de-aging and sketch
generation technologies.

3 Proposed system

To enhance the training performance of generated De-aged
quality sketches, we have proposed a two-step approach. Figure 1
presents the overall working of the model of our proposed
methodology.

As presented in Figure 1 our system is divided into two main
modules 1. The De-Aging Module and 2. Sketch Generator Module.
A thorough explanation of these modules is presented in the
successive sections.

3.1 De-Aging module

The De-Aging module in the system focuses entirely on reverse
aging the captured photographic evidence of the human face. This
model is fine-tuned in such a way so that it de-ages only frontal faces
captured as mugshots from aged suspects. This is a vital step in the
system since profile and other views can distort the de-aging process.
The model is a neural network that utilizes a deepfake trained system
that can de-age faces of any gender, race, and culture as shown in
Figure 2 (Zhang, 2022).

Deepfakes consist of a GAN embedded within a Encoder
decoder network. The Encoder-Decoder extracts noticeable
abstract features from the face and passes the same towards the
GAN. The GAN network manipulates the face accordingly based on
the training provided to it (Seow et al., 2022). The decoder decodes
and reconstructs the face accordingly. The Style GAN (Richardson
et al., 2021) represented in Figure 2 Is designed to remove blemishes
and wrinkles. Figure 3 displays the internal structure of the Style
GAN used in our proposed system.

The internal structure portrayed in Figure 3 Features a Style
Mapper Network with fully connected layers serving as style
mappers. These styles are embedded into the synthesizer, a
generator network adding noise and style vectors from the
encoder. A progressive GAN is employed, enhancing with each
iteration, starting with 4 × 4 images and progressively refining
details until the discriminator can no longer diminish finer crisp
details. The detailed generator architecture is explained in the
subsequent sections.
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3.1.1 Up sampling layer
The up-sampling layer is crucial in GANs for expanding image

spatial dimensions, specifically width and height. This expansion is
advantageous in GANs, where the generator starts with a compact
input and gradually enlarges it to produce a full-sized output image.
The Up-sampling technique (Amin et al., 2019) in this research
article employs bilinear interpolation, as indicated by the
mathematical framework in Eqs 1, 2. Bilinear interpolation
involves a two-dimensional linear interpolation for resizing
images, which enhances image quality by considering the

intensity values of the nearest 2 × 2 neighborhood of known
pixel values to estimate the unknown pixel values. This method
provides a balance between computational efficiency and output
quality, making it suitable for de-aging applications where
maintaining facial details is critical.

Specifically, Eq 1 outlines the general up-sampling function, and
Eq 2 details how pixel values are interpolated. The bilinear approach
ensures that de-aged images retain smoother transitions in pixel
values, which is crucial for preserving subtle facial features and
expressions in forensic imagery.

FIGURE 1
Model overview for enhanced De-aged sketch training.

FIGURE 2
Deepfake Architecture with GAN for facial manipulation.
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Y � UpSample X( ) (1)
Y i, j( ) � 1

4
X ⌊ i

2
⌋, ⌊ j

2
⌋( ) + X ⌊ i

2
⌋, ⌈ j

2
⌉( ) + X ⌈ i

2
⌉, ⌊ j

2
⌋( )(

+X ⌈ i
2
⌉, ⌈ j

2
⌉( )) (2)

Term X be the input feature map of size W × H. The up-
sampled output Y of size 2W × 2H, where UpSample(·) is a
function that interpolates additional rows and columns into X.

3.1.2 Adaptive Instance Normalization layer
Adaptive Instance Normalization (AdaIN) is pivotal in Style

GAN, a variant of GANs. AdaIN plays a vital role in aligning the
feature statistics of a content image with those of a style image,
facilitating the transfer of style onto the content. In Style GAN,
AdaIN allows manipulation of the latent space to control specific
characteristics of the generated images, including style at various
levels of detail (Gu and Ye, 2021). This is achieved by adjusting and
shifting features in each channel of the content image based on the
statistics of the corresponding channel in the style image. The
result is a robust and flexible framework for image synthesis,
capable of producing high-quality images with a diverse range
of intricate styles. Eq. 3 reveals the mathematical formulation of
the layer.

A � σ S( ) · C − μ C( )
σ C( ) + μ S( ) (3)

In the equation, content feature mapC and a style feature map S,
A is the AdaIN Output, where μ(·) and σ(·) denote the mean and
standard deviation operations, respectively.

3.1.3 Convolution layer
The convolutional layers of our de-aging network utilize a

combination of 3 × 3 and 5 × 5 filter sizes. The 3 × 3 filters
adept at extracting high-resolution features from the facial images.
As outlined by Eqs 4, 5 (Wang et al., 2021; Pehlivan et al., 2023; Zhao
et al., 2023).

