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Introduction:Direction of arrival (DOA) estimation of sound sources is an essential
task of sound field analysis which typically requires two or more microphones.
In this study, we present an algorithm that allows for DOA estimation using
the previously designed Rotating Equatorial Microphone prototype, which is a
single microphone that moves rapidly along a circular trajectory, introducing
DOA-dependent periodic distortions in the captured signal.

Methods: Our algorithm compensates for the induced spectral distortions caused
by the REM’s circular motion for multiple DOA candidates. Subsequently, the
best DOA candidate is identified using two distortion metrics. We verify our
approach through numerical simulations and practical experiments conducted
in a low-reverberant environment.

Results: The proposed approach localizes unknown single-frequency sources
with a mean absolute error of 23 degrees and unknown wideband sources with a
mean absolute error of 5.4 degrees in practice. Two sources are also localizable
provided they are sufficiently separated in space.

Conclusion: Whilst previous work only allowed for DOA estimation of a single
monochromatic sound source with a known frequency, our DOA estimation
algorithm enables localization of unknown and arbitrary sources with a single
moving microphone.
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1 Introduction

Estimating the direction of arrival (DOA) of acoustic sources conventionally requires a
microphone array consisting of at least two microphones. This poses a problem in situations
where space is limited and cost must be minimized. Over the years several approaches have
been proposed for DOA estimation using only a single microphone, many of which are inspired
from theories of human monaural sound localization. These approaches typically place a
synthetic pinna or an arbitrarily shaped scattering body with known DOA-dependent
scattering characteristics close to a stationary microphone to induce spatial localization cues.
Additionally, knowledge of the spectral characteristics of the sound sources to be localized is
required, as it is otherwise impossible to differentiate the localization cues from the sound source.

The first implementation of single microphone localization was performed in Harris et al.
(2000), where the DOAof an acoustic pulse was determined using a reflector that was designed
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to produce two echoes, which arrive at the microphone at different
DOA-dependent times. This time difference of arrival is subsequently
determined using cross-correlation, from which the DOA is inferred.
A more elaborate approach was employed in Takiguchi et al. (2009),
where a Gaussian mixture model (GMM) was trained on speech to
subsequently estimate the acoustic transfer functions between the
microphone and a speech source placed at various locations. As the
characteristics of the room are used to induce localization cues, this
method requires retraining for each room andmicrophone placement.
This was circumvented in Fuchs et al. (2011), where the head-related
transfer function (HRTF) of a dummy head was measured and a
speech model was trained using a GMM. Using the HRTF data, the
GMMs for speech arriving at various DOAs were computed and
subsequently used to estimate the DOA of a speech source. A more
sophisticated approach was implemented in El Badawy et al. (2017)
and their following work El Badawy and Dokmanić (2018), where the
directional-dependent scattering of arbitrary LEGO® constructions
was measured and localization of white noise was performed using
non-negative matrix factorization. This approach also allowed for the
localization of up to two speech sources utilizing non-negative
dictionaries trained on speech.

A more general source localization approach was implemented
in Saxena and Ng (2009), where a hiddenMarkov model was trained
on common real-world sounds (i.e., human speech, animal noises
and nature sounds) and the DOA-dependent transfer functions of
multiple scattering bodies were measured. The DOA of various
sounds was subsequently estimated by finding the azimuth angle
most likely to produce the observed signal.

A different approach was employed in Kim and Kim (2015),
where multiple, differently sized pyramidal horns were placed around
a microphone, inducing DOA-dependent acoustic resonance. As this
resonance introduces a characteristic fingerprint in the spectrum of
recorded wideband sound sources, localization is feasible without
knowledge of the spectral characteristics of the sources. The downside
to this approach is the large required size and low localization
resolution due to the dimensions of the pyramidal horns.

Some approaches require a certain movement of either the
microphone or a reflecting element. In Takashima et al. (2010) a
parabolic reflection board was attached to a microphone and
manually rotated to estimate the acoustic transfer function
between the microphone and a speech source for different board
orientations. Given a GMM speech model, a characteristic difference
could be observed in the acoustic transfer function as the reflection
board was directed at a speech source. A more sophisticated approach
was implemented in Tengan et al. (2021) and Tengan et al. (2023),
where a directional microphone was sequentially oriented in multiple
directions and DOA estimation was performed by locating the
maxima in an estimated power spectral density (PSD) vector. This
vector was obtained by solving a group-sparsity constrained
optimization problem using a dictionary composed of the known
DOA-dependent microphone responses. A very different approach
was employed in Bui et al. (2018) and their following workWang et al.
(2023) where localization of amplitude-modulated noise and speech
was performed with a dummy head using a regression model trained
on features of these signals in the so-called monaural modulation
spectrum, as well as features in the head-related modulation transfer
function. Head movement was additionally employed to eliminate
incorrect DOA estimates. Unlike the previously described approaches,

which only estimate the two-dimensional DOA, this method also
provides elevation information.

Finally, some approaches utilize continuous microphone
movement. In Schasse and Martin (2010) and Schasse et al. (2012)
a single signal is constructed from a circular microphone array by
circular sampling, i.e., taking the first sample from the first
microphone, the second sample from the neighboring microphone
and so on in a circular fashion. The resulting signal can be viewed as
having been captured by a rapidly rotating microphone, the
movement of which introduces DOA-dependent periodic Doppler
shifts into captured sound sources. In Schasse et al. (2012) the
captured signal is decomposed into multiple subbands and the
instantaneous frequency of each subband is estimated for each
spectrogram frame. As these frequencies shift in a periodic and
DOA-dependent manner, the phases of these shifts are computed
for each subband to yield the DOA estimates. Thismethod allowed for
two-dimensional DOA estimation of up to 5 simultaneous speech
sources. In Hioka et al. (2018) this approach was implemented in
practice using a single rotating microphone as opposed to a circular
microphone array, albeit only single monochromatic sound sources
with a known frequency were used as test signals. The microphone
rotated at a maximum speed of approximately 17 rotations per second
and DOA estimation was shown to be accurate only for frequencies
above 500 Hz.

As it can be observed, DOA estimation using a single
continuously moving microphone has not been comprehensively
studied, despite the promising results from Schasse et al. (2012)
showing that it potentially enables single microphone localization
without requiring a scattering body or prior knowledge of the source
signals’ spectral characteristics. In fact, only limited research has been
conducted on moving microphones as a whole. The few instances of
study on moving microphones almost exclusively cover the
measurement of room impulse responses either along the
microphone trajectory, e.g., Ajdler et al. (2007), Hahn and Spors
(2015) and Hahn and Spors (2017), or in a given volume of interest
using rapid microphone movement, e.g., Katzberg et al. (2017) and
Katzberg et al. (2021). Since these approaches rely on known
excitation signals for room impulse response measurement, they
cannot be modified to allow for DOA estimation of unknown signals.

To investigate DOA estimation and other sound field analysis
applications using a single moving microphone, we developed the
Rotating Equatorial Microphone (REM) prototype described in
Lawrence et al. (2022), which achieves rotational speeds between
24 and 42 rotations per second. The lower limit is constrained by
hardware limitations and the upper limit is set to ensure that distortions
due to wind and motor noise are not too large. The validation of the
proposed algorithm will be conducted using the REM.

The primary concept of our proposed DOA estimation algorithm
is to compensate for the DOA-dependent distortions introduced by
the microphone rotation for multiple candidate DOAs. We
subsequently find the candidates that contain the least distortion
according to two metrics which will be introduced in Section 2. As we
will show in simulations and practical experiments, this method
allows for the estimation of the azimuth of multiple simultaneous
sound sources without prior knowledge of the spectral characteristics
of the sources. We will also illustrate how the algorithm can be
extended to estimate the colatitude of sound sources. However,
verification of colatitude estimation is left for future work.
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This article is structured as follows: In Section 2, we will elaborate
on the distortions that arise when a circularly rotating microphone is
placed in a sound field, as well as the assumptions and simplifications
that we employ. Subsequently, in Section 3, we will present two
algorithms that compensate for two of the distortions described in
Section 2 and use them to formulate a DOA estimation algorithm. In
Section 4, we will conduct numerical simulations and practical
experiments to verify and evaluate the presented algorithm. Finally,
in Section 5, we will draw our conclusions and discuss future work.

2 Theoretical foundations

Multiple DOA-dependent spectral distortions are introduced as
the microphone rotates in a circular manner. These will be discussed
in this section to enable their compensation in Section 3.

