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In this study, we highlighted the growing need for automated electrocardiogram
(ECG) signal classification using deep learning to overcome the limitations of
traditional ECG interpretation algorithms that can lead to misdiagnosis and
inefficiency. Convolutional neural networks (CNN) application to ECG signals
is gaining significant attention owing to their exceptional image-classification
capabilities. However, we addressed the lack of standardized methods for
converting 1D ECG signals into 2D-CNN-compatible input images by using
time-frequency methods and selecting hyperparameters associated with these
methods, particularly the choice of function. Furthermore, we investigated the
effects of fine-tuned training, a technique where pre-trained weights are adapted
to a specific dataset, on 2D-CNNs for ECG classification. We conducted the
experiments using the MIT-BIH Arrhythmia Database, focusing on classifying
premature ventricular contractions (PVCs) and abnormal heartbeats originating
from ventricles. We employed several CNN architectures pre-trained on
ImageNet and fine-tuned using the proposed ECG datasets. We found that
using the Ricker Wavelet function outperformed other feature extraction
methods with an accuracy of 96.17%. We provided crucial insights into CNNs
for ECG classification, underscoring the significance of fine-tuning and
hyperparameter selection in image transformation methods. The findings
provide valuable guidance for researchers and practitioners, improving the
accuracy and efficiency of ECG analysis using 2D-CNNs. Future research
avenues may include advanced visualization techniques and extending CNNs
to multiclass classification, expanding their utility in medical diagnosis.
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1 Introduction

Electrocardiograms (ECG) play a pivotal role in clinical medicine, and more than
300 million ECG signals are obtained annually worldwide (Holst et al., 1999). The
simplicity, non-invasiveness, and cost-effectiveness of ECG make it a widely used
method for measuring cardiac electrical activity. ECG is crucial for diagnosing a wide
spectrum of cardiovascular diseases ranging from arrhythmias to acute coronary syndromes
(Schlant et al., 1992). Owing to its increasing importance in the clinical ECG workflow,
computer-aided interpretation has become a crucial tool in clinical settings, specifically in
ECG analysis. However, traditional ECG examination algorithms have significant
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misdiagnosis rates of 11.3% for specific tasks of atrial fibrillation
(Bae et al., 2012). Moreover, the existing clinical ECG examinations
and diagnoses conducted by physicians can be time-consuming,
impractical, and sometimes inaccessible in remote areas (Poon et al.,
2005; Guglin and Thatai, 2006; Shah and Rubin, 2007; Schläpfer and
Wellens, 2017).

In recent years, several researchers have used deep learning to
accurately identify ECG and overcome these problems. These
reports have shown that specific abnormalities, such as
premature ventricular contraction and atrial fibrilla, can be
identified by using a robustly designed deep learning model
(Yildirim, 2018; Yıldırım et al., 2018; Attia et al., 2019). Among
these advancements, convolutional neural networks (CNNs) have
demonstrated remarkable capabilities in various image-analysis
tasks, sparking interest in their potential for ECG classification.
Notably, the transformation of ECG signals into two-dimensional
images has emerged as a promising approach. However, no
standardized method exists for inputting ECG signals into 2D-
CNNs. Some researchers have converted raw ECG signals
directly into pixel images for classification (Makimoto et al.,
2020; Huang et al., 2022); others have explored using time-
frequency methods, such as the continuous wavelet transform
(CWT) and short-time Fourier transform (STFT), which can
transform ECG signals into input images for 2D-CNNs.
However, established guidelines regarding the hyperparameters
associated with using time-frequency methods are absent.

One of the critical hyperparameters in time-frequency methods
is the choice of function, which is pivotal in CWT and STFT. CWT
employs wavelet functions, such as the bump wavelet (Ozaltin and
Yeniay, 2023), Ricker wavelet (Wang et al., 2021), and Morlet
wavelet (Rahuja and Valluru, 2021), to transform signals.
Wavelets are wave-like oscillations characterized by an amplitude
that starts at zero, increases or decreases, and returns to zero one or
more times. They are often called “brief oscillations.”Wavelets have
various forms, and a taxonomy has been established based on the
number and direction of the pulses. They possess unique properties
that make them valuable for signal-processing tasks. These versatile
wavelet functions find applications in the CWT and other research
domains, such as the discrete wavelet transform. In the case of STFT,
window functions, such as the Blackman (Niroshana et al., 2021)
and Hann (Huang et al., 2019), transform signals into their time-
frequency representations. Window functions are zero-valued
mathematical functions outside the chosen interval. They are
typically symmetrical around the middle of the interval, often
peaking in the middle and gradually tapering away from the
center. Window functions are crucial in defining the
characteristics of the spectral analysis, with different types serving
various purposes and determining how data are weighted and
tapered before undergoing a Fourier transform. These functions
are important in influencing the size, depth, and importance
attributed to different aspects of the transformed 2D features,
resulting in a significant effect on the performance of deep
learning classification models.