O � Conv I, F( ) (4)

O i, j( ) � ∑m−1

u�0
∑n−1
v�0

I i + u, j + v( ) × F u, v( ) (5)

Parameter O is the output feature map, and Conv(I, F) denotes
the convolution operation. I denote the input image and F
represents Convolutional filter or kernel. In Eq. 5, O(I,j) is value
of the output feature map at position (i, j). Parameter I (i + u,j + v)
represents pixel value of the input image at the position offset by (u,
v) from the position (i, j). F is a filter corresponding to the offset and
m, n denotes dimensions of the filter. The symbol ∑ is used here to

FIGURE 3
The internal framework of our blemish and wrinkle removal Style GAN.
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indicate that the output pixel value is the weighted sum of the input
pixel values covered by the filter, with weights given by the
filter values.

To complement the finer details captured by 3 × 3 filters, the
system also employs 5 × 5 filters which are designed to grasp
broader features like overall face shape, contour changes, and
major wrinkles. These larger filters help in understanding the
macro changes in facial structure that occur with aging,
providing a balance between detailed textural representation
and global facial morphology. The dual approach of using
both 3 × 3 and 5 × 5 filters allows our system to
comprehensively model facial aging by effectively capturing
both micro-detail enhancements and significant age-related
transformations. This is achieved by layering these filters in a
manner that each type contributes uniquely: the 3 × 3 filters
maintain sharpness and detail, crucial for the realistic portrayal

of young features, while the 5 × 5 filters aid in the smooth
transition of these features as aging progresses, as supported
by the deployment strategies discussed in Eqs 6, 7.

Width 0( ) � ⌊W −m + 2p
s

+ 1⌋ (6)
Height 0( ) � ⌊H − n + 2p

s
+ 1⌋ (7)

In Eqn 6, parameter Width(0) denotes width of the output feature
map after the convolution,W represents the input featuremap, parameter
m is width of the filter, p corresponds to the padding applied to the input
and s is the step size at which the filter is applied across the input feature
map. Furthermore, Eqn 7 reveals height of the output featuremap after the
convolution denoted by Height(0), parameters H& n represents the
height of the feature map and filter respectively. Parameters p& s
represents as per the description presented in Eq. 6.

FIGURE 4
GAN-driven module crafting composite sketches from photos.
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3.1.4 Encoder and decoder layer
Deepfake technology employs an encoder-decoder architecture.

The encoder transforms input data, like an image or video frame,
into a condensed latent space, preserving critical attributes and
eliminating unnecessary details (Akram and Khan, 2023). The
decoder reconstructs the original data from this latent space. In
Deepfake, this process facilitates face swaps by extracting facial
features from both individuals. The decoder then superimposes the
age feature onto the others, creating a convincing young appearance.
The formulation of this layer is represented by Eqs 8–11.

L, F( ) � E I( ) (8)
L1, F1( ) � E I1( ) and L2, F2( ) � E I2( ) (9)

O � D L, F′( ) (10)
O1 � D L1, F2( ) and O2 � D L2, F1( ) (11)

As represented in the equations, encoder E transforms the input
image I into a latent representation L and a feature vector F. This
equation shows the decoder D reconstructing the output image O
using the latent representation L and a feature vector F′ from
another image. These represent the encoder processing two
different images I1 and I2, and the decoder reconstructing
images O1 and O2 with swapped features.

3.2 Sketch generator module

The Sketch generator module in the proposed technique
operates through a GAN that takes a photo as input and
produces a detailed sketch of a person. Given the stark
differences between sketches and photos, accomplishing the
entire objective using a single GAN becomes a challenging task.
Consequently, the procedure is bifurcated into a two-fold approach.
The GAN has been enhanced to generate not only hand-drawn
sketches but also composite versions. Figure 4 elucidates the overall
structure of the GAN training crafted for composite sketch
generation.

Employing the standard Conditional GAN pix2pix model, the
GAN associates photos with sketches. The training process involves
initially establishing associations between photo-sketch pairs,
binding them together through image cascading as outlined in
Eq. (12).

Imerged x, y( ) � ∑
i+m,j+n( )∈ Isketch,Iphoto,[ ]

Iphoto, i, j( ) + Isketch m.n( )[ ] (12)

Here in Eq. 12, Imerged(x, y) represents the merged image
created from the pixels Iphoto(i, j) and Isketch(m, n) respectively.
The internal structure of our GAN comprises of two main modules,
i.e. 1) The Decimator and 2) The Generator. Detailed architecture of
the same are explained in the subsequent sections.