2.1 Problem formulation

The high rotational speed employed by the REM induces significant
frequency shifts in recorded audio signals due to the Doppler effect. To
find a mathematical expression for this phenomenon, consider the
following setup: A circularly moving omnidirectional microphone is
placed in a free field with a sound source situated at azimuth φ ∈ [0, 2π)
relative to the initial microphone position. The circular motion is
situated in the x-y plane and characterized by a rotational radius r
and angular velocity ωrot = 2πfrot. Moreover, the sound source emits a
single frequency fsrc and is placed sufficiently far away from the
microphone such that the incoming sound waves can be
approximated by plane waves with a constant amplitude. This setup
is depicted in Figure 1A. If we decompose the circular movement into
two components, one parallel and one perpendicular to the incoming
sound waves, we find that only the perpendicular component
introduces Doppler shifts. Therefore, we discard the parallel
component and simplify the circular movement to a non-uniform
linear movement along the red line in Figure 1B. The instantaneous

velocity v (t, φ) along this red line is obtained by projecting the circular
movement onto the red line, resulting in

v t,φ( ) � −ωrot · r · sin ωrot t − φ( ) � 2πr · frot · cos 2πfrot t − φ′( ),
(1)

where φ′ � φ − π
2 and positive velocity is defined as moving towards

and negative velocity as moving away from the plane waves. The
reasons we choose the cosine and rotational frequency frot as opposed
to the sine and angular velocity will become evident in Section 2.2.

We now extend our considerations to three dimensions, i.e., the
plane waves arrive at azimuth φ ∈ [0, 2π) relative to the initial
microphone position within the rotational plane and at colatitude
θ ∈ [0, π] relative to the rotational plane. The circular motion exhibits
the same characteristics as before, as depicted in Figure 2. Once again,
we can discard the microphone movement parallel to the incoming
soundwaves and simplify themicrophonemovement to an equivalent
non-uniform linear movement, which is indicated by the red line. By
inserting the purple elements, we can apply basic trigonometry to
compute the maximum displacement along the red line relative to the
origin as r · sin(θ). Analogously to Eq. 1, we obtain the instantaneous
velocity v (t, φ, θ) of the microphone along the red line by projecting
the circular movement onto the red line. This results in

v t,φ, θ( ) � 2πr · sin θ( ) · frot · cos 2πfrot t − φ′( ).
Following the well-known definition of the Doppler effect, we can

use the previously computed instantaneous velocity to compute the
instantaneous frequency observed by the microphone fobs (t, φ, θ) as

fobs t,φ, θ( ) � 1 + v t,φ, θ( )
c

( ) · fsrc

� 1 + 2πr · sin θ( ) · frot · cos 2πfrot t − φ′( )
c

( ) · fsrc,

(2)

where c is the speed of sound. The instantaneous phase ϕobs (t, φ, θ)
is subsequently obtained by integration:

FIGURE 1
Rotatingmicrophone in a two-dimensional sound field composed of plane waves arriving at azimuth φ relative to the initial microphone position. (A)
Circular microphone movement. (B) Simplified linear movement
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ϕobs t,φ, θ( ) � ϕobs 0,φ, θ( ) + ∫t

0
2πfobs τ,φ, θ( ) dτ

� 2πfsrc t + 2πr · sin θ( ) · fsrc

c
· sin 2πfrot t − φ′( ) + ϕ0,

where ϕ0 � ϕobs(0,φ, θ) + 2πr· sin(θ)·fsrc

c · sin(φ′) is an initial
phase offset. We can now express the recorded microphone
signal x (t, φ, θ) as

x t,φ, θ( ) � A0 · cos ϕ t,φ, θ( )( )
� A0 · cos 2πfsrc t + 2πr · sin θ( ) · fsrc

c
(

· sin 2πfrot t − φ′( ) + ϕ0), (3)

where A0 is the signal amplitude, which we assume to be unity.
An example spectrogram of x(t, 0, π2) for fsrc = 8 kHz, r =

0.045 m, c � 343 m
s , frot = 42 Hz, A0 = 1 and ϕ0 = 0 is shown in

Figure 3A. The spectrogram was computed using a Blackman
window, a frame length of L = 512 which has been zero-padded
to 8,192, a frame overlap of 97.5% and a sampling rate of fs = 48 kHz.
As it can be observed, the instantaneous frequency fluctuates around
the source frequency in a sinusoidal manner. The computation of
the phase of this sinusoid allows for the estimation of φ, which is the
DOA estimation approach used in Schasse and Martin (2010),
Schasse et al. (2012) and Hioka et al. (2018). Moreover, the
amplitude of this sinusoid is dependent on θ. Unfortunately,
accurate derivation of φ and θ by observing this sinusoid is
challenging in practice for wideband and low-frequency signals.
This is due to the short required frame length, especially at higher
rotational speeds, which results in a low-frequency resolution. Lower
rotational speeds are therefore preferred, however, the source signal
must also remain sufficiently constant during one rotation to enable
accurate amplitude and phase estimation of the sinusoid.
Furthermore, lower rotational speeds result in smaller Doppler
shifts, further reducing the estimation accuracy. For these
reasons, we choose a different approach, which exploits a
phenomenon that occurs as we increase the frame length.

2.2 Frequency modulation

Figure 3B shows a spectrogram of x(t, 0, π2) with the same
parameters as before, except for the frame length which is now set
to L = 8,192. Multiple frequencies can be observed, which are all
separated by exactly 42 Hz = frot. To explain this phenomenon,
note that Eq. 3 resembles a sinusoidal frequency modulated signal
xFM(t), which is commonly used in the field of
telecommunications:

xFM t( ) � Ac · cos 2πfc t + β · sin 2πfm t( )( ), (4)
where fc is the carrier frequency with amplitude Ac, fm is the
frequency of the modulating wave and β is the so-called
modulation index, which quantifies by how much the carrier
frequency is modulated. Setting aside phase offsets φ′ and ϕ0, we

FIGURE 3
Spectrograms of x(t,0, π2) for different frame lengths with fsrc = 8 kHz, r= 0.045 m, c � 343m

s , frot = 42 Hz, A0 = 1 and ϕ0 = 0. (A) Frame length L= 512.
(B) Frame length L = 8,192.

FIGURE 2
Rotating microphone in a three-dimensional sound field
composed of plane waves arriving at azimuth φ relative to the initial
microphone position and colatitude θ relative to the rotational plane.
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can observe that values A0, fsrc and frot from Eq. 3 correspond toAc, fc
and fm from Eq. 4, respectively. Furthermore, the modulation index
shows θ-dependence and corresponds to β(θ) � 2πr· sin(θ)·fsrc

c . Note
that β(θ) is symmetric around θ � π

2, indicating that plane waves
arriving at θ � π

2 ± θ′ for θ′ ∈ [0, π2] are modulated to the same extent
and are therefore not distinguishable from each other. Furthermore,
note that the modulation index is independent of the rotational
frequency and dependent on the source frequency, i.e., higher
frequencies are modulated to a larger extent.

The observation from Figure 3B can now be explained as an
alternative representation of sinusoidal frequency-modulated
signals, which for Eq. 3 is given by

cos 2πfsrc t + β θ( ) · sin 2πfrot t − φ′( ) + ϕ0( )
� ∑∞

n�−∞
Jn β θ( )( ) · cos 2π fsrc + nfrot( ) t − nφ′ + ϕ0( ),

where Jn (·) denotes the Bessel function of the first kind for integer
order n. This equation is obtained by following the derivation from
Van Der Pol (1930) with the inclusion of initial phase offsets. As it
can be observed, a frequency-modulated signal contains infinitely
many sidebands spaced at integer multiples of the rotational
frequency around the source frequency. Moreover, the
modulation index influences the weighting of these sidebands.
This is demonstrated in Figure 4A, where the PSDs of frequency
modulated 8 kHz sine waves are plotted for an increasing
modulation index at frame length L = 8,192.