Meanwhile, fine-tuning, where pre-trained weights from a large
dataset are further trained on a specific dataset to enhance the model
performance, has been gaining attention in several studies. Transfer
learning involves applying the knowledge gained from one problem
or task to another, using a model trained on a source dataset and

further training it on a target dataset. It gradually improves the
model performance, especially in scenarios with limited training
data. Several researchers have focused on CNN-based transfer
learning. In (Yosinski et al., 2014), the transferability of features
pre-learned from the ImageNet dataset was extensively explored by
employing various fine-tuning strategies on different datasets. In
another study (Donahue et al., 2014), the transferability of each
layer’s parameters in a pre-trained AlexNet was described using a
fine-tuning approach applied to each network layer individually.
However, the effectiveness of transfer learning using fine-tuned
CNN models pre-trained on generic image datasets with ECG
data has not been adequately validated.

This study addressed the need for comprehensive exploration,
using comparative studies to identify the most effective
transformation methods for learning ECG patterns. This study
provides clear guidelines to assist researchers and practitioners in
optimizing ECG analysis using 2D-CNNs, enhancing the accuracy
and efficiency of arrhythmia detection and diagnosis. A significant
aspect of our work involves extensively analyzing various image-
transformation methods. We assessed their efficiencies and offered
insights into their performances in ECG signal classification. Our
study provides valuable information for selecting the most suitable
image transformation techniques for ECG analysis, recognizing the
lack of standardized protocols in this field. Furthermore, we explore
the impact of transfer learning in this domain. By fine-tuning CNN
models trained on diverse image datasets, we demonstrated the
viability and potential efficiency gains in ECG classification, even in
scenarios with limited data resources. This study underscores the
feasibility of utilizing 2D-CNNs for ECG classification and
contributes to the establishment of more effective methodologies
in the field of medical signal processing.

We validated the classification of ECG signals as premature
ventricular contractions (PVCs) and abnormal heartbeats
originating in the ventricles. Unlike normal electrical signals
in the heart that originate rhythmically in the sinoatrial (SA)
node, in PVCs, an abnormal electrical signal in the ventricles
precedes a regular electrical impulse from the SA node.
Consequently, the ventricles contract prematurely, disrupting
normal heart rhythm. PVCs can feel like a fluttering or
pounding sensation in the chest and are often described as
“skipped beats” because they interrupt the regular heartbeat.
They can occur in individuals with or without underlying
cardiac conditions. Although occasional PVCs are usually
harmless and may not require treatment, frequent or sustained
PVCs can be associated with heart disease and may require
medical evaluation and management.

2 Materials and methods

2.1 Datasets

The primary data source for this study was the MIT-BIH
Arrhythmia Database (Moody and Mark, 2001), comprising 30-
min ECG signal recordings from 48 subjects at 360 Hz. The original
ECG signal data contained heartbeat information from patients with
cardiovascular disease. Each of the ECG signals lasts 1 hour, except
for the two-channel ambulatory recordings. In most records, lead A
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is a modified limb lead II (MLII), and lead B is V1 (occasionally
V2 or V5, and in one instance V4).

We used a single lead, specifically theMLII, and normalized each
raw one-dimensional ECG signal using the min-max normalization
given in Eq. 1 as follows:

X � signal − min signal( )
max signal( ) − min signal( ) (1)

where X represents the normalized ECG signal, min (signal) and
max (signal) represent the minimum and maximum functions.

2.2 Processing

We split the points in a 4:6 ratio of the R-wave peaks,
considering the heartbeats of a healthy male adult with a heart
rate of 60 bpm (Clifford et al., 2006; Hu et al., 2022). After obtaining
the heartbeat information and establishing the split points, we
adopted a sliding window algorithm and organized the ECG data
into coherent three-second segments. We categorized all normal
heartbeats into the normal class and any occurrence of a PVC beat in
a segment into the PVC class. In addition, we implemented
downsampling in the normal class, where we retained 30% of the
data and separated the training and validation sets in an 80:20 ratio.