3.2.1 The discriminator
The discriminator model in the pix2pix architecture utilizes the

traditional patch GAN approach, concentrating on N×N image
patches and evaluating them individually. The scrutiny intensifies
with progressing training iterations, enhancing overall clarity.
Table 1 provides a breakdown of the Patch GAN network’s
architecture.

As depicted in Table 1, it offers insights into the discriminator
layer’s process of examining the input image and the target for
comparison. Notably, the pooling layer is employed to reduce the
size of numerous pixels to a coarser number. The Patch GAN
(Henry et al., 2021) configuration includes two convolutional
layers, with one positioned in between and the other at the end.
Additionally, the down sampling layers incorporate multiple
convolutional layers, as mathematically outlined in the provided
Eq. 13.

min
G

max
D

V D,G( ) � Ex~pdata x( ) logD x | y( )[ ]
+ Ez~pz z( ) log 1 −D G z | y( )( )( )[ ] (13)

In this context, x denotes actual data, z is identified as the noise
vector, y symbolizes the condition,G stands for the generator, andD

TABLE 1 Architectural breakdown of patch GAN for image comparison.

Layer name Size Description

Input Layer (256,256,3) The input image to be compared

Input Layer (256,256,3) The Target image to be compared

Concatenation Layer (256,256,6) Concatenation of input and Target

Down sampling Layer (128,128,64) Compress the spatial extent of the feature matrices

(64,64,128)

(32,32,256)

Padding Layer (34,34,256) Prevent the shrinking of the input image and to preserve the information presented in the corners

Convolutional Layer (31,31,512) Dynamically acquire and adjust the layered structure of spatial features from the given data

Normalization Layer (31,31,512)

ReLU (31,31,512) It is a piecewise linear function that outputs the input directly if it is positive, otherwise, it outputs zero

Padding Layer (33,33,512)

Convolutional Layer (30,30,1) Final Target Layer
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signifies the discriminator. The initial part of the equation is
indicative of the discriminator’s expected log-likelihood of
accurately identifying real data as real, contingent on the
condition. Conversely, the latter part of the equation reflects the
expected log-likelihood of the discriminator accurately recognizing
artificial data, which is produced by the generator, as fake, also based
on the condition.

To improvise the training process of the discriminator, Binary
Cross-Entropy (BCE) loss function is utilized. The BCE loss function
is mathematically represented as presented in Eq. 14

LD � − 1
N
∑N
i�1

yi. log D xi( )( ) + 1 − yi( ). log 1 − D xi( )( )[ ] (14)

LD denotes the loss for discriminator, N represents number of
training samples. Parameter yi is either 0 or 1 and D (xi) is the
discriminator’s probability output.

The loss function in Eq. 14 ensures that the discriminator is
trained to correctly classify real and generated images as accurately
as possible. To further prevent the discriminator from overfitting, we

can implement dropout regularization in the discriminator layers.
Dropout randomly sets a fraction of input units to 0 at each update
during training time, which helps to prevent overfitting by reducing
the reliance on any individual neuron. The dropout rate typically
ranges from 20% to 50%. This technique not only helps in
regularization but also encourages the discriminator to learn
more robust features. The mathematical function for dropout
regularization during training is described as depicted in Eq. 15

R x( ) � x ⊙ M (15)

In the equation, R(x) represents the output on applying
dropout, x is the input layer vector and M is the mask vector as
described according to the Bernoulli distribution and the symbol ⊙
denotes element-wise multiplication.

3.2.2 The generator
The Pix2Pix GAN leverages a generator derived from a tweaked

U-Net architecture, akin to an autoencoder. This U-Net structure
comprises an encoder for down-sampling and a decoder for up-

TABLE 2 Architectural overview of Pix2Pix GAN with U-Net modification.

Layer name Size Description

Input Layer (256,256,3) Input Layer

Down sampling Layer 1 (128,128,64) A Convolutional Layer with a Normalizing Layer

Down sampling Layer 2 (64,64,128)

Down sampling Layer 3 (32,32,256)

Down sampling Layer 4 (16,16,512)

Down sampling Layer 5 (88,512)

Down sampling Layer 6 (44,512)

Down sampling Layer 7 (22,512)

Down sampling Layer 8 (11,512)

Concatenate (22,512)

Down sampling Layer 10 (2,21,024)

Concatenate (44,512)

Down sampling Layer (88,512)

Concatenate (8,81,024)

Down sampling (16,16,512)

Concatenate (16,16,1024)

Down sampling (32,32,256)

Concatenate (32,32,512)

Down sampling (64,64,128)

Concatenate (64,64,256)

Down sampling (128,128,64)

Concatenate (128.128.128)

Lambda Layer (256,256,3) Output Layer

Transpose Layer
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sampling, as detailed in (Basu et al., 2020; Zhao et al., 2023). Within
this architecture, the encoder is tasked with capturing the image’s
context, and the decoder is designed for detailed localization. A
notable characteristic of our U-Net is the inclusion of skip
connections between matching layers of the encoder and decoder,
which are instrumental in retrieving detailed features lost during down-
sampling. In the Pix2Pix system, the generator’s function is to take an
image as input and generate a comparable output image, aiming to trick
the discriminator into classifying this output as real. The full
architecture of our generator is depicted in Table 2.

