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Research on deep learning-powered voice conversion (VC) in speech-to-speech
scenarios are gaining increasing popularity. Although many of the works in the field
of voice conversion share a common global pipeline, there is considerable diversity
in the underlying structures, methods, and neural sub-blocks used across research
efforts. Thus, obtaining a comprehensive understanding of the reasons behind the
choice of the different methods included when training voice conversion models
can be challenging, and the actual hurdles in the proposed solutions are often
unclear. To shed light on these aspects, this paper presents a scoping review that
explores the use of deep learning in speech analysis, synthesis, and disentangled
speech representation learning within modern voice conversion systems. We
screened 628 publications from more than 38 venues between 2017 and 2023,
followed by an in-depth review of a final database of 130 eligible studies. Based on
the review,we summarise themost frequently used approaches to voice conversion
based on deep learning andhighlight commonpitfalls.Wecondense the knowledge
gathered to identify main challenges, supply solutions grounded in the analysis and
provide recommendations for future research directions.
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1 Introduction

Voice transformations (VT) describe the act of controlling non-linguistic characteristics
of speech, such as the quality or the individuality of a vocal signal (Stylianou, 2009). The
expression “transformation” is used as an umbrella term referring to the modifications
made in a speech-to-speech scenario where an application or a technical system is used to
map, modify, or modulate specific characteristics of a voice, be it pitch, timbre, or prosody.

A sub-task of VT is the topic of voice conversion (VC). More specifically, VC seeks to
render an utterance from one speaker to sound like that of a target speaker. In the past
decade, it has become a prominent research subject within the field of artificial intelligence
(AI). Most commonly, voice conversion refers to the process of changing the properties of
speech, such as voice identity, emotion, language or accent, and the process has, in the past
years, made a major impact on several real-life applications such as personalised speech
synthesis, communication aids for speech impaired, or simple voice mimicry. It should be
noted that VC is also used to describe the conversion procedure of a text-to-speech (TTS)
pipeline in which a user chooses specific speaker characteristics that the written text should
sound like (Sisman et al., 2020). This review considers only the former definition.
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The VC pipeline can be divided into three main stages, each
aiming at solving a specific problem: 1) the speech analysis stage aims
at breaking down speech signals into intermediate representations,
facilitating efficient manipulation or modification based on the
acoustic properties of speech. For prosody modifications, it is
important to decompose pitch and rhythm-related properties,
whereas, for identity conversion, it is important to extract and
disentangle linguistic content from speaker timbral information,
2) the mapping stage where a system transfers the decomposed
information from stage 1 towards a representation that matches the
qualities of a specific target speaker, and 3) the reconstruction and
synthesis stage, where the transformed intermediate representation
is processed and re-synthesised into the time domain using a
generator or vocoder (Walczyna and Piotrowski, 2023). All three
stages may be carried out using traditional signal processing or
statistical modelling techniques. During the speech analysis stage,
one may represent a speech signal as overlapping segments of pitch
periods using the pitch synchronous overlap and add (PSOLA)
method or as frames of pitch varying excitation signals and vocal
tract filters based on the mel-log spectrum (Sisman et al., 2020).
Assuming that parallel data, that is, the same utterances spoken by
both the input and target speaker, are available, the mapping stage
may be carried out through the procedure of prosody and spectrum
mapping. This has most commonly been accomplished by Gaussian
mixture models (GMM) (Stylianou et al., 1998), non-negative
matrix factorisation (NMF) (Wu et al., 2013), and regression-
based clustering methods (Zhou et al., 2020). Lastly, the
syntheses have traditionally been executed through techniques
based on the inverse Fourier transforms or PSOLA (Valbret
et al., 1992).

Nonetheless, the traditional approaches suffer from several
limitations. The manipulation of time-domain signals, as done
through PSOLA, is complex and rarely results in good audio
quality as it mostly ignores phase relationships when mapping
acoustic features (Valbret et al., 1992). Simultaneously, assuming
a stationary process in time-invariant linear source-filter methods
often gives rise to unnatural-sounding voices. The progress in
artificial intelligence deep learning modules has, therefore,
gradually been incorporated as primary foundational elements for
each stage in the VC pipeline. There are several benefits to this. First,
the feature-mapping processes are generally non-linear, making
non-linear deep learning operations more compatible with
human speech than methods based on linear operations such as
GMMs. Second, neural networks are end-to-end compatible and can
learn from and generalise to large datasets. Nearly all contributions
to the biannual Voice Conversion Challenge (VCC) incorporate
neural networks at some point in the VC pipeline, with a
predominant number of submitted works being entirely based on
deep learning principles (Yi et al., 2020).With the increasing interest
in deep learning, new non-parallel end-to-end training methods,
novel mapping functions, and vocoding techniques have been
promoted. Consequently, these advancements have led to
substantial improvements in the quality and fidelity of VC results
in terms of naturalness, realism, and conversion quality. Deep
learning has, therefore, become “a new standard” for carrying out
voice conversion today, which is why this review has chosen to focus
solely on deep learning VC techniques, mainly in the realm of non-
parallel VC.

Few works have reviewed the field of VC. Sisman et al. (2020)
provide a comprehensive overview of the history of VC technology,
including statistical approaches and neural networks, and identify
common deep learning modules. Walczyna and Piotrowski (2023)
extend this work by focussing on frequently used deep learning
models for analysis, mapping, and synthesis. However, both
reviews have limitations. Sisman et al. (2020) emphasise the
historical context but lack coverage of contemporary methods
and their integration within broader settings. Walczyna and
Piotrowski (2023) focus on current techniques but do not
connect them with the diverse challenges in VC. Both reviews
also lack a forward-looking perspective, offering limited
suggestions for future research directions. This is significant as
identifying emerging challenges and opportunities is crucial for
advancing VC technology. Our contribution supplements these
reviews by analysing key problem areas in current VC research and
focussing on foundational elements for targeted solutions. We aim
to bridge the gap by highlighting contemporary methods and
connecting them to broader challenges and applications in VC.
Additionally, we propose a roadmap for future research,
emphasising interdisciplinary approaches and novel
applications. We seek to provide an overview of research
trends, techniques, and challenges in VC, especially covering
the rapid growth in the last few years.

Specifically, we offer an illustrative and statistical examination of
the prevalence and applications of deep learning-based methods
used within current VC pipelines. To accomplish this, we undertake
a scoping review, building upon a succession of similar reviews
conducted within the realm of multi-sensory audio signal
processing. Each of these prior reviews addressed distinct
research inquiries and employed unique methodological
approaches. Brice et al. (2023) developed a framework for
contemporary hearing care using a PRISMA approach to
identify service and product delivery options. Paisa et al.
(2023) focused on tactile displays for auditory augmentation,
categorising devices based on physical, auditory, perceptual,
purpose, and evaluation domains. Salinas-Marchant and
MacLeod (2022) explored audiovisual speech perception in
children, identifying key gaps in research. Our review aligns
with these works in its methodological rigour but diverges in
its focus on deep learning-based VC. By extending the library of
encoders and loss functions, we contribute to a more
comprehensive understanding of the current landscape and
potential future directions in this rapidly evolving field.

In this scoping review, we analyse 130 papers published between
2017 and 2023 to identify common approaches and areas needing
development in VC. Our analysis includes a quantitative
examination of training configurations and thematic analysis
guided by a 14-code codebook. We offer an intuitive overview of
the VC pipeline and provide a dataset with reviewed papers, codes,
and keywords. Graphical representations illustrate work
distributions, while a detailed analysis addresses specific VC
challenges. The review concludes with insights into future
research directions, focussing on identity conversion,
interpretability, and real-time control. We aim for this review to
be a valuable resource for newcomers to the field of voice conversion,
aiding understanding of common techniques and guiding
research efforts.
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2 Background

Before presenting the methodology, we introduce general
terminology and describe the sub-blocks and typical flow of a
traditional deep learning-based VC pipeline. VC occurs in
various forms, including one-to-one, one-to-many, or many-to-
one conversions. In one-to-one conversion, the voice of one
speaker is converted to another specific speaker. One-to-many
conversion involves converting the voice of a single speaker to
multiple other speakers, while many-to-one conversion changes
the voices of multiple speakers to a single target speaker.
Additionally, there exists one-shot, many-to-many conversion,
sometimes referred to as any-to-any or zero-shot voice
conversion. In this approach, a model can generalise from only
one utterance of several speakers, including both those seen and
unseen during training. Although certain studies encountered in this
review may involve one-to-one or one-to-many conversion
schemes, specifically for spectral mapping, the predominant focus
will be centred on methods pertinent to many-to-many or zero-shot
voice conversion. These instances not only offer generalisability to
the remaining cases but also stand at the forefront of harnessing the
non-parallel benefits facilitated by deep learning. The following
section serves as a brief overview of the non-parallel voice
conversion pipeline as well as the codes and descriptions
employed throughout the coding, analysis, and synthesis
procedures.

2.1 The voice conversion pipeline

Research on speech analysis and synthesis has been conducted
since 1922 when Stewart (1922) commented that the difficult
problems involved in artificial voice production are found in the
manipulation of the apparatus producing it rather than the actual
production of the speech itself. In order to understand and
implement speech analysis, production, and manipulation blocks
in such an apparatus, we utilise the ability to characterise speech by
different factors. First, one can define speech by its linguistic factors,
which are reflected in sentence structure, lexical corpus, and idiolect,
for example, words and speech habits. Second, we divide it into
supra-segmental factors, which are the prosodic attributes of speech,
such as intonation, stress, and rhythm, and segmental factors, which
are related to speaker identity and timbre, such as the spectrum,
spectral envelope, and formants (Sisman et al., 2020). These aspects
can be interchanged and mapped in various ways. Most deep
learning-powered VC approaches train a conversion model that
transforms either the segmental factors, that is, changes the timbre
in order to match that of a target speaker, or the supra-segmental
factors, that is, transforming prosody, such as pitch and rhythm. The
former aspects result in pure identity conversion, whereas the latter
are important when converting input speech to an accent or emotion
of another speaker. Both processes are transformed with the main
goal of keeping the linguistics unchanged. We illustrate the typical
voice conversion pipeline, including analysis, mapping, and
reconstruction modules in Figure 1 and divide the stages
depicted into even more specific tasks.

Most VC pipelines start by extracting information about
linguistic content, prosody, and speaker identity individually. In

the field of VC, we denote the segmental and supra-segmental
aspects of a speaker as speaker-dependent features, that is,
features that capture the specific vocal characteristics of an
individual speaker, while the remaining linguistics are denoted as
speaker-independent features, that is, features that describe spoken
content universal to any spoken language. Once the speaker-
dependent and speaker-independent factors are extracted, the
voice conversion process can be recast as a style transfer problem
where speech characteristics are regarded as styles, and speaker-
independent factors are regarded as domains (Qian et al., 2019). The
key idea behind the style transfer formulation is to achieve full
disentanglement between the styles and domains from which one
can manipulate and/or replace the different styles, often represented
as “embeddings.” When replacing the styles, one can incorporate
timbral or prosody information from the input itself, which will
result in pure reconstruction, or involve the speaker embedding and
prosody information from other speakers, which will result in actual
conversion, matching the characteristics of the speaker inserted
(Walczyna and Piotrowski, 2023).

Non-parallel VC differs from parallel VC in several approaches.
Parallel voice conversion is simpler due to the availability of aligned
training data, that is, the same utterances spoken by different
individuals. This allows for straightforward learning of direct
mappings between source and target features, often involving
statistical models like GMMs, vector quantisation (VQ), and
dynamic time warping (DTW). Additionally, parallel VC
primarily focuses on learning a spectrum mapping between seen
speakers. The techniques employed in these scenarios do not
generalise well to unseen data and do not provide useful
information for one-shot or zero-shot conversion, such as
speaker embeddings. In contrast, the absence of alignment in
training data is a significant challenge in non-parallel VC.
Without paired utterances, a VC model trained on non-parallel
data does not have explicit examples of how tomap features from the
source speaker to the target speaker. From a deep learning
perspective, parallel training simplifies the task by providing
models with the same linguistic content for both source and
target speakers, reducing the problem to primarily learning a
timbral mapping. In contrast, non-parallel models must
concurrently interpret and align linguistic content, timbre, and
prosody without the benefit of aligned utterances, thereby
increasing the complexity of the task. One approach to
addressing this challenge involves representing speaker-
independent features explicitly, for example, through phonetic
posteriorgrams (PPGs) that establish an intermediary phonetic
representation of both the source and target speakers (Sun et al.,
2016) or speaker embeddings representing speaker identity as a
string of data. As will be subsequently discussed, several alternative
methods are available.