Another noteworthy observation can be made if we estimate the
energy of each PSD Sxx(β) from Figure 4A as E(β) � ∑N/2

k�0Sxx(β)k,
where Sxx(β)k represents the kth discrete frequency bin of Sxx(β). As
Figure 4B shows, the energy stays constant regardless of the
modulation index. This is explained by the following property of
Bessel functions of the first order:

∑∞
n�−∞

J2n x( ) � 1, ∀x≥ 0,

as provided by Olver et al., (2023). Sinusoidal frequency modulation
can therefore be interpreted as an energy-conserving redistribution
of the input energy onto the sidebands. To quantify the degree to

which the energy is distributed onto the sidebands, we introduce the
following metric:

F β( ) � ∑N/2

k�0
Sxx β( )k( )2. (5)

We will refer to this metric as focusedness since it becomes larger
as the energy is more focused on the source frequency. An
example plot of the focusedness is contained in Figure 4B.
This metric will be of importance in Section 3.4, where we
will compensate for the frequency modulation for multiple
candidate DOAs. The frequency modulation present in the
resulting compensated signals decreases as the candidate
DOAs approach the correct DOA. In other words, the
compensated signal associated with the best DOA candidate
will feature the highest focusedness.

2.3 Amplitude modulation

Previously, we assumed the microphone to be perfectly
omnidirectional. This assumption does not hold in practice, since all
microphones feature a direction-dependent non-flat frequency
response. Additionally, the apparatus that enables the microphone
rotation introduces acoustic scattering, further impacting the
effective direction-dependent frequency response of the microphone.
These phenomena affect both the amplitude and phase of the captured
signal from Eq. 3. In this article, we neglect the influence of the
frequency response on the phase and only consider the direction-
dependent magnitude response of the microphone.

We will express the direction-dependent magnitude response of
the microphone as |H (fm, φm, θm)|, where fm represents the
frequency of interest arriving at DOA (φm, θm) relative to the
front of the microphone. The DOA at the front of the
microphone is defined as (0, π

2). The on-axis magnitude response
is therefore given by |H(fm, 0, π2)|. Given knowledge of the
direction-dependent magnitude response of the microphone, the
DOA-dependent observed amplitude of a sinusoid with frequency
fm and amplitude A0 can be expressed as A (fm, φm, θm) = A0 ·|H (fm,

FIGURE 4
Energy and focusedness of an 8 kHz sine wave for an increasing β. The plots in (B) have been normalized by dividing each graph by its maximum
value. (A) PSDs of modulated 8 kHz sine waves. (B) Energy and focusedness of (A).
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φm, θm)|. Considering the setup from Figure 2, we further find that
φm and θm correspond to (φ − 2πfrot t) mod 2π and θ, respectively.
Moreover, fm corresponds to fobs (t, φ, θ) from Eq. 2, given by
fobs(t,φ, θ) � (1 − 2πr· sin(θ)·frot · sin(2πfrot t−φ)

c ) · fsrc.
We can now more accurately represent the amplitude A0 from

Eq. 3 as

A0 t, fsrc,φ, θ( ) � A0 · |H 1 − 2πr · sin θ( ) · frot · sin 2πfrot t − φ( )/c( )·(
fsrc, φ − 2πfrot t( )mod2π, θ)|. (6)

It can be observed that the amplitude of the signal captured by the
microphone is modulated periodically. The period of the modulating
wave corresponds to 1/frot and its shape is dependent on the
microphone’s direction-dependent magnitude response. This
periodicity will be exploited in Section 3.4 as follows: Given the
direction-dependent magnitude response of our REM prototype, we
derive an algorithm that can compensate for the amplitude modulation
that is introduced by the microphone rotation for multiple DOA
candidates. The compensated signal associated with the best DOA
candidate will feature the least amplitudemodulation. This signal can be
identified by computing the PSD of all compensated signals in a frame-
wise manner using a short frame length and shift and finding the signal
with the lowest average PSD variance over each rotation period.

2.4 Near field effects, self-induced noise and
reverberation

Up until this point we have assumed that the sound field consists
of plane waves. In reality, however, sound sources can only be
approximated by plane waves in the far field, whereas in the near
field the wavefronts will exhibit a non-negligible curvature
depending on the geometry of the sound source. This means that
in the near field not only the perpendicular but also the parallel
component of the microphone movement to the sound waves will
introduce Doppler shifts. Additionally, the amplitude A0 from Eq. 6
will change based on the instantaneous microphone-source distance.
It was demonstrated in Duda and Martens (1998) that the acoustic
response of a rigid sphere hardly exhibits any distance dependency
apart from a scaling of the amplitude if the distance to the sound
source is farther than 5 times the sphere radius. In our setup, this
factor between source distance and sphere radius is approximately
29. Therefore, we neglect near field effects in this article.

Another significant distortion introduced by the microphone
rotation is self-induced noise, also known as ego-noise, due to the
mechanical movement of the microphone. The self-induced noise is
composed of two primary components: The first component is caused
by vibrations due to subtle imbalances of both the motor and the
microphone housing. This noise has a harmonic structure with
fundamental frequency frot. The second component is wind noise,
which is caused by the rapid speed of the microphone. Although the
friction between themicrophone housing and the surrounding air results
in airflow around the microphone, causing complex interactions
between the airflow and incoming sound waves, we choose to neglect
these effects and consider both the wind noise and vibration noise to be
independent of recorded source signals. To reduce the self-induced noise
we employ spectral subtraction in Section 4 using an estimate of the
average noise spectrum directly before each recorded sample. It is worth
noting that multiple, more elaborate approaches have been proposed to

estimate and reduce self-induced noise, such as those presented in Ince
et al. (2011) and Schmidt and Kellermann (2019). For the sake of
simplicity, however, we perform noise reduction using spectral
subtraction, since noise reduction is not the focus of this article.

The last noteworthy distortion introduced into the recorded signal
is caused by acoustic reverberation both within the microphone
housing and the room in which the microphone is placed.
Although this effect is not specifically caused by the microphone
rotation, the reverberation uniquely affects the moving microphone,
since the reflected sound waves meet the microphone at different
positions in space. Compensating for this phenomenon is a complex
problem in itself, which is why we choose to perform our practical
experiments in close to anechoic conditions such that the impacts of
acoustic reverberation are negligible. Furthermore, we disregard the
influence of internal reflections within the microphone housing. DOA
estimation using a single moving microphone in reverberant
environments will be set aside for future research.

3 Localization algorithm

In this section, two algorithms that compensate for the
frequency modulation and amplitude modulation introduced by
themicrophone rotation will be derived. Subsequently, we show how
these algorithms are used to perform DOA estimation.

3.1 Frequency modulation compensation

To compensate for the frequency modulation induced into a
source signal for a particular DOAwe employ accurate time shifting of
the individual microphone samples. We will denote this DOA-
dependent frequency modulation compensation as frequency
unmodulating the signal for a given DOA, which in this section
we further shorten to unmodulating the signal. To derive the
unmodulation algorithm, we place a virtual stationary microphone
MS at the center of the rotation of the moving microphoneMM, i.e., at
the origin of the coordinate system. MS captures the unmodulated
signal we wish to compute. As an example, consider Figure 5 in which
the blue and orange graphs represent a sinusoid and a frequency
modulated sinusoid, respectively. These graphs can be interpreted as
the signals arriving atMS andMM, respectively. The vertical gray lines
represent the sampling grid and therefore the blue and orange points
correspond to the individual samples captured by both microphones.
As illustrated in Figure 5, there are two methods of obtaining the blue
points from the orange points. One of thesemethods requires uniform
interpolation, while the other requires non-uniform interpolation. For
the sake of accuracy, we choose sinc interpolation, given by

x t( ) � ∑∞
n�−∞

x nT( ) · sinc π t − nT( )
T

( ), (7)

where T corresponds to the sampling period. Since sinc interpolation
requires the input data to be uniformly spaced, we choose to obtain
the blue points from the orange points as follows: The red points,
whose timestamps correspond to the equivalent positions of the blue
points on the orange graph, are interpolated from the orange points
and subsequently uniformly spaced to obtain the blue points.
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To obtain the timestamps of the red points, we must compute the
time of arrival of wavefronts sampled byMS atMM.As before, we simplify
the microphone movement to a non-uniform linear movement by
projecting it onto the red line from Figure 2. We now define this red
line as an axis with its origin at the origin of the coordinate system and its
positive direction pointing away from the source of the plane waves. Let
us further assume that a given wavefront arrives at MS at time t0 and
reachesMM after an additional t0-and DOA-dependent time ΔtSM(t0, φ,
θ) (which may also be negative). The location ofMM on the red axis can
now be expressed as −r · sin(θ) · cos (2πfrot (t0 + ΔtSM(t0, φ, θ)) − φ).
Additionally, the ΔtSM(t0, φ, θ)-dependent position of the wavefront on
the red axis is given by c ·ΔtSM(t0, φ, θ), since it reaches the origin at time
t0. We can now obtain ΔtSM(t0, φ, θ) by equating the location ofMM and
the wavefront on the red axis as −r · sin(θ) · cos (2πfrot (t0 + ΔtSM(t0, φ,
θ)) − φ) = c ·ΔtSM(t0, φ, θ). Unfortunately, ΔtSM(t0, φ, θ) cannot be solved
analytically, therefore we instead obtain this value by optimization:

ΔtSM t0,φ, θ( ) � argmin
ΔtSM t0 ,φ,θ( )

(|r · sin θ( ) · cos 2πfrot t0 + ΔtSM t0,φ, θ( )( ) − φ( )
+c · ΔtSM t0,φ, θ( )|). (8)

Note that it can be shown that the computation of ΔtSM(t0, φ, θ) is
unique as long as the microphone movement does not exceed the
speed of sound.