Defining the Generator loss function involves utilizing the
equation, as elucidated in (16). This equation plays a
fundamental role in guiding the optimization process for the
Generator within the given context.

LG � Ex,y y − G x( )( )2[ ] (16)

In the equation, x is the input image, y is the target image, G(x)
is the generated image. Ex,y defines the expected value generated
from the loss difference. The lambda layer used below is a custom
layer defined to clarify sketches as the output. The entire structure of
the lambda layer is explained below.

3.2.3 Lambda layer
In the proposed system, the Lambda layer serves dual purposes:

rendering and gamma adjustment. For rendering, it conducts

operations on a color image, initially transforming it into
grayscale to reduce color information for better sketching
suitability. Following this, a Gaussian blur with a 21 × 21 kernel
size and zero standard deviation in both x and y directions is applied
to the grayscale image, effectively smoothing noise and creating a
blurred version. Finally, the original grayscale image is divided by
the blurred image with a scale factor of 256, intensifying edges and
contrast. This division enhances the darkness of darker pixels and
the brightness of lighter pixels, resulting in an image resembling a
pencil-drawn sketch. The choice of a 21 × 21 kernel size for Gaussian
blur is driven by the need to achieve a balance between smoothing
effectiveness and computational efficiency. Further the scale factor
256 (28) corresponds to the maximum value for an 8-bit channel,
thereby normalizing the image to use the full range of possible
intensity values, enhancing the depth and realism of the final image.
Mathematical Eqs 17–21 underpin the operational workings of
these processes.

I x, y( ) � 0.2126 *Red( ) + 0.7152 *Green( ) + 0.0722 *Blue( )[ ]
(17)

G x, y( ) � K x, y( )*I x, y( ) (18)

K x, y( ) � 1
2πσ2

× e
− x2+y2( )

2σ2 (19)
β x, y( ) � I x, y( ) /G x, y( ) * 256 (20)

A x, y( ) � table β x, y( )[ ],where table i[ ]
� i / 255( ) 1

gamma f or i in 0, 255[ ] (21)

In the equations, G(x, y) represents the blurred grayscale
image, I(x, y) is the original grayscale image, and K(x, y)
represents the Gaussian kernel with a standard deviation σ
controlling the blur intensity. Larger sigma values result in
more blur. The kernel size is selected to cover at least three σ
in both directions. Gaussian blur is achieved through convolution,
where each output pixel is a weighted average of its neighbors
based on the kernel values. The convolution can be applied by
multiplying each pixel with the entire kernel or separately for each
axis using a one-dimensional kernel. β(x, y) is the output image,
and the division operation enhances edges and contrast by
adjusting pixel values based on intensity. The gamma
adjustment operation further modifies brightness, mapping each
pixel value to a new value with a lookup table. The gamma
parameter controls brightness, with lower values darkening the
image and higher values brightening it. A(x, y) is the output,
I(x, y) is the input, gamma is the gamma parameter, and table is
the lookup table with 256 mappings. This operation is a non-linear
transformation that alters contrast and dynamic range in
the image.

TABLE 3 A detailed examination of CUHK and AR face sketch databases.

Dataset Source Number of
images

Number of
subjects

Image conditions

CUHK CUHK
Campus

606 Varies by database Frontal pose, normal lighting condition, neutral expression

AR CVC at UA.B. Over 4,000 126 (56 women and
70 men)

Faces in frontal view showcasing varied expressions, under different lighting
conditions and with obstructions

TABLE 4 FID scores illustrating face sketch generation performance across
epochs and datasets.

Epochs Datasets used and their FID
score (↓)

CUHK AR

100 50 75

200 46 70

300 44 65

400 43 63

500 41 58

600 40 56

700 39 55

800 38 54

900 38 53

1,000 38 53
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4 Results and discussions

The results and discussions topic for the research exertion
shown is a section that presents and analyzes the findings of the
experiment on sketch generation from photos. The system was run
on Tesla P100 GPU has 12GB of HBM2 memory, which provides
high bandwidth and low latency for data-intensive workloads. The
Tesla P100 GPU also supports NVIDIA NV Link, which is a high-
speed interconnect that enables multi-GPU scalability and
performance. We have also performed in-depth analysis of
various parameters for detailed understanding of the modules.
The analysis is shown in the subsequent sections.