Numerous models have been proposed in the literature to
extract and map the above-mentioned features using deep
learning and neural networks. Generative adversarial networks
(GANs) and (variational) auto-encoders (AEs/VAEs) are
particularly popular choices. Lu et al. (2021) and Zhao W. et al.
(2019) utilise traditional GAN-based training schemes with timbre
representation losses to train a system that can extract andmatch the
timbre characteristics of many speakers. Differently, Dhar et al.
(2023) extend the generator of a traditional GAN network with
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adaptive learning using a dense residual network (DRN) to enhance
the feature learning ability, that is, speaker generalisation, of the
proposed model. Ferro et al. (2021) use adversarial weight-training
paradigms to map different features to more realistic representations
by creating balance in the sometimes unstable nature of a GAN. This
is done by giving more attention to samples that fool the
discriminator and allowing the generator to learn more from
“true” samples than “fake” ones. The study further imparts an
inductive bias by using spectral envelopes as input data for the
generator. By doing this, they limit the conversion task to subtle
adjustments of the spectral formants, promoting ease of learning in
the often-challenging training scheme of GANs. In contrast to the
GAN-based approaches, Du et al. (2022a), Nikonorov et al. (2021),
and Tang et al. (2022) use the benefits of representation learning in
AEs and VAEs. In this process, the models segregate linguistic and
timbre details by creating an information bottleneck. Variations in
the size and characteristics are utilised to represent the latent spaces,
as well as the explicit control provided by these models. Du et al.
(2022a) use traditional content and speaker embeddings to
condition the decoder, which in turn produces a mel
spectrogram to be synthesised by the vocoder. In contrast,
Nikonorov et al. (2021) focus on learning a latent representation
from which the decoder can create harmonic and noise components
matching that of the target speech. Lastly, Tang et al. (2022) encode a
broader range of information, including speaker, content, style, and
pitch (F0), making it easier to force disentanglement and
interchange chosen features in the conversion process.

Despite the improved efficiency of AE and VAE-based
representations, Wu et al. (2020) note that it may produce
imperfect disentanglement in some cases, harming the quality
of the output speech. This happens because weaknesses in any
intermediate and individual module will cascade errors in the
overall system. To address this, Wu et al. (2020) further extend the
auto-encoder-based VC framework with a U-Net architecture and
force a strong information bottleneck using VQ on the latent
vectors. The latter is done to prevent the U-Net from overfitting on
the reconstruction task and will later be shown to be a popular
choice in regularising the latent space (see Sections 5.2.2 and 4.2).

As noted in Figure 1, the speech is finally reconstructed by
synthesising the intermediate acoustic representation back into the
time domain. Although this classically has been achieved by the
Griffin–Lim algorithm or inverse Fourier transforms, current work
utilises neural vocoders such as the WaveNet (van den Oord et al.,

2016) or the HiFi-GAN (Lian et al., 2022). These processes are
known for their high fidelity and robustness toward modifications in
the intermediate representations – aspects that are crucial for high
output quality. The use and inclusion of vocoders will be examined
in Section 4.3.

In the context of DL-based VC, it is important to
acknowledge the significance of language models (LMs) as the
recent surge in LM research has demonstrated promising
outcomes for VC, particularly for feature mapping and general
robustness. Wang et al. (2023) propose “LM-VC,” in which the
usual embeddings are substituted by tokens known from
language representations. Here, a two-stage masked language
model generates coarse acoustic tokens for recovering both the
source linguistic content and the target speaker’s timbre. The
approach is shown to outperform competitive systems for speech
naturalness and speaker similarity; however, the model is
restricted to the use of well-known tokenisers, which often
contain millions of parameters (Hsu et al., 2021). VC systems
relying on LMs are, therefore, inherently intricate, lack
interpretability, and demonstrate inefficiency during inference.
Therefore, they may not necessarily always contribute positively
to the VC process. Although the methodology surrounding LMs
presents intriguing avenues for VC research, the expansive
proliferation of LM studies within the broader realm of AI has
rendered it impractical to encompass its entirety within this
review. Consequently, we will not directly search for LMs nor
extensively cover LMs and transformer models as standalone
subjects. We believe this would require an individual review.
Instead, we will concentrate on exploring techniques intrinsic to
LM research that are employed within the encountered VC
pipelines, such as attention and masking. Further elaboration
on this focus will be provided in Section 4.2.

In addition to complexity, freedom, and modularity, the
introduction of deep learning signifies a departure from the
conventional analysis-mapping-reconstruction pipeline. The
above-mentioned techniques may all be trained in an end-to-end
manner, substituting each sub-task with other neural processes
either from similar VC work or from completely different speech
processing fields. Subsequent sections of this article will navigate
deeper into the intricacies of these techniques. The forthcoming
sections will serve as a bridge to the results, offering a granular
perspective on the approach taken when choosing and
extracting our data.

FIGURE 1
Illustration of a traditional deep learning-powered voice conversion pipeline and its threemain stages. “Prosody extraction” includes features related
to pitch, energy, and rhythm.
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3 Materials and methods

As earlier mentioned, the decision to undertake a scoping
review in the domain of deep learning-powered VC has been
informed by the transformative nature of deep learning. Sisman
et al. (2020) emphasized that differentiable techniques have
shifted the paradigm away from the traditional analysis-
mapping-reconstruction pipeline. This shift enables end-to-
end training, providing flexibility and improved target
matching; however, challenges arise depending on the new
methods incorporated. We seek to review current techniques
and survey future challenges mentioned in the current literature.
Unlike other review types, scoping reviews aim to “identify and
map the available evidence” (Munn et al., 2018) and thus focus
on the quality and quantity of key features rather than answering
specific questions (Grant and Booth, 2009).

Although no formal quality assessment is needed in a scoping
review, Colquhoun et al. (2014) recommend following a few simple
guidelines to ensure consistency in the analysis and synthesis phases.
As suggested by Colquhoun et al., we have chosen to follow Arksey
and O’Malley’s framework stages for the conduct of scoping reviews
combined with the Levac et al. enhancements (Colquhoun et al.,
2014). In the review process, we take the following steps: 1) Identify
the research question, 2) Identify relevant studies, 3) Select and screen
relevant studies, 4) Chart the gathered data, 5) Collate, summarise,
and report the results (Colquhoun et al., 2014). We furthermore
integrate the PRISMA checklist for scoping review (PRISMA ScR)
into the guidelines, ensuring consistency and objectivity throughout
the iterative reviewing process (Tricco et al., 2018). The latter aspects
have been specifically important as the reviewing process has been
carried out by fewer authors than recommended, making the
synthesis and results receptive to subjective bias. Part of the initial
paper analysis and code extraction process (step 3 and 4) was carried
out using the generative AI tool “elicit”1

3.1 Research questions

We guide our review of deep learning-based VC by the
following research objectives: 1) identify the current state of
the art in the field of deep learning-based VC, 2) identify the
commonly used tools, techniques, and evaluation methods in deep
learning-based VC research, and 3) gain a comprehensive
understanding of the requirements and existing gaps in
different VC frameworks. To accomplish these objectives, our
review will address the following research questions.

• What are the fundamental components that comprise high-
fidelity VC pipelines?

• What are the primary areas of concern addressed in research
on VC, and which challenges are they trying to solve?

More specifically, our review will examine research findings and
standardised methodologies in the domain of VC. We aim to

provide a quantitative analysis of the approaches employed at
each stage of the conversion pipeline, clarifying the rationale
behind the selection and application of these techniques.

3.2 Keyword identification

Relevant studies were retrieved using research-specific keywords.
We identified the keywords using a data-driven approach where one
main keyword guided the search for related keywords. We did this to
ensure objectivity and overcome limitations regarding knowledge
gaps or biases towards terms we would use to describe the
research objectives at hand. To find deep learning terms connected
to VC, we searched for relevant keywords in the 2022 proceedings of
two machine learning and audio-related conferences (ICASSP2 and
NeurIPS3) using the main keyword “voice conversion.” For all papers
retrieved, Author 1 screened the relevance of the results by reading the
full title and abstracts, where-after the global keyword list was updated
by the author keywords from each paper. In total, 18 relevant papers
on voice conversion and deep learning were found. In these papers,
16 unique keywords were repeated more than once. The complete list
is shown in Table 1, with each keyword sorted into subtopics. We
specifically excluded the keyword “text” to avoid searching for studies
focussing on TTS-based VC. Lastly, we added feature-based keywords
like pitch, timbre, formant, energy, and dynamics to further force
audio domain-specificity.

3.3 General search

We ensured that the voice conversion content was limited to
deep learning techniques using AND operators between the first
column and the last column of the keyword list, while OR operators
were used between the remaining columns and rows of Table 1. This
meant that articles searched for all contained the keyword “voice
conversion” in addition to popular deep learning methods,
subtopics, and features. We queried the Scopus®4 and the Web
Of Science5 databases due to the former’s high scientific journal
rankings and the latter’s indexing of conferences, such as the
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) and the Conference and Workshop on
Neural Information Processing Systems (NeurIPS). We searched
for the keywords in all material of the Scopus archive and limited the
search to title, abstract, and keywords for theWeb of Science archive.
Initially, 621 papers were retrieved, 422 from Scopus and 199 from
Web of Science. Despite the long history of VC, deep learning-based
solutions only started to gain popularity in the mid-2010s. The
launch of the Voice Conversion Challenge in 2016 highlights this.

1 https://elicit.com/welcome

2 International Conference on Acoustics, Speech, and Signal Processing:

https://ieeexplore.ieee.org/xpl/conhome/9745891/proceeding, accessed

05.07.2023.

3 Advances in Neural Information Processing Systems:

4 Scopus: https://www.scopus.com/search, accessed 23.10.2023.

5 Web of Science: https://www.webofscience.com, accessed 23.10.2023.
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Therefore, we carried out an additional filtering process in which the
search was limited to 6 years from 2017 to 2023. We also filtered out
reviews, surveys, book chapters, letters, and thesis papers. The initial
filtering resulted in 573 papers.

We implemented a three-stage screening process to manage the
extant literature, comprising 1) the title phase, 2) the abstract phase, and
3) the full-text phase. The initial phase involved the removal of
duplicated publications. Subsequently, Author 1 screened the
remaining papers based solely on their titles. This phase applied two
primary criteria: first, manuscripts must be in English, and second, their
titles must pertain to the realm of VC, excluding materials concerning
regulation, detection, or anti-spoofing. This stage functioned as a
supplementary filtration step, addressing any oversights in the initial
filtering stage that might have arisen from inaccuracies in metadata.
Phase 1 led to the exclusion of 357 papers primarily due to their lack of
relevance. In the subsequent phase, abstracts of the remaining 216works
underwent review and assessment against various exclusion/eligibility
criteria (EC) formulated iteratively throughout phase 1.

EC1 Modality: The main focus of the article is on other
modalities, such as video information or text-to-speech
systems. Only direct voice conversion using speaker-to-
speaker or reconstruction methods (audio-to-audio) should
be included.
EC2 Purpose: The article has a bigger purpose than feature-based
VC. For example, it aims to achieve speaker recognition and
identification, recreate pathological voices, or convert whispers
and screams.
EC3 Synthesis: The paper deals with speech synthesis/neural
vocoding only.
EC4 Method: The paper does not include any deep learning
techniques (GANs, AEs, VAEs, RNNs, attention
mechanisms, etc.).
EC5 Singing Voice: The system is focused on singing voice
synthesis or conversion.
EC6 Lack of VC information: The paper lacks general
information on the VC process; for example, it focuses on
evaluation methods.

It is imperative to acknowledge that EC2 was incorporated to
curate a more streamlined dataset. Given the thematic focus of our
review on feature conversion, which encompasses dimensions such

as timbre, emotion, and accent conversion, we regard investigations
involving these elements as foundational for tackling additional
conversion challenges, including pathological conversion.
Simultaneously, we incorporated EC5 based on two principal
rationales: First, singing voice conversion (SVC) and speech-
based VC present distinct goals leading to architectural
modifications and challenges during the encoding and analysis
stages. Owing to the musical elements inherent in singing voices,
SVC necessitates precise control over musical attributes such as
melody, harmony, and rhythm. The enhancements within an SVC
pipeline, therefore, predominantly occur during the recogniser
training and feature extraction phases, capturing extended pitch
ranges and dynamic expressions. Second, despite the alterations in
vocal characteristics, SVC pipelines adhere to the same decoding and
vocoding structures as VC. Consequently, we do not anticipate that
SVC will introduce substantial novelty in this context.