Unmodulating an arbitrary signal x(t) for a given DOA (φ, θ)
can now be performed using the following algorithm:

1: Compute ΔtSM(t0, φ, θ) by optimizing Eq. 8 for all

sample timestamps t0
2: Calculate the frequency unmodulated

timestamps t̂FU(t0, φ, θ) ← t0 + ΔtSM(t0, φ, θ)
3: Interpolate x(t) at positions x(t̂FU(t0, φ, θ)) using Eq. 7

4: Return the frequency unmodulated

signal y(t0 ,φ, θ) ← x(t̂FU(t0 ,φ, θ))

Algorithm 1. Frequency Unmodulation Algorithm

Despite the ability of the above algorithm to accurately
unmodulate a given signal, its direct implementation is slow due
to the requirement of solving an optimization problem for each

sample and the utilized interpolation method. To speed up the
algorithm, we define a frequency unmodulation matrix ZFU(φ, θ)
which unmodulates a signal x = [x0 x1 . . . xL−1] of length L, where xi
corresponds to the ith microphone sample, for a given DOA via
vector-matrix multiplication. This operation can be performed both
in the time domain and in the frequency domain. We perform this
operation in the frequency domain as

yFU φ, θ( ) � RFFT−1 RFFT x{ } · ZFU φ, θ( ){ }, (9)
where yFU(φ, θ) is the frequency unmodulated signal for the givenDOA
and RFFT{·} represents the L-length real-valued Fast Fourier
Transform, i.e., the input data is assumed to be real and due to
symmetric properties of the complex spectrum only the first n = L/2
+ 1 complex frequency bins are computed and returned as a row vector.
It is now evident why we choose to perform unmodulation in the
frequency domain, since the required dimensions of ZFU(φ, θ) in the
frequency domain are n × n as opposed to L × L in the time domain.
This results in an approximately four-fold decrease in the number of
computations required for the vector-matrix multiplication.

It is important to note that the usage of the Fast Fourier
Transform algorithm requires the length of the input signal L to
be a power of two. Furthermore, we assume that RFFT{·} applies a
scaling factor of 2/L and no scaling is applied by RFFT−1{·}.

To obtain ZFU(φ, θ) we define a function f(k, t) � Ak ·
cos(2πk fs

L t + φk) and subsequently construct a set of vectors as
xk � [f(k, 0) f(k, 1

fs
) . . . f(k, L−1fs

)] for k ∈ [0, 1, . . . , n − 1]. Each
vector xk contains the first L samples of the center frequencies of the
kth RFFT frequency bin (with amplitude Ak and phase offset φk)
which have been sampled at sampling rate fs. When computing the
magnitude spectra of xk as |RFFT{xk}| using a rectangular window,
we obtain spectra which appear to have no spectral leakage,
i.e., |RFFT{xk}k| � Ak, where RFFT{·}k denotes the kth element of
the vector returned by RFFT, and |RFFT{xk}i≠k| � 0 for i ∈ [0, 1, . . . ,
n − 1]. Similarly, the phase spectra ∠RFFT{xk} correspond to
∠RFFT{xk}k � φk and are indeterminate at the remaining bins.
Note that in reality the spectra do have spectral leakage, however,
the nulls of the sidelobes fall exactly onto the frequency bins
evaluated by RFFT{·}. The previously mentioned properties do

FIGURE 5
Methods of obtaining the unmodulated signal (blue) from the modulated signal (orange): The orange sampling points can be time-shifted to their
equivalent positions on the blue graph (green points) and subsequently the blue points are obtained by interpolation. Alternatively, the equivalent
positions of the blue points on the orange graph (red points) can be interpolated first and subsequently time-shifted to obtain the blue points.
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not hold for other window functions, since they produce a main lobe
that spreads to the evaluated neighboring frequency bins. Therefore,
we assume that RFFT{·} and RFFT−1{·} utilize a rectangular
window function.

We now define another function g(k, t) � f(k, t)|Ak�1,φk�0 �
cos(2πk fs

L t) and construct a set of vectors by sampling g (k, t)
at times t � t̂FU( i

fs
,φ, θ) for i ∈ [0, 1, . . . , L − 1] and k ∈ [0, 1, . . . , n −

1]. The times t̂FU(·) are given by step (1) of the above algorithm and
are computed for the given DOA (φ, θ). The resulting vectors can be
expressed as

zFUk
φ, θ( ) � g k, t̂FU 0,φ, θ( )( ) g k, t̂FU

1
fs
,φ, θ( )( ) . . . g k, t̂FU

L − 1
fs

,φ, θ( )( )[ ]

and represent the signals that are obtained when the unmodulation
algorithm is applied to the center frequencies of each frequency bin with
unit amplitude and no phase offset. An example plot of
|RFFT{zFU341(0, π2)}| and |RFFT{x341}| for L = 8,192, A341 = 0.5,
φ341 = 0 and frot = 42 Hz is depicted in Figure 6. Given that the
magnitude spectrum of xk is concentrated onto the kth frequency bin
and the magnitude spectrum of zFUk(φ, θ) represents the unmodulated
counterpart of the kth frequency bin with unit amplitude, we can
unmodulate the magnitude spectrum of xk for the DOA (φ, θ) by
computing |RFFT{xk}k| · |RFFT{zFUk(φ, θ)}|. Similarly, the phase
spectrum of xk can be unmodulated by ∠RFFT{xk}k+
∠RFFT{zFUk(φ, θ)}. Combining these properties allows for
unmodulation of the spectrum of xk by computing
RFFT{xk}k · RFFT{zFUk(φ, θ)}, which is equivalent to scaling the
spectrum of zFUk(φ, θ) by the phasor Ak · eiφk .

These considerations can now be extended to more general source
signals x. Since the spectrumof x is fully characterized by the amplitudes
Ak and the phases φk of every RFFT bin, we can unmodulate each
frequency bin individually using the corresponding spectra of
zFUk(φ, θ). The unmodulated signal yFU(φ, θ) can then be obtained

by computing the sum of the unmodulated spectra of each frequency
bin and subsequently applying RFFT−1 as:

yFU φ, θ( ) � RFFT−1 ∑n−1
k�0

RFFT x{ }k · RFFT zFUk
φ, θ( ){ }⎧⎨⎩ ⎫⎬⎭.

To represent this equation as the vector-matrix computation from Eq. 9
we can stack all zFUk(φ, θ) to form the unmodulationmatrixZFU(φ, θ) as

ZFU(φ, θ) �
RFFT{zFU1(φ, θ)}
RFFT{zFU2(φ, θ)}

..

.

RFFT{zFUn−1(φ, θ)}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

The computational cost of deriving the matrices grows
quadratically with L. The same holds for the number of
computations necessary to apply the unmodulation matrix to the
source signal. Therefore, it is desirable to keep L as low as possible,
which incentivizes the usage of frame-wise processing of the source
signal. The length of each frame cannot be decreased indefinitely,
since inaccuracies occur close to the boundaries of each
unmodulated frame. For this reason, subsequent frames must
overlap to a certain extent. Additionally, if the shift between the
frames is not carefully chosen, the initial microphone position at
each frame will differ, resulting in a change in DOA between the
initial microphone position and the sound source. This would
require the computation of a different modulation or
unmodulation matrix for each frame. This is circumvented by
using a frame shift of S = fs/frot samples. In case S is not an
integer, the frame shift of each frame is chosen such that the
start of the nth frame is at �n · fs/frot� samples. To ensure a
frame overlap of at least 25%, S < 0.75 · L must hold. Therefore,
we set L = 2k, where k represents the smallest integer for which S <
0.75 · 2k holds. As an example, for fs = 48 kHz and frot = 42 Hz the
frame shift is S ≈ 1,143 samples and therefore the minimum required

FIGURE 6
Example plot of |RFFT{x341}| and |RFFT{zFU341(0, π2)}| for L = 8,192, fs = 48 kHz, A341 = 0.5, φ341 = 0, frot = 42 Hz and r = 0.045 m.
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frame length is L = 2048. Unmodulating a signal for a given DOA
now only requires the computation of a matrix of size 1,025 × 1,025
which is subsequently used to process each frame. The resulting time
domain frames are added together using equal power crossfades at
the overlapping sections.