4.1 Dataset description

The CUHK Face Sketch Database and the AR Face Sketch
Database are significant datasets employed for experimental
inquiries in computer vision. The subsequent Table 3 provides a
comprehensive overview of these datasets, detailing their
characteristics and key attributes.

4.2 Evaluating sketch generation with GANs

In assessing the performance and quality of the sketch generation
GAN, metrics are utilized to measure the realism, diversity, and
similarity of the generated images to real ones. The subsequent
sections provide a detailed discussion of the various evaluation
metrics adopted for this purpose (Fernandes and Bala, 2016).
Further, the generator’s learning rate is set at 0.0002, contrasting with
the discriminator’s rate of 0.0001 to maintain balance and prevent either
network from overpowering prematurely. The batch size of 64 is set,
which ensures stable learning by smoothing the gradient updates. The
generator features a U-Net-like architecture with encoder-decoder paths
and skip connections, essential for preserving important facial details.

4.2.1 Inception score or FID score
This is an objective and quantitative metric that involves using a

pre-trained classifier network (such as Inception) to classify the
generated images into different categories, and then calculating a
score based on both the diversity (entropy) and quality (confidence)
of the classifications. A higher score indicates better generated
images. Eq. 22 shows mathematical form of the inception score.

Score � e Ex KL p y|x( ) p‖ y( )( )( )( ) (22)

Score is the inception score, Ex is the expectation over all generated
images x. KL represents the Kullback-Leibler divergence, a metric
that quantifies the disparity between two distinct probability
distributions. p(y|x) is the conditional distribution of the class
label y given the image x, computed by the classifier network. p(y)
the marginal distribution of the class label y, computed by averaging
p(y|x) over all generated images x.

The FID score for sketch generation from faces was calculated
across various epochs using two standard datasets. The obtained
results are depicted in Table 4.

With increasing epochs, the generative model generates
increasingly realistic images, evident in the declining FID scores for
both datasets. Notably, themodel consistently achieves lower FID scores
on CUHK compared to AR at each epoch, implying superior
performance on CUHK. This performance difference may be
attributed to variations in dataset features, including size, diversity,
and quality. The FID scores plateau beyond 800 epochs likely due to the

TABLE 5 Quality band for referential metrics.

Metric Good Medium Bad

PSNR ↑ >40 dB 30–40 dB <30 dB

SSIM ↑ 0.8–1 0.5–0.8 <0.5

MSE ↓ 0–10 10–50 >50

NIQE ↓ 0–5 5–10 >10

BRISQUE ↓ 0–20 20–40 >40

TABLE 6 Image quality metrics comparison for CUHK and AR datasets
across age groups.

Evaluation metrics CUHK AR dataset

Average 20–30 PSNR↑ 0.78 0.692

SSIM↑ 0.865 0.902

MSE ↓ 6.24 5.36

NIQE ↓ 3.24 2.36

BRISQUE ↓ 17.45 12.454

30–40 PSNR↑ 0.802 0.705

SSIM↑ 0.879 0.915

MSE ↓ 6.05 5.25

NIQE ↓ 3.15 2.45

BRISQUE ↓ 17.20 12.35

40–50 PSNR↑ 0.872 0.910

SSIM↑ 0.865 0.902

MSE ↓ 6.15 5.45

NIQE ↓ 3.20 2.55

BRISQUE ↓ 17.35 1,250

50–60 PSNR↑ 0.790 0.690

SSIM↑ 0.865 0.905

MSE ↓ 6.30 5.55

NIQE ↓ 3.30 2.65

BRISQUE ↓ 17.50 12.65

60–70 PSNR↑ 0.785 0.685

SSIM↑ 0.860 0.900

MSE ↓ 6.40 5.65

NIQE ↓ 3.24 2.36

BRISQUE ↓ 17.45 12.454
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GAN reaching its capacity for improvement, with both the generator
and discriminator achieving equilibrium in their performance.

4.2.2 Referential metrics
In the realm of sketch comparison, three primary metrics are

employed to quantitatively assess the similarity and quality of
sketches compared to their original images: MSE (Mean Squared
Error), SSIM (Structural Similarity Index Measure) and PSNR (Peak
Signal-to-Noise Ratio).

4.2.2.1 PSNR (peak signal-to-noise ratio)
PSNR stands for Peak Signal-to-Noise Ratio, which evaluates the

maximum error between the original and reconstructed images. In this
context, MAX I denotes the highest possible pixel value in the image.
PSNR values are typically conveyed using the logarithmic decibel scale,
where higher PSNR figures suggest superior image quality. This concept
is mathematically formulated as shown in Eq. 23.