We excluded 75 articles in phase 2 of our screening process,
resulting in an initial corpus of 141 papers designated for full-text
analysis and coding. Subsequently, during the code extraction phase,
an additional 18 papers were deemed either irrelevant or
unattainable. Following the retrieval of the initial database, it was
observed that VC research using diffusion methods was omitted and
not indexed using keywords such as “deep learning” or “style
transfer.” To address this issue, an additional search was
conducted, exclusively querying the databases for diffusion-based
VC work using the hash “(voice conversion AND diffusion).” This
search resulted in seven more papers fitting our exclusion criteria. A

TABLE 1 Keyword list for literature search. The search is done by placing an AND between the first and remaining columns and an OR between the rows of
each column.

Keyword 1 Keyword 2 (method) Keyword 3 (subtopic) Keyword 4 (feature)

Deep learning Style transfer

Convolutional NNs Speech synthesis Pitch

Generative adversarial Disentanglement Timbre

Voice conversion Unsupervised Vocoder Formant

Adversarial (training*) Zero-shot Energy

Self-supervised Conditioning Dynamics

Vector quantisation End-to-end Prosody

Autoencoder Speaker embedding

FIGURE 2
Prisma-ScR chart documenting the retrieval process of identified
sources of evidence used for data extraction and analysis.
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final pool of 130 papers was included in the review. We picture the
full source selection process using the PRISMA diagram for scoping
reviews (PRISMA-ScR) (Tricco et al., 2018) in Figure 2.

3.4 Data items and code book

The 130 papers were carefully read, analysed, and summarised.
We charted the papers based on three main topics: 1) Research
objective and contributions: what was the goal of the authors, and
what did they achieve? 2)Methods and techniques used: How did the
authors achieve their goal, and which deep learning methods and
intermediate features were used? 3) Evaluation and miscellaneous:
How did the authors evaluate their work, what were the results, and
did they apply any manipulation techniques (e.g., augmentation,
perturbation, regularisation)? Data items related to each coding
topic can be seen in Table 2, while the complete code book can be
found in the Supplementary Material.

4 Results

The following section presents a combined analysis and
discussion of the results of this review. First, we summarise the
papers’ research directions and distributions of deep learning
methods used. Second, we provide an exposition of the papers’
relationship with the traditional VC pipeline explained earlier,
substantiating our analysis with quantitative data and illustrative
materials. Third, the main problem areas addressed in the analysed
work are outlined, including a discussion of topics such as
interpretability, prevalent conditioning features, and the
challenges encountered in integrating explicit control
mechanisms. As we aim to reveal, compare, and discuss general
methods and tendencies, describing all the included papers in detail
is out of the scope of this work. Rather, a full list of papers is provided
in the Supplementary Material as a resource for future in-depth
analysis. We further refer to the Supplementary Material for the
codes and data extraction used to synthesise the results.

4.1 Overview of papers

The final corpus, consisting of 130 unique papers published in
38 different publication venues, with INTERSPEECH (43), ICASSP
(22), APSIPA (8), IEEE-ACM Transactions on Audio, Speech and
Language Processing (5), and ISCSLP (4) being the most popular
platforms. Figure 3 shows that research on VC has exhibited a steady
increase since 2017, reaching its peak in 2022 with 39 papers centred

on the topics examined. This trend serves as compelling evidence
that interest in VC continues to flourish. Most of the work
concentrates on systems using low dimensional data, that is,
input sampled at 16 kHz or 2205 kHz, which is suitable for
speech because the human vocal range does not exceed the
Nyquist frequency for these sampling rates. However, this is not
sufficient for modern musical applications where such sampling
rates are considered low-quality. Consequently, only one study
incorporates a high sampling rate, that is, 48 kHz. It is
additionally noticed that there is consensus on training the VC
systems on the VCTK dataset (Yamagishi et al., 2019) that provides
speech data uttered by 110 English speakers with various accents
(n = 53). However, datasets such as the VCC 2018 (n = 19) and the
CMU-ARCTIC dataset (n = 16) are other popular choices. Finally,
most of the VC pipelines are constructed following the unsupervised
paradigm (n = 111), whereas 18 works include aspects of self-
supervision. One work is considered semi-supervised (Stephenson
et al., 2019). As outlined in Section 2, this is consistent with the
observation from related work stating that most VC systems
incorporate either AEs or GANs, which inherently operate in an
unsupervised manner.

4.2 An overview of the structures employed

A fundamental aspect of the VC pipeline concerns the structure
used for learning the conversion process. As shown in Figure 4, most
structures used in the studies we have analysed are in the realm of
AEs, with the CAE (n = 27), conventional AE (n = 19), and VAE (n =
15) being the most frequently used structures. We distinguish
between CAEs and conventional AEs in their use of external
conditioning features.

Among many works, Hwang et al. (2022), Qian et al. (2020b),
and Kim et al. (2022) explicitly condition the decoder on speaker
and pitch embeddings to inform appropriate content and style
representations. The conditioning can be used to tune the
bottleneck as well as constrain the information flow of the speech
components, forcing the conditioning feature to be disentangled on
the AE input. Given the potential entanglement of speaker style,
prosody, and linguistics in the latent space, the conditioning features
serve the purpose of supplying additional information to the
decoder. This, in turn, guides the encoder to focus on learning
only the essential and speaker-independent representation, thereby
disentangling the intertwined aspects of the input data. As seen in
the elaborate VC pipeline illustration in Figure 5, the conditioning is
based on the input during training and substituted with that of the
target speaker during conversion or inference. The non-conditioned
AEs and VAEs often differ from the CAEs in their end goal. Most

TABLE 2 Codes used for data extraction.

Research objective Deep learning methods Evaluation & misc Training specs

C1 category C4 global structure C8 objective evaluation C12 loss function

C2 main goal C5 analysis features C9 subjective evaluation C13 optimiser used

C3 contributions C6 encoders used C10 dataset used C14 sampling rate

C7 vocoder type C11 manipulation
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frequently, they consider one-to-one or many-to-one conversion,
limiting the need for external information (Cao et al., 2020; Zang
et al., 2022).

In the right-side plot of Figure 4, we see that AEs and VAEs are
employed for style and emotion conversion, whereas their
conditioned counterparts, in particular, are popular for voice and
speaker identity conversion. This phenomenon is predominantly
attributed to the requirements for external and speaker-dependent
conditioning needed in zero-shot and many-to-many identity
conversion scenarios. In general, it is clear from the right-hand
side of Figure 4 that most of the VC field concentrates on identity
and timbre conversion, compared to emotional and style conversion.

CAEs are closely related to the “analysis-synthesis” structure
(A-S). A-S structures differ in that they are not inherently obligated
to encode the parsed conditioning parameters. In contrast to CAEs,
where pitch and speaker information is fed through individual
encoders, A-S systems may include encoders but are not limited
to doing so – explicit information extracted from DSP processes is
often enough. A-S structures often decompose a signal into several
attributes counting content, timbre, pitch and energy, and may, as
mentioned by Wang D. et al. (2021), Nercessian (2021), Choi et al.

(2021), and Xie et al. (2022), concatenate the pitch and/or energy
information directly with the content and speaker embeddings
before being fed to the decoder. Doing so introduces constraints
on the intermediate and mid-level representations. Transparent
control mechanisms are distinctive to A-S systems. Given that
their parameters are explicitly accessible and employed for
training the underlying decoder or generator, A-S architectures
exhibit a high level of controllability and frequently yield an
interpretable control space. Further elaboration on this topic will
be provided in Section 5.2.4.

In addition to the AE-based structures, Figure 4 illustrates a
small representation of VC systems based on StarGAN (n = 4) and
CycleGAN (n = 7). Both methods come from image-to-image
translation, where a cycle-consistency loss enables training
without the need for paired data. GAN-based systems directly
manipulate the input data to generate data that closely conform
to the distribution of the target speaker. As shown in Figure 5, a
GAN will often skip the detailed speech representation stage, relying
only on content information when performing feature mapping.
Compared to AEs, this approach does not necessarily disentangle
speaker information from linguistic information. Rather, it relies on

FIGURE 3
Illustrations of the papers across; (A) years, (B) sample rates used, (C) distribution of datasets and (D) paradigms included in the works.

FIGURE 4
Deep learning structures used across the different papers (left) and deep learning structures distributed across their use for specific goals and
outcomes (right). “Style conversion” is a combination of both accent and cross-lingual voice conversion used for brevity.
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the discriminator’s ability to capture the human perception of
speaker identity and the generator’s ability to create an output
that can deceive the discriminator. Given that GANs operate on
distributional properties and are not constrained to compel latent
representations to be disentangled, they can generate more natural
speech. However, while the optimisation of the discriminator and
the adversarial losses may yield an output that resembles the
distinctive characteristics of the target speaker, it does not always
guarantee that the contextual information of the source speaker is
kept intact.

To take account of the missing linguistics, Chun et al. (2023),
Kaneko et al. (2019a), and Liang et al. (2022) utilise cycle-
consistency loss. In cycle-consistency loss, a supplementary
generator carries out an inverse mapping of the target y to the
input x during training. This procedure encourages the two
generators to find (x, y) pairs with the same contextual
information, forcing the transformed output to match the
linguistics and the timbre of the target. In contrast, StarGAN-
based VC systems compress the CycleGAN structure into one
generalisable generator-discriminator pair. Using spatially
replicated domain codes, often in the style of one-hot vectors,
StarGAN conditions the system on speaker information. This
allows the model to learn more than one speaker-configuration
(Kaneko et al., 2019b; Baas and Kamper, 2020). Although the
generators employed in VC architectures based on StarGAN and
CycleGAN frequently exhibit AE-like characteristics, their
dimensionality reduction and lack of external conditioning make
them highly non-interpretable. To address this challenge, one may
combine CAEs and GANs into “adversarial auto-encoders.” These
are built similarly to the traditional CAE structure but are guided by
discriminators and adversarial losses and have become popular
choices for VC. This is evident as 33 of the 81 AE-based
structures analysed in our review (CAE, AE, VAE, and A-S)
included adversarial components.

Similar to the use of adversarial components, several studies
incorporate VQ as a foundational element in the VC pipeline. The

application of VQ in VC can be traced back to the 1980s, when Abe
et al. (1988) discretised speech features from parallel data into
codebooks and learned a mapping between the codebooks of two
speakers to perform the conversion. Currently, VQ is being applied
to non-parallel data to disentangle content and speaker embeddings,
as the compression capabilities of VQ can discard speaker
information from the content code. Tang et al. (2022) use a 512-
dimensional learnable codebook to quantise continuous data from a
content encoder into a discrete latent space. Regarding a discretised
utterance as the related content embedding, they further retrieve the
speaker embedding by calculating the mean difference between the
discrete code and the continuous encoder output. In other words,
the speaker information is considered to be what remains after
quantisation. These ideas are elaborated in Wang D. et al. (2021).
Speech representation disentanglement is challenging because
correlations between speaker and content representations can
cause content information to leak into the speaker
representation. To address this issue, the authors implement
several techniques, including adding VQ to the content encoder.
This addition creates an information bottleneck that filters out non-
essential details from the representation, thereby aligning the output
more closely with underlying linguistic information. Wu et al.
(2020) further incorporate the VQ technique into a U-Net-like
structure that links each downsampling layer of the content
encoder to the corresponding up-sampling layer of the decoder.
As highlighted byWu et al. (2020), U-Net-like structures are seldom
used to decode spectrograms in VC pipelines due to their tendency
to overfit. However, adding VQ to the skip connections in the U-Net
can create a sufficiently strong bottleneck to prevent it from
overfitting on the reconstruction task.

Twelve studies follow a sequence-to-sequence (seq2seq)
procedure traditionally known from natural language processing
(NLP). Although most seq2seq models are based on
encoder–decoder structures (Sutskever et al., 2014), we
distinguish between these models and traditional AEs as they
differ significantly in their processing and training steps.