When comparing the performance of matrix-based
unmodulation with Algorithm 1, we find that matrix-based
unmodulation is significantly faster, especially as the length of the
audio signal increases. For instance, our Python implementation of
matrix-based unmodulation requires approximately 0.12 s, 0.16 s
and 0.53 s to process 1 s, 10 s and 100 s audio files at a rotational
speed of frot = 42 Hz. This is in stark contrast with Algorithm 1, which
requires around 8 s, 80 s and 800 s for the same audio files.

To unmodulate a signal for multiple colatitude angles requires the
computation of an unmodulation matrix for each colatitude.
Unmodulating for various azimuth angles, however, can be
performed using only one unmodulation matrix computed at, for
example, φ = 0. Unmodulation for other arbitrary azimuth angles φ
can then be performed by omitting the first � fs

frot
· φ
2π� samples of the

signal and subsequently using ZFU(0, θ) to unmodulate each frame.
Using these optimizations and assuming a perfectly constant rotational
speed of frot = 42 Hz, our Python implementation is capable of
unmodulating for 180 different azimuth angles in real-time.

3.2 Amplitude modulation compensation

To compensate for the amplitudemodulation present in a signal for
a given DOA we proceed in a similar manner to the matrix-based
frequency unmodulation from the previous section. Given knowledge
of the absolute value of the directivity D (fm, φm, θm) and the frequency
response H (fm) we can generate a set of basis functions whose spectra
represent the amplitude unmodulated counterparts of each frequency
bin. We use the same function g(k, t) � cos(2πk fs

L t) from the
previous section and weight it by the reciprocal value of A0 (t, fsrc,
φ, θ) from Eq. 6. The respective scaling factors A0 are set to
A0 � 1/|H(fsrc, 0, π2)|. We then construct a set of vectors zAUk(φ, θ)
by taking L samples of the weighted function at sampling rate fs for k ∈
[0, 1, . . . , n − 1]. The resulting set of vectors can be expressed as

zAUk
φ, θ( ) � 1

A0k 0( ) · g k, 0( ) 1

A0k
1
fs

( ) · g k,
1
fs

( ) . . .
1

A0k
L−1
fs

( ) · g k,
L − 1
fs

( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where A0k(t) � A0(t, k fs

L ,φ, θ). To form the amplitude unmodulation
matrix we stack all zAUk(φ, θ) in a similar manner to Eq. 10 to form the
amplitude unmodulation matrix ZAU (φ, θ). The amplitude
unmodulated signal yAU (φ, θ) for DOA (φ, θ) can then be obtained by

yAU φ, θ( ) � RFFT−1 RFFT x{ } · ZAU φ, θ( ){ }.
We can now combine ZAU (φ, θ) and ZFU(φ, θ) into an

unmodulation matrix ZU (φ, θ), given by

ZU φ, θ( ) � ZAU φ, θ( ) · ZFU φ, θ( ), (11)
which enables simultaneous frequency and amplitude
unmodulation. Note that frequency unmodulation is sensitive to
amplitude variations due to the utilized interpolation. This is why
ZAU (φ, θ) is positioned to the left of ZFU(φ, θ) in Eq. 11.

3.3 Modulation algorithm

An algorithm that modulates an arbitrary signal for a given DOA,
i.e., the inverse of the unmodulation algorithm, is beneficial for simulation
purposes. Let us revisit the moving microphone MM and the stationary
microphone MS from Section 3.1. A signal can be frequency modulated
for a given DOA by interpolating the green points in Figure 5 from the
blue points and equally spacing the interpolated points to obtain the
orange points. The timestamps of the green points are computed by
calculating the time of arrival of wavefronts sampled byMM atMS. Let us
assume a given wavefront arrives atMM at time t0. At this point in time,
the position ofMM along the red axis from Figure 2 can be expressed as
−r · sin(θ) · cos (2πfrot t0 − φ). As the wavefront travels along this axis at
the speed of sound, the time ΔtMS(t0, φ, θ) required for the wavefront to
reach MS corresponds to

ΔtMS t0,φ, θ( ) � r · sin θ( ) · cos 2πfrot t0 − φ( )
c

.

Therefore, to frequency modulate an arbitrary signal for a given
DOA, we follow the same steps as in Algorithm 1, but we omit step
1 and replace t̂FU(t0,φ, θ) by t̂FM(t0,φ, θ) � t0 + ΔtMS(t0,φ, θ).

A frequency modulation matrix ZFM(φ, θ) can now be
formulated in a similar fashion to ZFU(φ, θ) from Eq. 9 by
stacking the set of vectors zFMk(φ, θ) given by

zFMk
φ, θ( ) � g k, t̂FM 0,φ, θ( )( ) g k, t̂FM

1
fs
,φ, θ( )( ) . . . g k, t̂FM

L − 1
fs

,φ, θ( )( )[ ].

Here the times t̂FM(·) are given by the previously described
frequency modulation algorithm and the function g (·) is given in
Section 3.1. Note that ZFM(φ, θ) cannot be obtained by inverting
ZFU(φ, θ) or vice versa since both ZFU(φ, θ) and ZFM(φ, θ) feature
very large condition numbers for inversion.

The amplitude modulation matrix ZAM(φ, θ) can be formed in a
similar manner to ZAU (φ, θ) by stacking the set of vectors zAMk(φ, θ)
given by

zAMk
φ, θ( ) � A0k

1
fs

( ) · g k, 0( ) A0k

1
fs

( ) · g k,
1
fs

( ) . . .[
A0k

L − 1
fs

( ) · g k,
L − 1
fs

( )].
where A0k(t) � A0(t, k fs

L ,φ, θ).
Simultaneous amplitude and frequency modulation can be

performed using the modulation matrix ZM(φ, θ) given by ZM(φ,
θ) = ZFM(φ, θ) ·ZAM(φ, θ). Note that frequency modulation is
sensitive to amplitude variations due to the utilized interpolation.
This is why ZAM(φ, θ) is positioned to the right of ZFM(φ, θ).

3.4 Direction of arrival estimation

To estimate the azimuth angle of incoming sound sources, we
compute ZU(0, π2) and unmodulate a given source signal for an
arbitrary number of DOA angles φ ∈ [0, 2π) using the optimization
discussed at the end of Section 3.1.We then estimate the PSD of each
unmodulated signal y(φ, π2) in a frame-wise manner using both a
long frame length of L = 8,192 and a short frame length of L = 128.
The PSD is estimated by computing the squared magnitude of the
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RFFT of y(φ, π2) which has been windowed using a Blackman
window. The frame shift is chosen such that there is one frame
for each microphone rotation for L = 8,192 and 30 frames for each
microphone rotation for L = 128. We will express the ith PSD frame
of the unmodulated signals using a long frame length as Slyy(i,φ, π2)
and the one utilizing a short frame length as Ssyy(i,φ, π2). The azimuth
angle can now be estimated for each microphone rotation p in two
different ways: One method is to compute the focusedness F (i, φ) of
Slyy(i,φ, π2) for all i and φ using Eq. 5. Subsequently, the azimuth
estimate is determined for each i by finding the value of φ for which
F (i, φ) attains its maximum. By setting i = p we obtain the estimates
for each microphone rotation since the frame shift was selected such
that there is one frame for eachmicrophone rotation.We will denote
the focusedness-based estimate for the pth microphone rotation as
φ̂F(p).

The second azimuth estimation method is to compute the
energy Es (i, φ) of Ssyy(i,φ, π2) for all i and φ as Es(i,φ) �∑N/2

k�0S
s
yyn

(i,φ, π2)k and subsequently calculate the variance V (p, φ)
of Es (i, φ) over the pth microphone rotation as

V p,φ( ) � Var Es 30p,φ( ), Es 30p + 1,φ( ), . . . , Es 30p + 29,φ( )( ).
The azimuth estimate for the pth microphone rotation corresponds
to the value of φ for whichV (p, φ) has its minimum value for a given
p. We will denote the variance-based estimates as φ̂V(p).