PSNR � 20 · log10
MAX I����
MSE

√( ) (23)

4.2.2.2 SSIM (structural similarity index measure)
SSIM is used for measuring the similarity between two images. It

considers changes in structural information, luminance, and contrast.
The values of SSIM range from −1 to 1, where 1 indicates perfect
similarity. Eq. 24 depicts the mathematical procedure for the same.

SSIM x, y( ) � 2μx + c1( ) 2σxy + c2( )
μ2x + μ2y + c1( ) σ2

x + σ2
y + c2( ) (24)

In the formulation, SSIM(x, y) represents the Structural
Similarity Index between two images x and y. μx and μy are
the average values of images x and y, respectively. σx and σy are
the variance of images x and y. σxy represents the covariance of

images x and y. c1 and c2 are constants used to stabilize the
division with weak denominators. These constants are typically
small values.

4.2.2.3 MSE (mean squared error)
MSE measures the average difference of squares between the

original image and the reconstructed image. It is a probability
function, corresponding to the expected value of the error loss.
Lower MSE values indicate better quality. Computation of the
metrics is depicted as per Eq. 25.

MSE � 1
mn

∑m−1

i�0
∑n−1
j�0

I i, j( ) − K i, j( )[ ]2 (25)

MSE represents the Mean Squared Error. m and n are the
dimensions of the images, representing the number of rows and
columns, respectively. I(i, j) is the pixel value at position (i, j) in the
initial image.K(i, j) is the pixel value at position (i, j) in the recreated
or compared image. The double summation ∑m−1

i�0
∑n−1
j�0

iterates over all

pixel positions in the images.

4.2.3 Non-referential metrics
In sketch comparison, non-referential metrics like BRISQUE

(Blind/Reference less Image Spatial Quality Evaluator), PIQE
(Perception based Image Quality Evaluator), and NIQE (Natural
Image Quality Evaluator) play a crucial role (Fernandes and Bala,
2018; Sain et al., 2021). These metrics evaluate image quality without
requiring a reference image. Each of these metrics is examined in
detail in the trailing sections.

4.2.3.1 NIQE (natural image quality evaluator)
NIQE is a completely blind image quality assessment model that

works by assessing the statistical deviations from natural image

FIGURE 5
Synthesized De-aged sketch portrait across different age spectrum.
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properties. NIQE’s calculation involves creating a quality-aware
feature set based on natural scene statistics and fitting a
multivariate Gaussian model to this feature set. Mathematically
NIQE is defined as depicted in Equation 26.

Nscore � Ifactor − μ

σ
+ 1 (26)

Parameter Nscore represents the naturalness score. Ifactor is the
intensity result of the image under test. μ and σ are the mean and
standard deviation of the image pixels, correspondingly. The final

value Nscore of is a nonnegative scalar, with lower values indicating
higher image quality.

4.2.3.2 BRISQUE (blind/reference less image spatial
quality evaluator)

The BRISQUE (Blind/Reference less Image Spatial Quality
Evaluator) method is a unique image quality assessment tool
that operates without the need for a reference image. This
approach is especially advantageous in situations where an
original image is unavailable for comparison. BRISQUE

TABLE 7 Comparing facial aging techniques using the CUHK dataset.

Technique Age band FID ↓ PSNR↑ SSIM↑ MSE ↓ NIQE ↓ BRISQUE ↓

Wavelet-Based GAN (Chandaliya and Nain, 2023) 20–30 57 0.47 0.74 9.25 5.52 24.24

30–40 57 0.52 0.73 9.30 5.48 24.52

40–50 59 0.55 0.72 9.45 5.30 24.71

50–60 61 0.53 0.73 9.25 5.40 24.70

60–70 60 0.52 0.75 9.24 5.5 24.68

Cycle Age-Adversarial Model (Du et al., 2019a) 20–30 45 0.66 0.79 7.45 4.85 21.23

30–40 48 0.66 0.80 7.25 4.82 21.23

40–50 48 0.69 0.80 7.20 4.50 21.05

50–60 45 0.65 0.81 7.25 4.82 21.18

60–70 46 0.65 0.79 7.52 4.97 21.18

Age Factor Removal Network (AFRN) (Du et al., 2019b) 20–30 42 0.63 0.76 7.115 4.58 20.54

30–40 42 0.61 0.75 7.120 4.52 20.64

40–50 42 0.70 0.74 7.130 4.50 20.81

50–60 42 0.69 0.75 7.125 4.53 20.94

60–70 43 0.70 0.765 7.21 4.57 20.72

cGAN with Deep Residual VAE (Chandaliya and Nain, 2022) 20–30 51 0.67 0.76 8.25 5.24 21.044