FIGURE 5
Extended illustration of the VC pipeline in its training and conversion stages.
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Following seq2seqmodelling, Huang et al. (2020b) encode raw input
speech into discretised features, which are represented as indices. A
target-dependent seq2seq model then learns a mapping between the
source feature sequence and a target sequence. Zhang J.-X. et al.
(2020) extract a content embedding using a seq2seq recognition
encoder. The encoder is here guided by an embedding derived by a
text encoder that is fed with phoneme transcriptions. The seq2seq
structure is used as an external module “adopted for obtaining
disentangled linguistic representations” (Zhang J.-X. et al., 2020)
and is one of many use cases of seq2seq-based models. Such models
are often pretrained on large, multi-speaker datasets, and although
they create a robust many-to-one pipeline, they are limited by
sequential modelling and complex intermediate structures.

Similar to NLP-inspired seq2seq modelling, few studies employ
transformer and attention mechanisms (n = 14), often for feature
disentanglement or generation tasks. Fu et al. (2022) augment the
generator of a CycleGAN pipeline with a transformer in order to
capture temporal relationships among the down-sampled time steps.
Long et al. (2022) and Shi et al. (2022) insert self-attention into the
decoder, guiding it to focus on important regions, taking account of
non-local and long-range information. As reported in both works,
the attention improves the zero-shot many-to-many pipeline,
boosting model performance while achieving faster convergence.
Furthermore, the aspect of “masking” is introduced in two of the
analysed studies. Gu et al. (2023) add robustness to their model by
adding learnable similarity-guided masking (LSGM) to the content
encoder, masking redundant input frames when performing inter-
frame compression. In contrast, Wang J. et al. (2021) integrate an
adversarial mask-and-predict (MAP) network, drawing inspiration
from the deep bidirectional transformer model “BERT” to enhance
feature disentanglement. Specifically, they employ a random
masking and prediction approach, masking one of the four
speech representations (content, timbre, rhythm, and pitch) for
each speaker during training. By masking one feature space and
predicting it from the remaining representations, MAP enables
selective modification of specific features and enhances the
disentanglement capabilities of the model.

When analysing the widespread application of self-supervised
methods in connection with transformers, masking, and attention
mechanisms, it becomes evident that of the 18 articles that included
self-supervision, the predominant focus lies on leveraging self-
supervision for speech representation learning. Consequently,
self-supervision serves to strengthen the comprehensive VC
pipeline, either facilitating better disentanglement or enhancing
general performance. As shown in Figure 5, this often occurs
during the recogniser training stage. Yang et al. (2023), Chun
et al. (2023), and Dang et al. (2022) use networks pretrained in a
self-supervised manner to extract high-level speech representations
of different kinds. Yang et al. (2023) use the Mockingjay model, a
bidirectional transformer network known to capture content
information and speaker information to condition the decoding
process (Liu et al., 2019). Chun et al. (2023) and Dang et al. (2022),
on the other hand, use outputs of pretrained wav2vec models as
content embeddings. In general, it is evident that self-supervised
feature extraction processes are attractive due to their potential to
replace expensive supervised content representations such as PPGs
or non-generalisable speaker embeddings such as the X-vector. This
will be discussed further in Section 4.4.

Lastly, seven of the 130 studies reviewed incorporate diffusion
probabilistic modelling into the VC pipeline. Diffusion modelling
entails progressively introducing noise to a prior distribution and,
subsequently, reversing it to generate synthetic data. In these works,
this occurs through denoising diffusion probabilistic models
(DDPM), where a forward process systematically introduces
noise to an input, and a backward process, through a generative
model, iteratively reconstructs the input data distribution by
predicting the noise. In most of the VC pipelines encountered,
the diffusion process is added to the decoder (Baas and Kamper,
2023; Choi H.-Y. et al., 2023; Zhang et al., 2023). Choi H.-Y. et al.
(2023) introduce a conditional diffusion model as an extraneous
decoder to ensure high-quality speech synthesis. During training,
the DDPM process is used to noise and denoise an approximate
acoustic representation produced by a source-plus-filter encoder.
More specifically, two individual encoders, a source and a filter
encoder, reconstruct an intermediate mel spectrogram from
disentangled speech representations. Using diffusion, the
intermediate representation is thereafter transformed into a high-
quality equivalent that can be fed to a neural vocoder. The inserted
diffusion stage uses the source-filter encoder output as a data-driven
prior and uses pitch and speaker representations as conditions to
maximise overall speaker adaptation capacity. A comparable
approach is adopted by Popov et al. (2022). In this study, a
transformer-based content encoder is trained on average
phoneme-level mel features to generate an “average voice” speech
representation. Subsequently, this speech representation is
combined with the output of a speaker conditioning network and
a noise variable t sampled from a uniform distribution before being
inputted into a diffusion-based U-Net decoder. Analogous to this
research, the diffusion process yields a high-quality acoustic
representation primed for a neural vocoder. Moreover, the
authors introduce a novel stochastic differential equations solver
tailored for rapid sampling, thereby facilitating fast synthesis. As in
Popov et al. (2022), the U-Net architecture is commonly adopted for
processing inputs represented in the time-frequency domain. This is
attributed to its demonstrated success across a range of image
processing and object detection applications, allowing one to
treat speech as images and objects rather than one-dimensional
sequences. In addition to the research conducted by Popov et al.
(2022), the U-Net architecture is employed by Wu et al. (2020) and
subsequently extended by Liu et al. (2021) for natural one-shot
conversion. More specifically, the U2-Net in Liu et al. (2021) is a
two-level nested U-Net structure comprised of residual u-blocks
(RSU) inserted into a classic U-Net pipeline. The RSU blocks operate
at different scales, allowing the network to extract local and multi-
scale features from the input, thereby enhancing the naturalness of
the converted speech. In contrast to related work, the U2-Net
conditions the decoder on target speaker information through its
skip connections, meaning that the encoder takes the source and
target spectrograms as input.

4.3 The use of vocoders

Vocoders are crucial to the voice conversion process, as they
enable the generation of audio based on the intermediate
representation. Like the difference in deep learning structures
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employed, the choice of the vocoder differs depending on the use
case. In general, we can divide vocoders into three main classes: 1)
concatenate, signal-based models, such as the harmonic plus noise
model (Stylianou, 2001), 2) hand-designed vocoders, or source-filter
models, such as the STRAIGHT (Kawahara et al., 1999) and
WORLD (Morise et al., 2016) models, and 3) neural vocoders
such as the WaveNet (van den Oord et al., 2016) or the
WaveRNN (Kalchbrenner et al., 2018) models.

Neural vocoders have grown increasingly popular as their data-
driven approach and high-quality output allow for very expressive
synthesis. They simultaneously only require an intermediate
acoustic representation as input, often in the form of a mel
spectrogram, and are, therefore, highly flexible, allowing them to
be inserted in almost any end-to-end pipeline. The statistics of the
analysed work in this review support these arguments. Figure 6
shows that 75 of the 130 papers used a neural vocoder as its synthesis
back-end, with the WaveNet (n = 24) vocoder being the
most popular.

In general, neural vocoders have become state of the art in terms
of audio quality. WaveNet (van den Oord et al., 2016) paved the way
in 2016 with its auto-regressive nature and is still widely used today.
Yang S. et al. (2022) and Bonnici et al. (2022) used it as the main
synthesis block in an AE-based pipeline, whereas Zhang J.-X. et al.
(2020) used it in a seq2seq modelling pipeline. Like most neural
vocoders, the WaveNet is conditioned via acoustic features;
however, Tan et al. (2021) and Wu et al. (2021) extended the
WaveNet with fundamental frequency (F0) conditioning to force
decoupling between the pitch and content. In Tan et al. (2021), this
is done by substituting the predicted mel spectrogram with simple
acoustic features (SAF), such as the mel-cepstral coefficients
(MCCs) and log-F0 information. Differently, Wu et al. (2021)
extend the WaveNet implementation itself through pitch-
dependent dilated convolution neural networks (PDCNN) and
auxiliary F0 conditioning.

Even today, WaveNet’s sequential generation remains
prohibitively costly, driving the need for more efficient neural
vocoders. GAN-based vocoders emerge from this necessity,
aiming to enable non-autoregressive generation architectures
capable of synthesising high-quality speech. As a result, GAN-

based vocoders have set a new benchmark, characterised by
their fast inference speed and lightweight networks (Sisman
et al., 2020). In the analysed studies, the most widely used
GAN-based vocoders are the HiFi-GAN (n = 21) and the
parallel WaveGAN (n = 10). Figure 6 shows that their use has
become more frequent after the invention of the MelGAN in
2019. In addition to the inclusion of adversarial training, the
inputs to and usage of GAN-based vocoders do not differ
significantly from other neural vocoders such as the WaveNet,
and the papers examined rarely justify the type of vocoder
chosen. However, it is often mentioned that GAN-based
vocoders are included due to their “better speech quality and
much faster inference speed” (Lian et al., 2022).

Even though neural vocoders have become increasingly popular,
parametric and hand-designed vocoders are still used. Figure 6
shows that the WORLD vocoder was used more than its neural
counterparts in 2019–2020 (n = 25). TheWORLD vocoder is a high-
quality speech synthesis and analysis tool used to extract and
synthesise waveform information. In the work analysed, it is
mainly used for two reasons: first, its inherent capability to
extract pitch and timbre information provides a strong
foundation for subsequent disentanglement efforts; second, the
substantial amount of acoustic data it offers facilitates a
straightforward guidance of a WORLD synthesis process. Huang
et al. (2020a) and Kaneko et al. (2019b) use the WORLD vocoder to
extract aperiodicity signals (APs), F0 features, and 513-dimensional
spectral envelopes. The spectral envelopes are further reduced to
more specificMCCs and encoded for linguistic/content information.
The F0 features are linearly transformed to match the target and can,
together with the extracted AP information, be carried over to the
inverse WORLD synthesis stage directly. This simplifies the
conversion task to be a non-linear transformation of the
remaining source spectrum only (often conditioned on extra
target speaker information), creating an inductive bias. Almost
the same procedure can be carried out for the STRAIGHT
vocoder; however, we only see the use of this vocoder in three of
the analysed works. Although these parametric synthesisers offer
robustness and flexibility, they are limited to monophonic
reproduction. They are simultaneously limited by their internal

FIGURE 6
Distribution of vocoders used from 2017–2023. The size of the shape represents the number of similar vocoders used in that year.
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synthesis mechanism, which often produces artefacts (Nguyen and
Cardinaux, 2022).

The signal-based vocoders used in two of the studied articles are
closely related to the hand-designed vocoders. An example is the
continuous sinusoidal model utilised in the synthesis stage by Al-
Radhi et al. (2021). Here, a neural network converts sinusoidal
parameters, constructing speech frames from a voiced and a noise
component, respectively. Because the synthesis stage is vocoder-free,
this approach simplifies the learning process and limits the model to
learn the reconstruction of the intermediate representation only.
Similarly, a harmonic plus noise model is used by Nercessian (2021).
Inspired by the differentiable digital signal processing approach
(DDSP) (Engel et al., 2020), a feature transformation network learns
to map input attributes to parameters that control a differentiable
harmonic plus noise (H + N) synthesiser. More specifically, the
network predicts the harmonic distribution for an additive
sinusoidal synthesiser and 65 noise filter taps used to filter the
noise part of the produced speech signal. Despite being efficient and
lightweight, the inclusion of the DDSP framework additionally
introduces an inductive bias as the sinusoids may be directly
controlled by the input pitch. In contrast, the output quality is
limited by the capabilities of H + N synthesis, forcing post-filtering
or extra processing.

Although most of the work examined in this review uses actual
vocoders and thus adheres to an encoder-decoder-vocoder
structure, a few works are taking a more immediate approach,
using the generator to produce time-domain data directly (n =
3). With the reasoning that traditional VC highly depends on the
quality of the intermediate representation and the vocoder itself, the
NVC-Net in Nguyen and Cardinaux (2022), for example, performs
“voice conversion directly on the raw audio waveform.” This is done
by combining the decoder and the vocoder into a single generator
inspired by the MelGAN (Baevski et al., 2020). More specifically,
the generator upsamples the latent embedding using transposed
residual convolutions, with each residual connection being
conditioned by a target speaker identity. By limiting the NVC-
Net to exploit only its internal representation, the authors provide
a high-quality, condensed and fast framework claimed to “generate
samples at a rate of 3661.65 kHz on an NVIDIA V100 GPU in full
precision and 7.49 kHz on a single CPU core” (Nguyen and
Cardinaux, 2022). These methods are highly useful in low-
latency scenarios but are also favourable for zero-shot VC, as
speech production is independent of intermediate representations
and mismatch problems.