There are numerous possibilities of combining all φ̂F(p) and
φ̂V(p) into one final DOA prediction. For the sake of simplicity we
choose to compute two weighted histograms, one for all φ̂F(p) and
the other for φ̂V(p), where the weights are given by F(p, φ̂F(p)) and
V(p, φ̂V(p)), respectively. The histograms are computed using
weighted Parzen window density estimation with a kernel size of
1
6 π radians. This kernel size was chosen empirically as we found it
provided a good trade-off between the detail and the smoothness of
the histograms. Both histograms are subsequently multiplied with
each other to obtain a combined histogram. The maximum value of
the combined histogram represents the final azimuth angle estimate.

As an example, assume a 2 kHz sine wave arrives at the rotating
microphone at DOA (π, π2) and the microphone rotation is set to
frot = 42 Hz. The recorded signal can be simulated by transforming a
sampled 2 kHz sine wave with ZM(π, π2). We now unmodulate this
signal for 360 uniformly spaced values of φ. Since the microphone
takes approximately 1,143 samples within each rotation, the ith
unmodulated signal is obtained by omitting the first �1143360 � · i
samples of the recorded signal and subsequently transforming the
truncated signal with ZU(π, π2) in a frame-wise manner. The PSDs
Slyy(0,φ, π2) of the unmodulated signals are depicted in Figure 7A. It
can be observed that as the azimuth angle approaches the correct
value, all sidebands of the 2 kHz sine wave gradually disappear.
Furthermore, the focusedness F (0, φ) of Slyy(0,φ, π2) exhibits a clear
peak at φ = π, as depicted in Figure 7C. A plot of the energy El (0, φ)
of Slyy(0,φ, π2) is included in the same figure, which, unlike our
findings from Section 2.2, does not remain constant. This is caused
by amplitude unmodulation, as it does not represent an energy-
conserving transformation. To correct this inconsistency, we
multiply each F (i, φ) by �El(i)2/El(i,φ)2, where �El(i) represents
the mean of El (i, φ). The corrected plots of F (0, φ) and El (0, φ) are
shown in Figure 7C. Moreover, a plot of the energy Es (i, φ) of
Ssyy(i,φ, π2) is depicted in Figure 7B for one microphone rotation. As

it can be observed, the energies become more uniform over time as φ
approaches the correct angle. The variance V (0, φ) of Es (i, φ) also
exhibits a clear minimum at φ = π, as depicted in Figure 7C.

To enable localization of multiple and wideband acoustic
sources, both Slyy(i,φ, π2) and Ssyy(i,φ, π2) are decomposed into
32 subbands using a logarithmic filterbank. We then compute the
focusedness F (n, p, φ), the correction factors �E(n, p)2/E(n, p,φ)2
and the variances V (n, p, φ) for each subband n, microphone
rotation p, and azimuth angle φ. The estimates φ̂F(n, p) and
φ̂V(n, p) for each subband and microphone rotation are now
given by:

φ̂F n, p( ) � argmax
φ

F n, p,φ( ) · �E n, p( )2
E n, p,φ( )2( ),

φ̂V n, p( ) � arg min
φ

V n, p,φ( )( ).
The final DOA predictions are made by multiplying the weighted
histograms of φ̂F(n, p) and φ̂V(n, p) with each other and finding
peaks in the resulting combined histogram. The histogram
computation follows the previously described weighted Parzen
window density estimation and the histogram weights are given
by F(n, p, φ̂F(n, p)) · �E(n, p)2/E(n, p, φ̂F(n, p))2 and
V(n, p, φ̂V(n, p)), respectively. The resulting combined histogram
is then analyzed to find one or multiple peaks. If the number of
sources k is known, the predictions correspond to the k tallest peaks
of the histogram. However, if the number of sources is unknown,
more advanced algorithms are required to determine the number of
audio sources, such as those presented in Yamamoto et al. (2003).

After one or multiple azimuth predictions φ̂ have beenmade, the
colatitude can be estimated similarly by computing Slyy(i, φ̂, θ) and
Ssyy(i, φ̂, θ) for each φ̂ and an arbitrary number of colatitude angles θ
∈ [0, π]. The colatitude estimates θ̂ can then be obtained
by computing

θ̂F n, p( ) � argmax
θ

F n, p, θ( ) · �E n, p( )2
E n, p, θ( )2( ),

θ̂V n, p( ) � arg min
θ

V n, p, θ( )( )
and subsequently finding peaks in the combined weighted
histograms of θ̂F(n, p) and θ̂V(n, p). Note that signals arriving at
θ � π

2 ± θ′ for θ′ ∈ [0, π2] can only be distinguished from each other if
the microphone directivity differs for these angles since the induced
frequency modulation is identical for θ � π

2 ± θ′.

4 Evaluation

To verify the accuracy of the presented algorithm both
simulations and practical experiments have been conducted
for one and two acoustic sources placed at various locations.
The signals used for localization include simple pure tone test
signals ranging from 125 Hz to 8 kHz; more complex test signals,
i.e., a combination of all those pure tones, an exponential sine
sweep, and pink noise; and real-world signals, i.e., male speech,
female speech, a drum groove and an excerpt from a piano
concerto. All samples are amplitude-normalized and have a
length of approximately 2 s.
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4.1 Simulation

We perform simulations for rotational speeds of 24 Hz and
42 Hz, since these values correspond to the minimum and
maximum speeds of our REM prototype. To simulate the
modulated signals we compute the modulation matrix ZM(φ, π2)
for each rotational speed and loudspeaker location(s) of interest and
subsequently use these matrices to modulate the signals from the left
column of Table 1. We use the direction-dependent magnitude
response |H(fm,φm,

π
2)| of our REM prototype to model the

amplitude modulation of the amplitude modulation matrix.
These magnitude responses were measured at 72 equidistant
values of φm and all remaining values are interpolated using linear
interpolation. Additionally, we apply smoothing to the interpolated
|H(fm,φm,

π
2)|, since we found this substantially reduces artifacts

introduced by the modulation and unmodulation algorithm. The
radius for the computation of the matrices is selected as r =
0.045m, since this value corresponds to the rotational radius of our
REM prototype. Note that following the constraints at the end of
Section 3.1 the size of the modulation and unmodulation matrices is
2049 × 2049 for frot = 24 Hz and 1,025 × 1,025 for frot = 42 Hz. As a
consequence, the higher rotational speed leads to an approximately
four-fold increase in the algorithm’s speed.

To determine the robustness of the algorithm in the presence of
noise, randomly generated pink noise is added to each modulated
signal at various levels of signal-to-noise ratio (SNR). We employ
pink noise as it closely resembles the wind noise that occurs during
the microphone rotation. The noise level is adjusted relative to the
modulated pink noise signal and mixed with the other signals at the
same amplitude.

4.1.1 Single source localization
All signals from the left column of Table 1 are modulated for a

DOA of φ � π
2 and φ = π and subsequently mixed with pink noise at

SNRs ranging from −20 dB to 20 dB. The noise in each signal is then
reduced using spectral subtraction, given an estimate of the average
noise spectrum obtained from a 1 s noise sample. Each filtered signal
is subsequently unmodulated for 360 equidistant azimuth angles
using the respective unmodulation matrices. Finally, the estimates
φ̂F(n, p) and φ̂V(n, p) are computed for each unmodulated signal
and combined into one histogram, whose largest peak corresponds
to the final DOA estimate φ̂.