30–40 55 0.71 0.75 8.30 5.23 21.034

40–50 52 0.74 0.74 8.35 5.21 21.11

50–60 54 0.72 0.75 8.25 5.25 21.081

60–70 54 0.69 0.74 8.30 5.23 21.12

DeepGAN for aging Progression (Atkale et al., 2021) 20–30 44 0.71 0.75 6.97 4.78 18.99

30–40 48 0.71 0.74 6.99 4.65 19.05

40–50 44 0.74 0.73 6.98 4.95 19.21

50–60 47 0.72 0.74 7.012 4.60 19.42

60–70 45 0.70 0.73 7.12 4.25 19.76

Proposed System 20–30 38 0.78 0.865 6.24 3.24 17.45

30–40 38 0.80 0.879 6.05 3.25 17.20

40–50 39 0.87 0.865 6.15 3.20 17.35

50–60 38 0.79 0.865 6.30 3.30 17.50

60–70 39 0.785 0.860 6.40 3.24 17.45
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stands out for its ability to appraise image quality independently.
Formulation of BRISQUE evaluation is mathematically
portrayed as according to Eq. 27

Inorm x, y( ) � I x, y( ) − μlocal x, y( )
σ local x, y( ) + 1

(27)

In the formulation, Inorm(x, y) represents the normalized
luminance at a given pixel (x, y). I(x, y) is the original
luminance at the pixel. σ local(x, y) and μlocal(x, y) and are the
local standard deviation and mean and of the luminance in a
neighborhood around the pixel, providing the local
normalization.

4.2.4 Quality assessment criteria for sketch
comparisons

Table 5 provides a general guideline to categorize the quality of
sketch comparisons into ‘Good’, ‘Medium’, and ‘Bad’ based on the
values of PSNR, SSIM, and MSE.

4.2.5 Experimental evaluation of
generated sketches

Extensive experimental investigations were conducted on two
prominent datasets, CUHK and AR, emphasizing referential
metrics across diverse age groups: 20–30, 30–40, 40–50, 50–60,
and 60–70 years. The results of these thorough analyses are

TABLE 8 Comparing facial aging techniques using the AR dataset.

Technique Age band FID ↓ PSNR↑ SSIM↑ MSE ↓ NIQE ↓ BRISQUE ↓

Wavelet-Based GAN (Chandaliya and Nain, 2023) 20–30 79 0.43 0.71 8.99 4.91 17.21

30–40 75 0.48 0.73 8.91 4.84 17.23

40–50 81 0.52 0.70 8.84 4.89 17.125

50–60 82 0.52 0.71 8.87 4.75 17.264

60–70 80 0.51 0.71 8.89 4.79 17.115

Cycle Age-Adversarial Model (Du et al., 2019) 20–30 68 0.59 0.81 7.01 4.49 15.012

30–40 69 0.51 0.76 7.09 4.53 15.154

40–50 72 0.55 0.82 6.98 4.5 15.324

50–60 71 0.62 0.83 6.99 4.51 14.932

60–70 68 0.59 0.81 7.01 4.62 15.014

Age Factor Removal Network (AFRN) (Du et al., 2019b) 20–30 63 0.61 0.72 6.81 4.31 15.25

30–40 61 0.69 0.72 6.89 4.21 15.114

40–50 59 0.69 0.79 6.74 4.21 15.094

50–60 63 0.71 0.78 6.82 4.11 14.845

60–70 68 0.65 0.81 6.81 4.05 14.886

cGAN with Deep Residual VAE (Chandaliya and Nain, 2022) 20–30 76 0.48 0.77 7.42 4.59 16.312

30–40 73 0.48 0.75 7.47 4.59 16.221

40–50 75 0.61 0.76 7.31 4.62 16.123

50–60 74 0.64 0.77 7.52 4.63 15.954

60–70 75 0.62 0.805 7.51 4.62 16.122

DeepGAN for aging Progression (Atkale et al., 2021) 20–30 68 0.51 0.69 7.52 4.33 15.011

30–40 65 0.59 0.61 7.77 4.41 14.715

40–50 67 0.73 0.72 7.41 4.41 14.712

50–60 61 0.55 0.71 7.72 4.34 14.312

60–70 64 0.47 0.79 7.61 4.51 13.991

Proposed System 20–30 54 0.692 0.902 5.36 2.36 12.45

30–40 55 0.705 0.705 5.25 2.45 12.35

40–50 53 0.970 0.902 5.45 2.55 12.50

50–60 53 0.690 0.905 5.55 2.65 12.65

60–70 53 0.685 0.90 5.65 2.36 12.45
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systematically outlined in Table 6. This table not only illustrates
the outcomes of experiments within these age brackets but also
illuminates the effectiveness and precision of the methodologies
when applied to these distinct datasets. Consequently, it provides
a nuanced understanding of performance across various
age groups.