4.4 Choices of feature extraction

The selection of encoder structures for feature extraction and
feature embeddings constitutes another significant aspect of the VC
pipeline. As previously noted, it is imperative to segregate content,
prosody, and speaker identity to disentangle linguistic attributes
from other characteristics.

4.4.1 Content embeddings
Figure 7 shows a consensus on the networks used for retrieving

linguistic content information, with traditional CNNs and related
structures being the most popular. In the analysed work, singular

CNNs are used to extract the content embedding in 28 of the cases,
whereas the combination of CNNs and BiLSTMs are incorporated
nine times. The combination of CNNs and recurrent neural
networks (RNNs), such as the BiLSTM, is interesting as it is
inspired by the field of automatic speech recognition (ASR). In
ASR systems, CNNs are employed as they are beneficial in modelling
local acoustic patterns, either in the audio signal or the spectrogram,
while the RNN is advantageous in capturing temporal dependencies.
Overall, the analysed work represents ASR-based content
information as 1) Linguistic embeddings using condensed ASR
blocks such as the CNN + BiLSTM or CNN + LSTM encoders
trained end-to-end by Tan et al. (2021), Choi and Hahn (2021),
Wang Q. et al. (2022), or 2) As PPGs obtained from speaker-
independent ASR systems as done by Mohammadi and Kim (2019)
and Chen et al. (2022). The latter is efficient as it uses pretrained
models for the extraction task, often trained on large, multi-lingual
datasets such as the “Kaldi speech recognition toolkit” (Povey et al.,
2011), the “Julius dictation kit,”6 or through the conformer model
(Gulati et al., 2020). Obtaining linguistic content through speech
recognition models is useful as it decodes linguistic discriminant
information from speech without considering who is speaking, thus
creating a complete speaker-independent representation. Overall,
the ASR-based approach “frees up the conversion network from
using its capacity to represent low-level detail and general
information” (Sisman et al., 2020). Instead, the network can
focus on the high-level semantics necessary for the conversion.

Although PPGs encapsulate linguistic content, they may still
contain errors stemming from the recognition model, which can
result in mispronunciations in the converted speech output.
Furthermore, they are labour-intensive, as PPG and related ASR-
based content encoders necessitate a substantial volume of labelled
data for effective training. As depicted in Figure 7A, minor
representations of wav2vec models are thus used for extracting
the linguistic content information (n = 5). Wav2vec models,
available in unsupervised (Schneider et al., 2019) and self-
supervised forms, are frequently used to generate speech
representations within ASR pipelines (Baevski et al., 2020). Like
the aforementioned PPG-based ASR systems, wav2vec models
provide linguistic embeddings that are time-aligned and speaker-
independent. Their high-level analysis features make them superior
on downstream tasks, especially for low-resource languages (Choi
et al., 2021). Chun et al. (2023) and Choi et al. (2021) derive the
content embedding from the 12th layer of a pretrained XLSR-53
wav2vec model. This particular representation has been chosen due
to its reported significance in encapsulating essential pronunciation-
related characteristics (Singla et al., 2022) and outperforms related
work when inserted into an unsupervised VC pipeline (van Niekerk
et al., 2022). Finding alternative self-supervised ways to represent
content information is thus of high interest in the VC and speech
representation community. In addition to employing wav2vec
features, the analysed work uses methods such as the
unsupervised contrastive predictive coding (CPC) algorithm (n =
4) and the self-supervised HuBERT model (n = 2). CPC and
HuBERT are used to directly represent context and linguistic-

6 https://github.com/julius-speech/dictation-kit

Frontiers in Signal Processing frontiersin.org12

Bargum et al. 10.3389/frsip.2024.1339159

http://https://github.com/julius-speech/dictation-kit
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1339159


related features from the raw waveform. CPC is employed to
further encourage a latent content vector to capture local
structures (Yang H. et al., 2022; Huang et al., 2022), whereas
the HuBERT model is used to form discrete speech units that
represent linguistic content in the latent space (Hsu et al., 2021).
More precisely, discrete speech units refer to transformer-
produced latent variables that have been influenced by an
acoustic unit discovery system, such as a system that clusters
MFCCs with phonetic similarities using k-means clustering (Li
et al., 2023). Compared to the different hidden layers of the
wav2vec models, encoders based on self-supervised
representations, such as those from a HuBERT or CPC, are
reported to contain large amounts of speaker information,
which in some cases may render them unsuitable for VC (Li
et al., 2023). van Niekerk et al. (2022) employ a soft content
encoder. A soft content encoder incorporates a linear projection
head on top of the HuBERT model that, in a supervised manner,
is trained to predict a distribution over the discrete units. This
offers an intermediary solution between raw continuous features
and rigid discrete units without containing speaker-related
information. Compared to related ASR models, it
simultaneously provides efficient supervised labelling.

van Niekerk et al. (2022) demonstrate that an unsupervised VC
pipeline can be enhanced from discrete and soft content encoders,
with the latter exhibiting superiority in objective metrics and
subjective evaluations. Finally, Gu et al. (2023) integrate the
masking procedure initially introduced in HuBERT directly into
an autoencoder architecture. As mentioned earlier, they introduce
LSGM, compelling the encoder to discern and infer masked frames
based on neighbouring similar points. This method serves multiple
objectives: first, it achieves feature compression through masking
rather than dimensionality reduction, thereby enhancing
robustness; second, it introduces self-supervision directly into the

end-to-end training process, reducing reliance on large
pretrained models.

4.4.2 Speaker embeddings
In contrast to the content encoders, the techniques used to

retrieve speaker embeddings and timbre characteristics differ
significantly across the field. Few works obtain speaker
embeddings by averaging the frame-level characteristics of
different speaker utterances or by downsampling the input to
one-hot vectors (Kaneko et al., 2019b), while others incorporate
feature vectors and codebooks directly (Reddy and Rao, 2020; Ho
and Akagi, 2021). Few works use the ECAPA-TDNN architecture
trained for speaker verification (Zhang et al., 2021) or the earlier
mentioned XLSR-53 model, whose first layer forms clusters for each
speaker (Choi et al., 2021). Du and Yao (2023) further extend the
ECAPA-TDNN by pretrained X-vector networks to address the
differences in their distributional variations. More simple and
traditional approaches to speaker embeddings are also taken in
the analysed work. Dang et al. (2022) use a 12-layer CNN to encode
the input mel spectrogram, while Chen et al. (2022) use a BiLSTM-
based speaker encoder pretrained for speaker classification. It is
essential to acknowledge that many of the less intricate algorithms
are frequently supported by adversarial, classification, or cycle-
consistency losses, ensuring that the converted output matches
the target characteristics. We will discuss this in Section 4.5.

4.4.3 Additional embeddings
In addition to the content and speaker information, the works

analysed include the following features for conditioning and further
embedding: pitch (n = 52), rhythm (n = 8), and energy (n = 6), which
all relate to prosody. As mentioned earlier, pitch extraction is
commonly applied to the VC pipeline. Even though speaker
characteristics may be disentangled from the input content in

FIGURE 7
Distribution of content encoder networks used across all the analysed studies. For brevity, we have collected encoders appearing once in the “other”
category. This category, among others, contains pyramid attention modules, feed-forward transformers, and dynamic time-warping models.
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many cases, a significant amount of prosodic information, such as
volume or source F0, is often still entangled in the content
embedding. This may leak into the intermediate representation,
causing mismatch problems or making the converted F0 fluctuate.
In this context, the inclusion of supplementary pitch-related data
can prove advantageous, serving a dual purpose: first, it enables the
content encoder to concentrate exclusively on linguistic aspects;
second, as demonstrated when integrating the WORLD vocoder, it
can introduce an inductive bias, which can be directly incorporated
into the synthesis stage. Like pitch changes in VT, individual
prosodic features such as pitch may thus be modified directly
during the conversion. This is done by Xie et al. (2022), where
the pitch is manipulated after adding extra information to the latent
space. Nercessian (2021) transforms the source pitch to the register
of the target before using it to modify a source-filter-based vocoder.
In contrast, Zhou et al. (2021) and Nguyen et al. (2022) use pitch and
energy information as an important factor for prosody
transformations in emotion and accent conversion, respectively.

In general, the act of emotional voice and accent conversion
(EVC and AC) adds yet another sub-process to the VC pipeline,
often in the shape of another encoder. Like the content and speaker
disentanglement in identity/timbre conversion, EVC and AC aim at
disentangling prosody information from the remaining content,
transforming it to match a target. Cao et al. (2020) extract
emotion prosody in a supervised manner and further train it
using cycle-consistency losses. Du et al. (2022b) disentangle
emotional style by employing an emotional style encoder directly
on the input mel spectrogram. In general, EVC and AC promote
challenges that are different from timbre and identity conversion.
Emotion is inherently supra-segmental and hierarchical in nature,
making it highly complex, with multiple attributes entangled within
the spectrum and prosody (Zhou et al., 2020). It is often not possible
to operate at the frame level or from the spectrum alone. To take
account of this, Zhou et al. (2020) decompose F0 information into
different temporal scales using a continuous wavelet transform
(CWT) prior to feeding F0 to the prosody encoder. The accent
is, on the other hand, often converted by blending spectral
components from two different speakers. This is done using
PPGs, bottlenecks, and acoustic models from the field of ASR
(Zhao G. et al., 2019; Wang et al., 2020).

In Table 3, we provide an overview of the VC pipelines that
include four or more different features and note the techniques used
to extract the features outside of the traditional content and speaker
conventions. We additionally summarise the overall goal of doing
so. As seen in Table 3, the studies listed take a more explicit
approach to disentangled speech representation learning,
including pitch and prosody information in the process. It is
evident that rhythm embedding is often carried out by encoder
structures similar to the ones utilised for content representations in
ASR. Pitch, however, may be retrieved in terms of pitch contour
using classical signal processing methods like the YIN (Cheveigné
and Kawahara, 2002), RAPT (Talkin and Kleijn, 1995), or CREPE
(Kim et al., 2018) algorithms. In all cases, the pitch contour is further
processed by a pitch encoder. Xie et al. (2022) allow the pitch
embedding to be influenced by information from the target speaker,
whereas Wang J. et al. (2021) and Nercessian (2020) create a more
condensed representation. When pitch encoders are used to
compress the analysed pitch contour, they often use similar

structures as the other encoder models used in the given
pipeline, including residual CNN networks (Xie et al., 2022) and
combinations of CNNs, group normalisation and BiLSTMs (Wang
J. et al., 2021). However, one work uses diffusion-based modelling to
further process the input pitch contour. Choi H.-Y. et al. (2023)
introduce a diffusion model to effectively transform the normalised
F0 of the source speech to the target pitch representation. Like other
diffusion-based work, a speaker conditioned pitch encoder creates a
pitch-based prior of the normalised input-F0 matching the register
of the target. This is then refined by the diffusion model and fed to
the decoder. Such a process introduces a highly precise pitch
transformation, supporting zero-shot conversion and any
mismatch problems.

Looking at Table 3, we lastly see that the encoding of energy
information is extracted from signal processing techniques, often
directly on the input waveform. Nonetheless, energy is most
commonly conveyed as an additional, unaltered conditioning
feature, owing to its classification as less critical data.

4.5 Losses, costs, and errors

As mentioned, the success of VC primarily depends on the deep
learning structures employed like the information bottleneck
principle of the AE system or the generative capabilities of the
GAN. However, refining their results and supporting intermediate
tasks can be achieved through loss functions tailored to the tasks at
hand. Here, an obvious choice is to train the system using a
“reconstruction loss,” which in the analysed studies was
mentioned 77 times. Most of the work aims at minimising the
reconstruction loss in the acoustic feature space, that is, the
difference in spectral envelopes (He et al., 2021), mel-cepstral
coefficients (Kaneko and Kameoka, 2018), or the difference
between the input mel spectrogram X1 and the predicted mel
spectrogram X̂1→1, before vocoding. The reconstruction loss can
be generalised by the Equation 1:

Lrecon � E ‖X̂1→1 −X1‖[ ], (1)

where the difference between the prediction and the ground truth
may be calculated using the L1 or the L2 distance, the mean squared
error (MSE), or the mean absolute error (MAE). Rather than
minimising the error between the acoustic features, a few works
calculate the reconstruction loss in the time domain (Du and Yao,
2023). Some studies additionally extract a perceptually based
spectral loss from the produced waveforms (Choi et al., 2021).
The spectral loss compares the input spectrogram with the
spectrogram of the time-domain output and helps the generator
obtain the time-frequency characteristics of the produced speech.
The predicted and ground-truth spectrograms may be compared
individually (Nguyen and Cardinaux, 2022) or at multiple
resolutions, as done by Nercessian (2021). In both the case of the
time domain and the perceptual reconstruction losses, the vocoder is
incorporated into the learning process, giving more degrees
of freedom.