To quantify the accuracy of the proposed DOA estimation
method we compute the absolute DOA estimation error for each
modulated signal. We average the results for φ � π

2 and φ = π, as no
notable difference in accuracy was observed for different source

FIGURE 7
Analysis of unmodulated versions of a modulated 2 kHz sine wave with DOA (π, π2) using long and short frame lengths. All plots in (C) have been
normalized by dividing each graph by its maximum value. The solid lines have a maximum and a minimum at φ = π and are used for DOA estimation. (A)
Plot of S1yy(0,φ, π2). (B) Plot of ES(i,φ). (C) Energy, focusedness and PSD variance.
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positions. The results can be found in Figure 8 for errors up to 60°. It
can be observed that beyond 10 dB SNR all signals are localized with
high accuracy, with the drums signal producing the worst results
with a mean absolute error of 22 and 14° for frot = 24 Hz and frot =
42 Hz, respectively. In the case of single-frequency sources the
microphone’s rotational speed has little impact on localization
accuracy. For lower frequencies the error approximately halves
for each doubling in frequency and frequencies above 500 Hz are
localized accurately down to −20 dB. The increase in localization
accuracy at higher frequencies can be attributed to a corresponding
increase in distortion, which results in a greater discernibility
between unmodulated signals associated with good and bad DOA
candidates. In the case of wideband sources the localization accuracy
at frot = 42 Hz is approximately half that of frot = 24 Hz above an SNR
of 10 dB. Higher rotational speeds introduce more distortion,
making it easier to differentiate between good and bad DOA
candidates. However, these additional distortions appear to
provide no benefit for single frequency source localization.
Additionally, our results indicate that wideband signals with a
more tonal and stationary nature exhibit greater localization
accuracy, whereas signals with a percussive nature demonstrate
lower localization accuracy. This is due to the focusedness
measure implicitly requiring the input signal to be constant
during each spectrogram frame. This also explains why the
exponential sine sweep sees no improvement in error
beyond −10 dB, since the signal is not constant during any
spectrogram frame.

4.1.2 Localization of two sources
To simulate two sources arriving from different directions, we

modulate the signals from the center column of Table 1 for φ � π
2

and the signals from the right column for φ � 5
8 π, φ = π and φ � 3

2 π.
The modulated signals are subsequently added together, resulting in

an angular separation between the simulated loudspeakers of 22.5,
90 and 180°, respectively. The combined signals are then mixed with
pink noise at an SNR of 0 dB. Localization is again performed by
reducing the noise using spectral subtraction, unmodulating the
signal and computing the combined histogram of the focusedness-
and spectrogram variance-based DOA estimates. The final DOA
estimates correspond to the tallest and second-tallest peaks in the
resulting histograms. The results are displayed in Table 2. Note that
we assigned the detected peaks to the true peaks such that the
combined error of both peaks is minimized. Furthermore, we
assume that we have no knowledge which histogram peak is
produced by which signal.

For frot = 24 Hz the tallest histogram peak exhibits an average
combined error of 8.4° for all speaker separations. Theminimum error
of 4.9° is observed at the smallest speaker separation, which is likely
due to the merging of histogram peaks. This is supported by the fact
that the second histogram peak is incorrect in most cases at 22.5°

speaker separation, resulting in an average error of 73.4°. The
maximum error of 11.0° of the first peak is observed at the largest
speaker separation. However, it is important to note that this error is
heavily impacted by two outliers, namely, the “Female + Male” and
“Music + Female” signal combinations. The second histogram peak is
precise for single-frequency sources above 125 Hz and for speaker
separations above 22.5°. These sources can be localized well since their
spectra do not overlap. In the case of wideband sources, localization of
both sources is only accurate at 90° speaker separation with errors of
9.4 and 14.8° for the first and second histogram peaks, respectively.
Localization of the second source at 180° speaker separation likely fails
since, in each subband, one signal creates a maximum focusedness
and spectrogram variance value where the other source creates a
minimum. This increases the likelihood of one signal overpowering
the other, leading to the failure of localization of the weaker signal.We
hypothesize that for certain signal combinations this effect results in
the detection of neither signal, as it was observed for the “Female +
Male” and “Music + Female” signal combinations.

Similar results are obtained at a rotational speed of frot = 42 Hz,
however, there are two notable differences: The average combined
error of the tallest histogram peak is significantly lower at 4.4°. This
is likely caused by the previously discovered improvements in single
source localization accuracy at higher rotational speeds. The second
difference is that localization of the second source is less precise for
wideband sources on average. We hypothesize that this is caused by
a larger spectral spread of the signals at the higher rotational speed,
resulting in more interference between the signals in each subband.
We therefore conclude that localization of two sources benefits from
a lower rotational speed.

4.2 Measurements

All practicalmeasurements were capturedwith our REMprototype,
as depicted in Figure 9, which was placed at a height of 1.2 m in a low-
reverberant roomwith dimensionsW× L×H= 2.75 m× 2.5 m × 2.4 m.
In contrast to the simulation we not only captured data at rotational
speeds of 24 Hz and 42 Hz, but additionally employed a rotational
speed of 34 Hz. The choice of 34 Hz was made to balance the trade-off
between the increase in single source localization accuracy for higher
rotational speeds and the increase in self-induced noise. All signals were

TABLE 1 Used audio samples for single source and two source localization.

Single-source items Two-sources items

Source 1 Source 2

125 Hz Sine 125 Hz Sine 1 kHz Sine

250 Hz Sine 1 kHz Sine 250 Hz Sine

500 Hz Sine 500 Hz Sine 1 kHz Sine

1 kHz Sine 2 kHz Sine 1 kHz Sine

2 kHz Sine 1 kHz Sine 4 kHz Sine

4 kHz Sine 8 kHz Sine 1 kHz Sine

8 kHz Sine Pink Noise Male Speech

All 7 Sines Female Speech Male Speech

Sine Sweep Drums Music

Pink Noise Music Female Speech

Male Speech

Female Speech

Drums

Music
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played at the same volume by loudspeakers situated approximately
1.3 m from the REM within the rotational plane. The SNR between the
pink noise signal and the microphone’s self-induced noise was
measured as approximately 1 dB, −2.5 dB and −6.5 dB for the three
rotational speeds. More details regarding the recording setup can be
found in Lawrence (2023).

Note that, as opposed to the simulation, the microphone’s
rotational speed is not perfectly constant in practice. As a
consequence, it is necessary to compute multiple unmodulation
matrices to account for these fluctuations, which leads to a
significant reduction in the algorithm’s speed. Future hardware
improvements are expected to help overcome this issue.

4.2.1 Single source localization
The loudspeakers were placed in the same positions as for the

simulation. The noise in the captured signals is reduced using
spectral subtraction, given a 1 s noise sample captured
immediately before the signal was played. Each filtered signal
is subsequently unmodulated for 360 equidistant azimuth
angles and the DOA estimates are computed. The results are
again averaged for φ � π

2 and φ = π, since no notable difference
in localization accuracy could be observed for different
loudspeaker placements, and are displayed in Figure 10.

Localization of single-frequency signals is successful at all
rotational speeds except for the 125 Hz and the 500 Hz
signals. While the inability to localize the 125 Hz signal is
consistent with our simulation, the 500 Hz signal presents an
anomaly. We hypothesize that the non-anechoic conditions of
our recording setup resulted in a standing wave at 500 Hz,
which led to additional amplitude modulation as the
microphone changed its position relative to the loudspeaker.
Furthermore, it can be observed that, unlike our simulation,
localization of higher frequencies is not always more accurate.
We believe this error is caused by violations of the idealizing
assumptions from Section 2, as well as inaccuracies within the
microphone’s directivity measurements, which affect higher
frequencies more heavily than low frequencies. The best
average performance in single frequency localization is
achieved at a rotational speed of frot = 34 Hz with a mean
absolute error of 23°, which is significantly higher than the
error range of 3–6° produced by the simulation at 0 dB. The
other two rotational speeds exhibit a further increase in the
mean absolute error by approximately 13°. Wideband sources
are localized more accurately and reliably than single-frequency
sources, indicating that the errors occurring in single frequency
localization cancel each other out. The best average

FIGURE 8
Simulated localization accuracy for various source signals, rotational speeds and SNRs. (A) Monochromatic results for frot = 24 Hz. (B) Wideband
results for frot = 24 Hz. (C) Monochromatic results for frot = 42 Hz. (D) Wideband results for frot = 42 Hz.
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performance for wideband source localization is achieved at a
rotational speed of frot = 34 Hz with a mean absolute error of
5.4°, which is significantly lower than the error range of 15–18°

produced by the simulation at 0 dB. This is likely attributable to the
fact that the harmonic noise present in the REM recordings is more
effectively filtered by spectral subtraction than the additive pink noise
from the simulation, resulting in a higher SNR after noise reduction.

The mean absolute error at frot = 24 Hz and frot = 42 Hz is also better
than the simulation at 10 and 6°, respectively. Given that the accuracy of
both single-frequency and wideband localization is highest at a
rotational frequency of frot = 34 Hz it can be inferred that there
exists a trade-off between the increase in single source localization
accuracy and the increase in self-induced noise for higher
rotational speeds.

TABLE 2 Simulated absolute localization error for two acoustic sources at 0 dB SNR, given in degrees. The combinedmean and standard deviation (SD) refer
to the mean absolute error of all first and second peaks, respectively. Values below 10 are highlighted in bold, while values above 30 are shaded in grey.