In a comprehensive analysis of the CUHK and AR datasets
across diverse age groups (20–30, 30–40, 40–50, 50–60, 60–70) and
benchmarked against established quality standards, notable trends
emerge in Table 6. PSNR values consistently fall within the ‘Good’
category, indicating significant potential for signal clarity. In
contrast, SSIM scores consistently rank high in the ‘Good’ range,
showcasing the dataset’s effectiveness in preserving structural
integrity in image comparisons. MSE values hover in the
‘Medium’ range, suggesting a moderate level of error and room
for accuracy improvement. NIQE scores vary between ‘Good’ and
‘Medium’ across age groups, reflecting naturalness in image quality
with some variability. Lastly, BRISQUE scores predominantly fall
into ‘Good’ and ‘Medium’ categories, indicating satisfactory spatial
quality with minimal distortion. These findings provide
comprehensive insights into dataset performance, emphasizing
strengths in structural similarity and spatial quality, and
identifying areas for improvement, particularly in enhancing
signal quality and reducing error rates.

4.3 Visual representation of the
experimental outcomes

The presented gallery in Figure 5 showcases age-progressed
portraits and their de-aged output rendered through the
proposed system. To age the person, we have used the Age
Progression Manipulator and the SAM (Style-based Age
Manipulation) system, both open-source tools. The former
employs image morphing algorithms, while the latter utilizes a
style-based regression model to illustrate the aging process across
the age spectrum of 30–70 years.

4.4 Analysis of proposed system with
existing techniques

This section offers a detailed comparative analysis of various
facial aging techniques, assessing their effectiveness across a
spectrum of age groups from 20 to 70 years. We compare
selected state-of-the-art aging progression techniques with our
proposed system using established metrics discussed in Section
4.2. The outcomes are documented in Table 7 for the CUHK
dataset and Table 8 for the AR dataset.

The proposed system excels in both the CUHK, and AR,
datasets, showcasing superior metrics across all evaluated
categories. In the CUHK, dataset, it achieves FID, scores as low
as 38, PSNR, up to 0.87, and SSIM, as high as 0.865. For the AR,
dataset, it maintains strong performance with FID, scores around
53–55, PSNR, peaking at 0.97, and SSIM, reaching up to 0.905. These
results demonstrate the system’s effectiveness in producing highly
realistic and accurate facial aging effects, highlighting its robustness

and potential as a leading solution in facial aging technology for
diverse applications.

5 Conclusion and future scope

In conclusion, this study showcases the transformative
potential of de-aging networks integrated with sketch
generation to enhance forensic facial recognition. The proposed
system effectively counters the challenges of aging in facial
recognition, skillfully de-aging and sketching faces to boost
identification accuracy and reliability. The system, tested with
the CUHK and AR Face Sketch Databases, demonstrates
significant improvements in realism as training progresses. The
de-aging module’s integration marks a notable advancement,
evident in the lower FID scores (41.7 for CUHK, 60.2 for AR),
higher SSIM (0.789 for CUHK, 0.692 for AR), and improved PSNR
(20.26 for CUHK, 19.42 for AR). Additionally, the system
comprises a deepfake-based neural network for de-aging, adept
at handling faces of any gender, race, and culture, and a pix2pix-
based GAN for sketch generation that preserves structural and
contrast details. This dual-module approach produces both hand-
drawn and composite sketches with enhanced realism and
consistency, outperforming state-of-the-art methods. The
research underlines the necessity for continual innovation in
de-aging technology, vital for societal and age invariant forensic
applications.

The study presented in this research article opens several
avenues for future research, particularly in refining and
expanding the capabilities of AI-driven facial transformation
technologies. The rapid evolution of deep learning techniques
presents opportunities to enhance the accuracy and efficiency of
de-aging and sketch generation processes. For instance, future
studies could explore the integration of reinforcement learning to
dynamically adjust model parameters in real-time, optimizing the
quality of generated images based on iterative feedback.
Additionally, incorporating adversarial training methods could
further refine the realism of age-transformed faces by
encouraging the model to generate features that are
indistinguishable from real human attributes. Another promising
direction could involve the utilization of multi-modal data inputs,
such as combining visual data with biological age indicators, to
enrich the model’s understanding and handling of age-related facial
changes. This could lead to more personalized and context-aware
de-aging applications, enhancing their utility in forensic and
entertainment industries. Finally, research could also focus on
reducing computational demands and improving the scalability
of these technologies to facilitate their adoption in mobile devices
and low-resource settings, making advanced de-aging tools more
accessible to a broader audience.
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