As an alternative approach to the reconstruction loss, the VC
system may be trained using a feature-matching loss (FM loss). The
FM loss is an adversarial method that incorporates a discriminator
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to “guide” the reconstruction. The global network is then trained in
conjunction with the discriminator, while the generator is updated
based on the similarity between the prediction and the ground-truth
feature maps produced by the discriminator:

LFM � E c,z,x( ) ∑L
i�1

1
Ni

‖Di x( ) −Di G c, z( )‖1(⎡⎣ ⎤⎦. (2)

In Equation 2, Di denotes the feature map output of Ni units
from the discriminator at the ith layer (Nguyen and Cardinaux,
2022). Eight studies incorporate FM loss, which is used for GAN-
based pipelines (Lu et al., 2021) and for adversarially tuned CAEs
and C-VAEs (Huang et al., 2022; Xie et al., 2022). In addition to FM
loss, the reconstruction loss may be extended by a content loss. The
content loss is particularly useful for constraining the information
capacity of the bottleneck, as such systems often are invariant to self-
to-self reconstruction. Content loss is applied in the works of Wang
Y. et al. (2022), Li and Wei (2022) and Shi et al. (2022), among
others, and is given by the following Equation 3 (Qian et al., 2019):

Lcontent � E ‖Ec X̂1→1( ) − C1‖[ ], (3)

where Ec(X̂1→1) is the content embedding of the prediction, and
C1 the actual content embedding of the input, for example, Ec(X1).
Incorporating feature-specific loss functions like content loss is a
commonly employed approach. This is evident as 10 papers use
feature-specific loss functions in addition to the ones based on
content. In Yang S. et al. (2022), a pitch-contour loss is used to
compare the pitch of the analysed input with the pitch of the
reconstruction to enforce pitch coherence. Like the content loss,
Lee et al. (2021) compare the style embedding of the input with the
prediction fed through the style encoder. Lastly, studies optimise
speaker embeddings either by the inclusion of classification losses
(n = 9), cross-entropy losses (n = 9), or speaker-ID losses (n = 4). Ho
and Akagi (2021) and Ding et al. (2022) train an auxiliary
classification model to help the generator “produce fake data
with the correct target speaker voice.” The classifier is trained
using the output log-likelihood that the acoustic features coming
from the generated audio belong to the target speaker. Chen et al.
(2022) and Dang et al. (2022), on the other hand, improve speaker
similarity by optimising the speaker encoder with a speaker
classification loss based on the ground-truth speaker identity

label in one-hot vector format. Based on this, we define the
general speaker identity loss in Equation 4:

Lspeaker � CE xid, softmax V pEs x( )( )( ), (4)

where CE is the cross-entropy loss, xid is the ground-truth
speaker identity vector, V is a trainable weight matrix, and Es is the
speaker encoder (Chen et al., 2022). The speaker ID additionally
plays a role in what is called the “cycle-consistency loss”
discussed next.

Adversarial and cycle-consistency loss functions are
incorporated in 36 and 21 of the studies, respectively. As earlier
mentioned, the use of adversarial losses is not limited to GANs.
Huang et al. (2021) use a very traditional adversarial loss guided by a
patchGAN discriminator in an AE pipeline. Xie et al. (2022)
incorporate an adversarial loss based on the parallel WaveGAN
model in conjunction with a multi-period discriminator (MPD),
multi-scale discriminator (MSD), and multi-resolution spectrogram
discriminator (MRSD) to steer the A-S process. Here, the model
parameters are optimised based on the generator’s ability to deceive
all discriminators. Lastly, Hwang et al. (2022) extend the
discriminative process by a pitch-based discriminator that, in
addition to the real/fake probability prediction, predicts how
much the pitch of the reconstruction is similar to that of the
target speaker. Most of the cycle-consistency losses included take
a form based on the StarGAN paradigm; rather than incorporating
another generator, they use the main generator to map the
prediction back to its original form by including a speaker label
(often referred to as a domain classifier). This is done by Zhang Z.
et al. (2020) and Huang et al. (2021), among others, following
Equation 5:

Lcyc � Ec~ c( ),x~ x|c′( ),c~ c( ) ‖G G x, c( ), c′( ) − x‖[ ], (5)

with c representing the attribute label that classifies the domain
and G being the generator. Cycle-consistency loss aims to enhance
the contextual robustness of the encoder. When the adversarial loss
forces output to follow the target-data distribution, the cycle-
consistency loss is used to preserve the composition in the
conversion.

Although cycle consistency provides a constraint and
encourages the forward and inverse mappings to find (x, y) pairs

TABLE 3 Overview of analysed VC pipelines that focus on disentangled speech representation learning using four or more explicit features. “Main goals”
describe the desired outcome of the work, “pitch and feature representation” describes the methods used to represent the given feature, and “main
contribution” describes the primary technique used to achieve the end goal.

Reference End goal Pitch representation Feature representation Main contribution

Yang et al. (2022b) One-shot VC RAPT → Z-Norm → Enc Rhythm: Enc (BiLSTM) Mutual information learning

Wang et al. (2021b) Any-to-many VC Contour → RS → Enc Rhythm: Enc (CNN, BiLSTM) Adversarial MAP

Luo et al. (2023) Emotional VC Contour → RS → Enc Rhythm: Enc (CNN, BiLSTM) Source-filter-based

Wang et al. (2022c) Voice control Swipe + CREPE → Abs-Norm Energy: Time domain Adv. Training and AIC Loss

Choi et al. (2021) Voice control Yingram (Yin spectrogram) Energy: Avg. Log-Mel spec Information perturbation

Wang et al. (2022b) Any-to-any VC Enc (RankNet) Energy: Enc (RankNet) Self-supervision

Nercessian (2020) Any-to-any VC CREPE → Log Energy: A-weighted spec Explicit conditioning

Xie et al. (2022) Any-to-any VC Contour → Enc Energy: Time domain Information perturbation
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with the same contextual information, it does not guarantee that the
mappings always preserve linguistic information. In order to do so,
the identity-mapping loss is included. We find identity-mapping
losses in 13 studies. Identity-mapping losses are usual in cycleGAN-
based pipelines and are equivalent to the content loss used to
preserve linguistic information without relying on extra modules
(Kaneko and Kameoka, 2018). In general, the identity-mapping loss
is adopted to regularise the generator to be close to an identity
mapping when one converts the input to that of the same speaker. As
mentioned by Cao et al. (2020), the intuition behind this is that “the
model is supposed to preserve the input if it already looks like that
from the target domain.” We can represent the identity-mapping
loss by the Equation 6:

Lid � Ey~py y( ) ‖GX→Y y( ) − y‖1[ ] + Ex~px x( ) ‖GY→X x( ) − x‖1[ ]. (6)

In this context, let GX→Y represent the generator responsible for
the transformation from the source domain to the target domain,
and GY→X denote an auxiliary generator tasked with performing the
reverse transformation. The role of the auxiliary generator GY→X is
to facilitate the preservation of composition between the input and
output domains. This encourages the primary generator, GX→Y, to
discover the mapping that effectively maintains the compositional
integrity throughout the transformation process.

4.9 Metrics and performance evaluation

With the amount of VC work available, effective evaluation of
the different results is required. This is needed to validate the voice
quality of the system proposed and to compare and benchmark
results against state-of-the-art work and related techniques. Most
commonly, the works analysed utilise the mel-cepstral distortion
(MCD) metric (n = 48) to objectively evaluate the overall audio
quality of the system output, compared to a reference speech sample.
MCD is a measure of the difference between two sequences of mel
cepstra, and although it is not always correlated with human
opinions, it evaluates perceptually relevant features like the
MCEPs of the two signals. Figure 8 shows that different versions
of the root mean squared error (RMSE) are used to examine specific
attributes of the system outputs. RMSE-F0, RMSE-energy, and
general RMSE metrics are respectively used in 12, four, and three
of the studies, highlighting the fact that the performance in
reconstructing prosodic information is of high importance in
many VC systems.

Second, we see a high use of metrics borrowed from the speech
recognition or machine translation field. The word error rate (WER)
metric, which measures the percentage of words that are not
correctly transformed during conversion, is included in 15 of the
works analysed. Similar tendencies are experienced for the character
error rate (CER) that is included in 14 papers. CER measures the
percentage of characters from the output that are transcribed
incorrectly. For measuring the WER and the CER, it should be
noted that the output and the reference samples are fed through an
external speech-to-text (STT) engine to evaluate the intelligibility of
the produced speech. However, some databases, such as the VCTK
dataset, may include transcriptions of the audio itself. Finally,
speaker-based metrics are employed to assess the system’s

capability in either transforming or retaining speaker identity.
Notably, the most commonly used objective metrics in this
regard are speaker classification (n = 4) and equal error rate
(EER) originating from the domain of speaker verification (n = 6).

Even though the above objective metrics are good at evaluating
important aspects related to the quality of the conversion, they have
difficulties measuring the naturalness of the reconstruction and are
unable to judge its perceptual similarity to a target sample. To
measure this, the VC community opt for subjective metrics such as
the mean opinion score (MOS), multiple stimuli with hidden
reference and anchor (MUSHRA) scales, or AB preference tests.
The MOS is a listening test that asks participants to rate the
conversion quality from 1 to 5, often based on the aspect of
naturalness. MOS is a standard benchmark used in 112 of the
130 analysed studies (see Figure 8), emphasising its value in
comparing perceptual aspects of the produced speech to related
work. Evaluation methods similar to the MOS include the
degradation mean opinion score (DMOS) or the comparative
mean opinion score (CMOS); these methods are as popular as
the MOS (n = 2). Both the DMOS and the CMOS rate the
reconstruction in relation to a reference sample; the former asks
the participants to rate the degradation of the reconstruction,
whereas the latter asks to rate the identicality. Another
commonly employed subjective metric is the AB/ABX test used
in 23 of the papers studied. In AB/ABX tests, participants are
exposed to the reconstructed audio and the reference audio;
afterwards, they must specify which one exhibits a greater degree
of a specific attribute (Sisman et al., 2020).

Although subjective evaluation metrics offer a valid perceptual
measure of the inherent naturalness of VC results, it is essential to
acknowledge their requirement for a substantial number of
participants to ensure validity, which can make the process time-
consuming. Nevertheless, they have become a standard for
evaluating VC results and were employed in nearly all
studies analysed.

5 Discussion

In the following section, we summarise our results and, based on
our codebook, highlight five specific challenging areas that were
discovered in the analysed studies. The challenges will be thoroughly
examined, focussing on the methodologies employed to address
them in the VC field. Based on these, we explore the potential
opportunities in overcoming the challenges and provide
recommendations for future research.

5.1 Summary of results

Even though the global voice conversion procedure was similar
for most of the studies analysed, the works differed in terms of the
underlying disentanglement techniques, vocoders, and loss function
used. In general, the work studied in this review can be divided into
AE-based pipelines (n = 77), GAN-based pipelines (n = 17),
analysis-synthesis-based pipelines (n = 15), and diffusion-based
pipelines (n = 7). In general, the AE and most GAN-based systems
are similar in their structure using an information bottleneck;
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however, the GAN-based works combine the analysis and synthesis
process into a single generator, whereas the AE pipelines separate
the encoder and decoder in order to more easily incorporate
conditioning. The diffusion-based pipeline often reports superior
results; however, their structures are complex, and their inference
time is slow. Papers using these paradigms typically address four
different topics: conventional voice conversion counting zero-shot,
many-to-many and general output quality improvements (n = 95),
style conversion counting accent, dialect, and prosody conversion
(n = 16), and emotion conversion (n = 13) and voice control works
focussing on externalising parameter control (n = 7). The works
primarily comprise theWORLD vocoder (n = 25), theWaveNet (n =
24), and the HiFi-GAN vocoder (21), with the former being
prevalent before the 2020s and the latter gaining popularity after
its introduction in 2019. Depending on the topic addressed and
vocoders used, the works additionally differ in the loss functions
included. Reconstruction losses (n = 77) and adversarial loss
functions (n = 36) are frequently used but are often extended by
cycle-consistency losses (n = 21), constraining the generator,
Kullback–Leibler divergence (n = 17), ensuring that the learned
distribution is similar to the true prior distribution, and identity-
mapping losses (n = 13) or content losses (n = 3) providing
contextual robustness.