Separation frot = 24 Hz frot = 42 Hz

22.5° 90° 180° 22.5° 90° 180°

Histogram Peak 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

125 Hz + 1 kHz 0 89 1 89 1 89 0 87 2 88 1 88

1 kHz +250 Hz 0 8 1 0 1 2 2 109 1 16 1 3

500 Hz + 1 kHz 1 75 2 2 2 2 0 67 1 2 0 2

2 kHz + 1 kHz 2 105 1 1 1 2 1 47 0 3 1 1

1 kHz + 4 kHz 0 89 0 0 0 0 0 88 1 1 0 1

8 kHz + 1 kHz 1 101 0 1 0 1 0 94 0 1 0 1

Noise + Male 10 60 21 16 3 39 5 29 8 110 6 137

Female + Male 8 67 28 4 50 160 33 38 34 73 3 140

Drums + Music 2 126 1 18 2 100 0 92 1 153 2 98

Music + Female 25 14 39 17 50 163 10 119 10 9 8 2

Mean 4.9 73.4 9.4 14.8 11.0 55.8 5.1 77.0 5.8 45.6 2.2 47.3

SD 7.5 36.1 13.7 25.7 19.5 63.6 9.8 28.9 10.0 53.0 2.6 57.8

Combined Mean 1st: 8.4 2nd: 48.0 1st: 4.4 2nd: 56.6

Combined SD 1st: 14.7 2nd: 51.1 1st: 8.3 2nd: 50.4

FIGURE 9
3D-model (A) and photograph (B) of the REM prototype.
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4.2.2 Localization of two sources
Two loudspeakers were placed in the same locations as described

in Section 4.1.2 and all signals were captured with the REM at the
three previously mentioned rotational speeds. The noise in each
captured signal is reduced using the same procedure as explained in
the previous section and then the combined histogram is computed.
The results for the tallest and second-tallest histogram peaks are
shown in Table 3. The tallest histogram peak has an average

combined error of 9.8° for frot = 24 Hz. This error increases to
12.3 and 13.0° for frot = 34 Hz and frot = 42 Hz, respectively. This
suggests that for two sources the benefit of a higher rotational speed
observed in Section 4.1.2 is offset by the drawback of a decrease in
SNR at higher rotational speeds. The accuracy of the second
histogram peak deteriorates with an increase in rotational speed
in a similar manner to the first histogram peak. In the case of frot =
24 Hz the second peak exhibits an error of 38.5° which is lower than

FIGURE 10
Real-world localization accuracy for various source signals and rotational speeds. (A) Results for single frequency signals. (B) Results for
wideband signals.

TABLE 3 Real-world absolute localization error for two acoustic sources, given in degrees. The combined mean and SD refer to the mean absolute error of
all first and second peaks, respectively. Values below 10 are highlighted in bold, while values above 30 are shaded in grey.

Separation
frot = 24 Hz frot = 34 Hz frot = 42 Hz

22.5° 90° 180° 22.5° 90° 180° 22.5° 90° 180°

Histogram
Peak

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

125 Hz + 1 kHz 5 49 20 43 7 124 10 104 24 47 16 44 12 48 31 152 14 42

1 kHz +250 Hz 3 177 29 16 10 60 25 41 35 139 21 145 28 22 39 21 8 135

500 Hz + 1 kHz 5 37 20 14 6 27 10 33 24 142 16 104 14 37 29 166 15 44

2 kHz + 1 kHz 3 121 11 17 2 5 1 71 10 20 1 11 6 70 1 29 5 8

1 kHz + 4 kHz 14 18 15 31 19 20 15 19 18 47 13 23 23 44 8 39 12 24

8 kHz + 1 kHz 23 4 9 18 9 6 23 9 13 22 16 15 18 10 3 28 18 12

Noise + Male 19 12 11 13 7 34 14 47 4 1 3 42 2 114 9 172 14 94

Female + Male 10 20 0 55 22 9 1 174 19 5 12 7 7 134 5 15 18 162

Drums + Music 6 103 4 10 1 2 11 78 9 1 0 0 8 93 17 14 6 2

Music + Female 0 98 4 4 1 9 1 86 0 4 3 142 6 120 10 30 3 106

Mean 8.8 63.9 12.3 22.1 8.4 29.6 11.1 66.2 15.6 42.8 10.1 53.3 12.4 69.2 15.2 66.6 11.3 62.9

SD 7.2 54.8 8.4 15.2 6.8 35.7 8.2 46.1 10.0 51.5 7.2 53.1 7.9 41.5 12.6 63.9 5.2 54.3

Combined Mean 1st: 9.8 2nd: 38.5 1st: 12.3 2nd: 54.1 1st: 13.0 2nd: 66.2

Combined SD 1st: 7.7 2nd: 42.8 1st: 8.9 2nd: 51.2 1st: 9.2 2nd: 54.1
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the error of 48.0° observed in the simulation. Especially in the case of
180° speaker separation there is a significant improvement for
wideband signals. Again, this improvement can likely be
attributed to more effective reduction of harmonic noise, rather
than the reduction of pink noise. Additionally, the phenomenon
observed in Section 4.1.2, where one signal dominates the other at
the 180° speaker separation, seems to be less prominent in practical
scenarios. The results for single frequency sources are not as accurate
as the simulation for the same reasons as the inaccuracies observed
in Figure 10A. Localization of the second source fails at 22.5° speaker
separation for most signals and rotational speeds, with the exception
of the “1 kHz + 4 kHz” and “8 kHz + 1 kHz” signals. It is
hypothesized that these exceptions are caused by the inaccuracies
from Figure 10A, preventing the merging of the histogram peaks.
We conclude that both our simulations and practical experiments
indicate that the lowest investigated rotational speed of frot = 24 Hz
leads to the most accurate localization of two sources.

5 Conclusion

We have presented a novel method for direction of arrival
estimation of unknown sound sources using a single moving
microphone. The method compensates for the induced frequency
and amplitude modulation caused by the microphone’s rotation and
estimates the direction of arrival of sound sources using spectrogram
variance and focusedness measures of the unmodulated signals. We
have evaluated the performance of the method in 2D using
simulations and measurements with different types of
signals, rotational speeds, and source positions. Our results
demonstrate that the proposed method can achieve high
localization accuracy for single sources, with wideband
signals exhibiting particularly strong performance in practice
with a mean absolute error of 5.4°. Single frequency sources are
localized with a mean absolute error of 23°. Moreover, our
findings indicate that a greater localization accuracy is
achieved if signals are stationary and tonal in nature and
consist of frequencies above 500 Hz. Multiple sources are
also localizable for certain signal combinations, provided the
angular separation between the loudspeakers is sufficiently
large. Although our simulations indicate that single source
localization is more effective at higher rotational speeds, the
benefits of the increased speed are outweighed by the negative
impact of wind and motor noise on the algorithm’s performance
in practice. Our practical measurements showed that of the
three tested rotational speeds 34 Hz performed best for single
sources and 24 Hz for two sources. We conclude that the
presented algorithm can be considered the new state-of-the-
art in sound localization using a single continuously rotating
microphone. To the best of our knowledge, no other practical
implementation currently exists which is capable of localizing
multiple unknown signals under the given conditions.

Since we used a simplistic method to combine the DOA
estimates for each subband and microphone rotation into one or
multiple DOA estimates, we plan to develop a more optimized, data-
driven approach. We anticipate this will increase the algorithm’s
performance and enable an automatic detection of the number of
sources. Additionally, we intend to verify and evaluate the algorithm

in three dimensions. To achieve full 3D localization, it is necessary to
have significant differences between the magnitude responses above
and below the microphone. Therefore, this endeavor will involve
improving the REM prototype to exhibit distinct three-dimensional
direction-dependent magnitude responses above and below the
rotational plane. We expect that improvements will also be made
to mitigate the effects of wind and motor noise. Finally, we plan to
localize moving sources, enable localization in reverberant
environments and estimate the distance between the microphone
and the sources by exploiting near field effects. These enhancements
will enable us to create a more robust and versatile localization
system using a single moving microphone. Such a localization
system has potential applications in settings that involve rotating
elements. For instance, it could be integrated into Lidar sensors for
self-driving cars. This application may enable acoustic vehicle
detection around corners, as demonstrated in Schulz et al. (2021)
using a car-mounted microphone array.
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