5.2 Challenging areas in the VC community

Although it is clear that VC is a promising, fast-growing research
area, with the proposed models reaching high-quality output in
terms of speaker similarity and naturalness, some challenges remain
to be overcome. Drawing from our discoveries, we formulate five
challenges that are commonly addressed in VC research and offer a
synopsis of how the analysed studies endeavour to resolve them.

5.2.1 Architectural challenges
Although GANs, CVAEs, and CAEs have proven high-fidelity

results in different voice conversion scenarios, each architecture

comes with limitations. GANs come with a theoretical justification
of their target distribution matching capabilities, making them
useful specifically for approximating the probability distribution
of natural speech. However, GANs are widely known to be very
difficult to train, and their convergence properties are fragile.
Simultaneously, it should be noted that even though many
generators in GANs may be able to fool a discriminator, they are
yet to fool human ears (Qian et al., 2019). To overcome these
challenges, extensions such as CycleGAN have been proposed.
However, the inclusion of cycle-consistency losses provides new
problems. As CycleGAN does not explicitly model an internal
representation, it may not prove sufficient to individually
manipulate features such as identity, prosody, or emotion. As
mentioned by Sisman et al. (2020), a CycleGAN is simply more
suitable for VC between a specific source and target pairs and not for
many-to-many conversion. In contrast to GANs, AE and VAE-
based structures tend to generate over-smoothed output. Although
they provide training stability and easy access to conditioning
features, the over-smoothing usually results in poor quality,
“buzzy-sounding” speech (Kameoka et al., 2019). Additionally,
they are designed to produce acoustic features frame-by frame,
making it difficult to learn sequential dependencies in the
intermediate acoustic features. Lastly, some A-S structures, as in
the works by Nercessian (2021) and Nercessian (2020), provide
successful zero-shot conversion and feature manipulation through
explicit conditioning signals. However, their oscillator-driven,
differentiable vocoders often limit the output quality, and their
rather simple encoding structures may be insufficient in complete
disentanglement. The degraded output quality may be improved by
black-box post-nets for such architectures; however, these will
impose higher complexity on the system.

To this end, adversarial AEs/VAEs and A-S structures, as
analysed in Section 4.2, emerge as well-documented choices
satisfying over-smoothing, training stability, and flexible
manipulation. Broadly speaking, they conceptualise VC as a
modular bottleneck, wherein individual features can be
independently processed and subsequently concatenated to

FIGURE 8
Distribution of subjective metrics used (left) and objective metrics employed (right) across the studied work. We see that the MCD is a commonly
used objective metric, while the word error rate and character error rate are also popular choices.
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construct a comprehensive information cluster for the decoder. This
appears to be a promising methodology. Choi et al. (2021), Wang Y.
et al. (2022), and Xie et al. (2022) process the input in four parallel
streams, each stream taking care of its own feature. These studies
promote both feature disentanglement and provide controllable
waveform reconstruction directly in the time domain and a
system that can be trained in a stable, end-to-end manner. All
three works provide state-of-the-art results.

5.2.2 Disentangling features
Despite the information bottleneck’s objective of disentangling

speech content and speaker characteristics, a notable amount of
prosodic information, such as source pitch, may leak through the
bottleneck if it is not added to the latent features. Simultaneously, the
naturalness of the converted speech may decrease due to the
difference in information contained within the bottleneck
features themselves. Theoretically, these problems could be solved
by a speaker embedding that contains the target speaker’s prosodic
information. However, this requires hours of data for each speaker
as the speaker encoder would have to learn to reflect such
characteristics in its embeddings. As mentioned above, it instead
has been proposed to disentangle all three features: speech content,
F0, and identity (Qian et al., 2020a). Opposed to the architectures
mentioned in the former section, where information is only
concatenated in the latent space, this may be done in various
ways. Huang et al. (2019), Wang Y. et al. (2022), and Tan et al.
(2021) do it in the generator or the vocoder individually as well as in
both. In all cases, the F0 conditioning improves the naturalness and
similarity of the generated speech. However, even though parts of
the system were conditioned on the F0, the amount of
F0 information entangled in the content and speaker embeddings
was highly dependent on the input itself. More specifically, the
amount of entanglement was related to the amount of
F0 information that resided in the spectral features of the input.
For this reason, most studies found it more efficient to disentangle
the content and speaker features from input representations such as
the MCCs or MCEPs, rather than the conventional and
harmonically rich mel spectrogram. In contrast, Chun et al.
(2023) and Hwang et al. (2022) use the wav2vec representation
as content-input due to its linguistic-informed but high-level layers.

In general, self-supervised content encoders based on Wav2vec
or HuBERT show promise in feature disentanglement, as they have
demonstrated the ability to generate valuable linguistic units without
relying on transcripts, require no explicit labelling, and operate
directly on the waveform. However, not all self-supervised content
bottlenecks are free of speaker information. It may especially prove
challenging to eliminate speaker-related information in the content
embeddings when they are derived directly from HuBERT and
wav2vec models without the additional clustering process (Li
et al., 2023). To address this challenge, we refer to ContentVec,
as proposed by Qian et al. (2022), although it was not indexed in our
literature search. ContentVec adds speech disentanglement
techniques into a HuBERT-based masked-prediction pipeline in
order to obtain linguistic representations free of speaker
information. More specifically, they incorporate three different
methods into the pipeline: label-generation (teacher), speech
representation (student), and prediction. First, they obscure
speaker identity in the target labels by converting all utterances

to sound like that of the same speaker using a pretrained VC model.
Like the work by Choi et al. (2021), they additionally perturb input
samples in parallel before they are masked and fed to the speech
representation network. Using a contrastive loss on the parallel
streams, they thereby compel representations of the same utterance
to exhibit similarity regardless of perturbation or speaker variation.
Lastly, they condition the predictor on the actual speaker
information, ensuring that the student remains uninfluenced by
it. Once the speech representation network has been trained in
conjunction with the predictor to match generated labels, one can
use the student to embed speaker-free linguistic information. In
many downstream tasks, including VC, ContentVec outperforms
wav2vec and HuBERT-based content representations (Qian et al.,
2022). Nonetheless, a drawback of such self-supervised
representations is their high computational complexity, rendering
them unsuitable for real-time inference or streamable applications.
In very recent research, we observe the use of self-supervised models
for knowledge distillation. Specifically, a simple CNN-based content
encoder can be trained to approximate the distribution of discrete
units using clustered HuBERT-based representations as targets Yang
et al. (2024). This approach yields a soft unit encoder that
outperforms related self-supervised content encoders in terms of
speed, disentanglement, and fidelity.

The self-supervised representations may be used to obtain
prosodic information. Hwang et al. (2022) use the wav2vec-based
content embedding to predict pitch using an external pitch-module,
while the speaker embedding is retrieved from a style encoder fed
with the source mel spectrogram. Both works report MCD and
RMSE-F0 metrics that outperform those of the system explicitly
conditioned on pitch. It is imperative to observe that these studies
depend on non-interpretable and inefficient self-supervised
networks, which may not inherently offer auxiliary pitch control.
Nonetheless, note that the input representations wield an impact on
the feature disentanglement process, which is why conducting
experiments involving diverse inputs for the feature encoders
within a system could prove beneficial.

Techniques such as instance normalisation (IN) and VQ can be
used to further disentangle the speech features. Zhang Z. et al. (2020)
and Huang et al. (2021) introduce adaptive instance normalisation
(AdaIN) to adjust the speaker embedding to different styles on a
per-instance basis. IN and AdaIN are traditional features in style
transfer problems, as their inherent scale and bias parameters
allow the speaker modulation to be transformed in a domain-
specific manner, limiting it from bleeding into the content
embedding (Kaneko et al., 2019b). VQ, on the other hand, is
incorporated to confine the leakage of content information into
the speaker representation. Wang D. et al. (2021), Wu and Lee
(2020), and Chen and Hain (2020) apply VQ on the content
embedding, modelling it as a series of discrete codes. The
motivation behind employing VQ lies in the observation that
the discrete latent codes acquired from VQ-based auto-encoders
exhibit a strong correlation with phonemes. A vector quantised
content embedding simply is a more condensed representation,
providing only the needed information for the decoder. However,
mapping continuous values to a set of discrete codebook entries
may lead to the loss of fine-grained information. Therefore, it is
crucial to have a large codebook size, which, in turn, may impose
higher complexity and memory usage.
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5.2.3 Approaching mismatch problems
Most VC pipelines suffer from mismatch problems. One such

problem is the training-inference mismatch that happens when a
VC system is trained using the same utterance from the same
speaker, which is the case in most systems. Here, the same input
sample is used for content and style/speaker embeddings, making
the overall model prone to copying information. This becomes a
problem in inference as the model here is presented with different
samples, making it produce low output quality. Hwang et al. (2022)
tackle the mismatch problem using adversarial style generalisation.
More specifically, the style generalisation clusters representations
using two different utterances of the same speaker during training.
The style encoder is thus trained on utterances and optimised by
minimising the difference between their output speaker
embeddings. This creates a global style representation for each
speaker that is robust in inference scenarios. A different
approach to the speaker mismatch problem is to extract multiple
speaker embeddings and create averages of these across every
speaker. This will generate fixed speaker embeddings
independent of the utterances (Tan et al., 2021). Lastly, we have
seen the introduction of diffusion models to extent general speaker
adaptation quality. Here, data-driven priors are used to improve
conversion performance as they regulate the inception of the
denoising process. Simultaneously, the diffusion may be
conditioned on the speaker information, creating high-quality
speech synthesis and high-quality zero-shot capabilities (Choi H.-
Y. et al., 2023).

Another issue related to mismatch is the acoustic feature
mismatch problem. This becomes apparent when there is a
significant disparity between the acoustic representation and the
generalisation capabilities of the vocoder used, resulting in reduced
output quality. Du and Yao (2023) approach this by discarding the
decoder completely, substituting it with a HiFi-GAN-based
generator that upsamples the intermediate acoustic representation
to match the dimensions of the time domain. In other works, the
authors provide an inductive bias for the audio generation,
combining neural vocoders with traditional speech/sound
production models (Choi et al., 2021). In contrast, Xie et al.
(2022) avoid the mismatch problem by introducing information
perturbation. As an extension to the above-mentioned feature
disentanglement methods, information perturbation aims at
perturbing all useless information in the source speech through
digital signal processing, thereby limiting the different sub-blocks
from learning undesirable attributes (Xie et al., 2022). Specifically,
Choi et al. (2021) perturb the audio that is given to the content
encoder with pitch shifting, formant shifting, and random frequency
shaping, forcing it to adhere only to the linguistics of the input. The
input audio fed to the pitch encoder, on the other hand, is only
perturbed using the latter two processes, whereas the input to the
speaker encoder is unaltered. The process of information
perturbation ensures that content and pitch features no longer
provide speaker-related information, making the input to the
speaker encoder unique. This way of controlling the information
flow is reported to be significantly useful as it does not suffer from
mismatch problems. Such an approach performs well on CER and
SSIM metrics, unlike many other information bottlenecks (Choi
et al., 2021). However, it should be noted that such systems still are
dependent on the generation model included.

5.2.4 Voice control and interpretability
An inherent constraint in the greater part of the analysed

voice conversion models lies in their capacity to only synthesise
speech that is either present in the datasets used or defined by a
speaker-specific embedding. Manipulating voice in order to
create new voice identities or edit specific voice attributes
similar to voice transformations remains a challenge for most
conversion systems. This constraint is often restricted by the low-
level representations that most models compose in their
information bottleneck (Choi H.-S. et al., 2023). As
mentioned, desirable control features such as pitch, energy or
timbre may be entangled either in the latent space or in the
traditional speaker-dependent and independent embeddings.
Although some models are further conditioned, this choice
does not necessarily force the decoder to learn the mapping of
different pitch and energy representations. It is trivial to conclude
that the more one decomposes a signal into high-level/
interpretable representations, the more one can gain access to
the controllability and thereby parameterise the model. However,
comparatively little research has been devoted to creating speech
that sounds like truly novel speakers.

Only six studies explicitly concentrate on voice control. Choi
et al. (2021) specifically focussed on this. Using an A-S procedure,
they explicitly condition their generation process on separated
feature counting: linguistics, speaker embedding, pitch, and
energy, which are perturbed using different DSP techniques.
Inspired by the source-filter theory, they split the generation
process into two: a source and a filter decoder, generating
harmonic content and spectral envelopes, respectively. They
simply incorporate inductive bias in the model by conditioning
each generator on features important for the given generation task.
This provides interpretability and formant preserving pitch-
shifting capabilities (Choi et al., 2021). The source and filter
representations are thereafter summed to represent a mel
spectrogram that is fed to the vocoder of choice. Xie et al.
(2022) adopt similar perturbation techniques. However, rather
than separating the generation process, they feed the feature
embeddings directly to one unified waveform generator.
Because the generator synthesises speech directly in the time
domain, it can easily control different speech attributes. Lastly,
Wang Y. et al. (2022) introduce a method for controllable speech
representation learning based on disentanglement only. This work
adheres to a conventional CAE and A-S structure, wherein feature
encoders and latent embeddings are sequentially arranged prior to
their input into the decoder. Through additional incorporation of
training guidance using reconstruction, content, AIC, and
adversarial losses, the authors assert that they achieve a level of
disentanglement sufficient for controllability.

Although the aforementioned works use different structures to
achieve interpretability and controllability, they share similarities.
First, they aim to accomplish disentanglement by controlling the
information flow. Second, they incorporate discriminators to tune
the output quality and naturalness. Lastly, they all incorporate either
perturbation or intermediate features obtained by pretrained
wav2vec networks for the linguistic and speaker representations.
All works offer convincing results, and these studies should be
considered inspirational sources when designing systems that enable
explicit voice control in the future.
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5.2.5 Real-time constraints
The efficiency of a voice conversion system during inference is

bounded by the speed of the generator and vocoder used, the speed
of converting the utterance between time and frequency domains,
and the speed of the encoders, specifically the content and speaker
encoders. As outlined in this study, most pipelines incorporate
encoders based on deep convolutional blocks, recurrent neural
networks, or large self-supervised models, while rather complex
neural vocoders are included to synthesise the acoustic
representations. Although this is done to ensure the best output
quality, it limits the real-time possibilities of the models. It was also
found that only four works of the studies analysed mention the
importance of real-time or streamable voice conversion (Baas and
Kamper, 2020; Yang H. et al., 2022; Himawan et al., 2022; Tanaka
et al., 2023).

The specific focus on enabling live one-shot VC is articulated by
Yang H. et al. (2022). Within this framework, each sub-block is
carefully designed to facilitate streaming capabilities. This is
achieved, in part, through implementing all convolution and self-
attention layers as causal while ensuring that all recurrent structures
are executed in a unidirectional manner. Lastly, the work adopts a
cached sliding-window procedure that processes utterances chunk
by chunk, making the pipeline applicable for buffer-based
computation. The proposed model achieves a real-time factor of
0.37 on a single CPU, and although the work compromises on
network structure, results suggest that the model achieves
comparable one-shot VC performance with offline solutions
(Yang H. et al., 2022). Similar approaches are taken by Tanaka
et al. (2023), where networks are also implemented using causal
layers. However, the authors here report degradation due to the “use
of causal layers which masks future input information” (Tanaka
et al., 2023). To take this into account, they propose knowledge
distillation in which a “student” network, implemented as a
streamable structure, learns in conjunction with the more
complex, non-causal and non-streamable “teacher” network. The
work by Tanaka et al. (2023) does not report any real-time factor.

Broadening our perspective, we discover that the approaches
taken in the above studies are followed in new and similar work that
was not indexed by the included databases. For instance, to adhere to
streamable environments, Ning et al. (2023) and Ning et al. (2024)
use unidirectional recurrent networks, causal convolution layers,
and knowledge distillation in a teacher-student learning approach.
Another interesting method is the ability to train traditional non-
causal networks and subsequently perform a post-training causal
reconfiguration of the trained model, as presented by Caillon and
Esling (2022). This technique provides a promising foundation for
real-time neural audio synthesis and voice conversion.

Although none of the indexed articles focused on streamability
for IoT/edge devices, the newly released work by Yang et al. (2024)
manages to perform high-quality VC with ~10 m inference latency
on a Pixel 7 smartphone. Looking forward, VC applications are thus
undoubtedly expected to operate on the distributed computational
continuum (Pujol et al., 2023), where low-end devices can perform
inference or training on edge nodes. This integration of IoT/edge
intelligence (Taheri et al., 2023) will depend critically on techniques
such as bottleneck quantisation for discretisation of latent codes
(Abe et al., 1988; Wu et al., 2020), digit quantisation, model
quantisation and model pruning (Sudholt et al., 2023), real-time

training (Kaspersen et al., 2020), and offloading (Liu and Zhang,
2018). These advancements could make VC more accessible,
affordable, and efficient while reducing energy and computational
demands. Quantisation, in particular, plays a pivotal role in
mitigating resource and energy constraints, although its detailed
discussion in edge-based VC applications remains currently limited.
Future research should provide practical insights into implementing
edge-based VC systems, building upon the innovative approaches
identified in current studies.

6 Conclusion and future prospects

VC is a rapidly evolving research area with numerous challenges
and several approaches aimed at addressing them. This paper
presented a scoping review of 130 papers in the field of VC. The
papers were evaluated using a codebook of 14 codes covering
research direction, contributions, methods, and deep learning
structures employed. We also provided an overview of the most
commonly used datasets, sampling rates, and loss functions.

At present, the VC community is focused on mitigating the
information bottleneck to facilitate disentangled speech
representation learning while simultaneously ensuring high-
quality mapping between speech features and intermediate
acoustic representations. A degradation of performance and
output quality frequently occurs due to entanglement within the
embedded feature representations, manifested as leakage between
content, speaker, and prosody embeddings. Several techniques are
used to retrieve and disentangle such information. For extracting
linguistic content, the analysis indicates a consensus favouring the
use of ASR-based structures. However, challenges persist,
particularly regarding errors inherent in pretrained recognition
models, which may lead to mispronunciation in the converted
speech output. Despite minor representation, self-supervised
models such as the wav2vec model offer promising solutions to
this problem, providing time-aligned, speaker-independent
linguistic embeddings beneficial for downstream tasks, especially
for low-resource languages. Like linguistics, speaker embeddings
that are traditionally retrieved using structures from speaker
verification research may be derived from self-supervised
representations. In contrast, embeddings such as pitch, rhythm,
and energy are often integrated using DSP methods to supply
prosodic information to the disentanglement process. Including
such features proves advantageous as they enable the remaining
encoders to focus solely on linguistic and timbre aspects while
introducing inductive biases beneficial for synthesis.

Several techniques have been proposed to facilitate the
transformation of speech-related features into high-quality
outputs. Within this domain, the analysed work can be
divided into two primary categories: a) the conversion of
features into acoustic representations fed to a pretrained
neural vocoder, and b) the use of generative decoders to
directly map the features into speech in the time domain.
Although the former methodology is susceptible to individual
discrepancies and mismatches inherent in the pipeline itself,
approaches such as diffusion-based modelling have
demonstrated encouraging outcomes in associating speech
features with high-fidelity, speaker-adaptive acoustic
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representations. Conversely, with regard to the latter approach,
structures founded on GANs and adversarial learning have
exhibited efficacy in generating high-quality audio directly in
the time domain. Conditioning such models on pitch contour,
pitch embeddings, or excitation signals may further promote
output stability and matching of target speaker characteristics.

Although many of the proposed feature disentanglement
processes and mapping strategies are reported to improve the
output quality, the actual interpretability of the structures
remains a challenge. In general, the literature presents a minimal
focus on generalisability and voice control, reducing voice
conversion to an offline identity conversion problem. This
constraint may be overcome by specifically controlling the
information flow of the system’s bottleneck and by including
real-time efficient model structures.

Based on these findings, we summarise the main challenges and
provide several recommendations for prospective research.

• Input representations and feature disentanglement: It is
clear that many possibilities exist for optimising the feature
disentanglement in systems using the information bottleneck.
However, the methods used highly depend on the use case and
implementation device at hand. The feature disentanglement
process may be improved by considering consistency learning,
information perturbation, the amount of harmonic
information present in the input, and the interplay between
the content and speaker encoders themselves. Studies
providing benchmarks for such claims, measuring
disentanglement and the degree to which each method
affects the output, do not yet exist.

• Trustworthy content encoders: Compared to speaker
embeddings, it is still difficult to create embeddings that
contain linguistic information only. Although many
approaches such as perturbation, ASR-based encoders,
PPGs and content loss are provided for successful content
embeddings, entanglement and mismatch problems are still
prominent. Continuing to develop encoders that can focus
solely on linguistics and generalise to new languages is thus of
high importance.

• Analysis-synthesis structures: Analysis-synthesis structures,
closely related to CAEs, are proving useful in stable, high
fidelity, and controllable VC. It is thus natural to assume that
these architectures are useful in future research.

• Explicit control and voice design: Current VC architectures
have inherent capabilities of controlling high-level attributes;
however, comparatively little research has been devoted to
creating speech that sounds like truly novel speakers. VC
systems conditioned on speech descriptive characteristics such
as age, perceived gender, and tone could broaden the
practice of VC.

• Interpretable structures: As earlier mentioned,
representations from self-supervised architectures such as
wav2vec models are proving successful as input to content,
speaker, and pitch encoders. Examining such architectures
with interpretable deep learning strategies would allow
researchers to transfer the self-supervised decision-making
mechanisms to less-complex structures, for example,
through knowledge distillation strategies.

• High-fidelity acoustic representations: When incorporating
a neural vocoder, it is imperative to maintain a precise acoustic
representation. Various factors influence this, including the
level of disentanglement in the speech feature space and the
decoder/generator utilised. Diffusion modelling has
demonstrated promising results in generating accurately
converted acoustic representations in zero-shot scenarios;
however, their inference speed heavily relies on the
sampling scheme employed. Therefore, developing novel
sampling algorithms tailored for rapid synthesis and causal
diffusion-based decoding structures presents intriguing
avenues for future research.

• High-fidelity waveform generation: Even though many
neural vocoders are making strides in improving their
inference time, the majority still fall short in running real-
time. Existing research indicates the potential for combining
neural networks with traditional speech/sound production
models to achieve efficient and robust performance.
Nevertheless, waveform generation methods, such as DSP-
informed and oscillator-driven approaches like the neural
source-filter system or differentiable WORLD synthesiser,
have not demonstrated adequate efficacy in producing
high-quality output speech. The prospect of combining
these two aspects to develop a low-latency, high-fidelity
waveform generator presents an interesting avenue for
future exploration.

• Real-time requirements: In some cases, latency and real-time
efficiency may be needed for the VC application at hand.
Student-teacher architectures, model pruning, or post-
training causal reconfiguration schemes are interesting
additions to existing, well-performing VC systems.

7 Limitations

Although a thorough search, guided by a meticulously crafted
keyword list, has been conducted across two pertinent databases, most
of the review process has been conducted individually by Author 1, with
no forward-citation search on the included studies. However, efforts
were made to mitigate potential selection bias through an objective and
carefully selected keyword-selection process, as well as to address
interpretation bias through ongoing, rigorous coding discussions and
meetings involving all authors. Furthermore, no assessment of the
quality of the reference list was conducted, as it was determined that the
two included databases maintained a specific scientific standard. Even
though scoping reviews typically encompass all available evidence
regardless of methodological quality (Arksey and O’Malley, 2005), it
was still decided to confine the search to full journal articles and paper
proceedings. This choice was made to ensure a manageable outcome in
terms of evidence.

Finally, we acknowledge the restricted coverage of transformer-
based models in this review. Although the review encompasses VC
techniques relevant to self-supervision, it maintains a limited focus
on LM-related approaches. Although the methodology surrounding
transformers and LMs offers promising directions for VC research,
the extensive proliferation of LM studies across the wider field of AI
has made it impractical to comprehensively incorporate them into
this review. Consequently, a deliberate choice was made not to
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search for LM-related literature. Given the prominence of LMs, we
believe their inclusion would require a dedicated review.
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