2.3 Generation of 2D images

Within the 2D-CNN, the input data must be of the image type.
In the following sections, we discuss two prominent techniques for
transforming ECG signals to 2D images, CWT and STFT.

2.3.1 Continuous wavelet transform (CWT)
CWT is a time-frequency analysis that translates time-series

data into a 2D image format by mapping the signal on the time axis.
It provides insights into frequency and time information and
effectively handles non-stationary signals. The formulations of
the CWT and WT families are expressed in Eqs 2, 3 as follows:

CWT a, b( ) � 〈 f ,ψa,b
*〉 � ∫+∞

−∞
f t( )ψa,b

* t( )dt (2)

ψa,b
* � 1��

a
√ ψ

t − b
a

( ) (3)

where f (t) is a continuous signal, ECG, ψa,b(t) is the mother wavelet
function, a indicates a scale parameter, b is the shift parameter or
translation, and the symbol of * indicates the complex conjugate
function (Lee and Choi, 2019). The resulting 2D scalogram images
derived from the CWT prove beneficial in scenarios where capturing
non-stationary features is essential for accurate interpretation and
decision-making, such as in various vibration signal analysis areas,
including denoising, structural and ground motion analysis, fault
diagnosis, and damage detection (Gurley and Kareem, 1999; Peng
and Chu, 2004). We conducted a comparative analysis of CWT
methods using the following mother wavelet functions and each
function is illustrated in Figure 1:

BumpWavelet: Bump wavelet is a bandlimited function defined
in the frequency domain with parameters μ and σ and window w [n]

(Li et al., 2020). It has a wider variance in time and a narrower
frequency variance. Valid values for μ and σ are in the ranges of (3, 6)
and (0.1, 1.2), respectively. Smaller values of σ produce wavelets with
superior frequency localization but poorer time localization. Larger
values of σ have a wavelet with better time localization and poorer
frequency localization. Eq. 4. Shows the formulation of the
bump wavelet.

ψ aω( ) � e
1− 1

1− aω−μ( )2
ρ2

⎛⎝ ⎞⎠
I μ−σ

a ,μ+σa[ ] (4)

when I[(μ−σ)/a,(μ+σ)/a] is the indicator function for the interval.
Ricker Wavelet: Ricker wavelet, also known as the Mexican hat

wavelet, is proportional to the negative value of the second derivative
of a Gaussian function. No scaling function was associated with this
wavelet. The following Eq. 5 is the functional form:

ψ t( ) � 2���
3σ

√
π1/4

1 − t
σ

( )2( )e− t2

2σ2 (5)

where σ is the standard deviation controlling the width, and t is an
independent variable (Silik et al., 2021).

Morlet wavelet: Morlet wavelet is designed as a zero-mean function
and represents a sinusoidal function modulated by a Gaussian function
(Büssow, 2007; Cohen, 2019), which has an infinite duration. However,
most energy is confined to a finite interval (Büssow, 2007). It has equal
variance in time and frequency and detects good time- and frequency-
localized information. This mother wavelet has no scaling function and
does not technically satisfy the admissibility condition except for
approximately. However, if α > 5.5, the error can be ignored
numerically. It is defined as Eq. 6:

ψ t( ) � e−
β2 t2

2 cos πt( ) (6)

By dilating with a and translating with b, the Morlet wavelet
family can be expressed as Eq. 7:

ψ t( ) � e−
β2 t−b( )2

a cos
π t − b( )

a
( ) (7)

where b is the translation parameter that affects the shape of the
wavelet, balancing time and frequency resolution. This wavelet has
been successfully used for vibrational signal analysis (Cohen, 2019).

2.3.2 Short-time fourier transform (STFT)
STFT is another widely used technique for transforming time-

series data into 2D image representations. It addresses the limitations
of the traditional Fourier analysis by considering signal variations over
short time intervals, making it suitable for non-stationary signals. Eq.
8 gives its discrete digital signal and time-frequency spectrogram.

STFT x n[ ]{ } � X m,ω( ) � ∑∞
n�−∞

x n[ ]w n −m[ ]e−jωn (8)

where x [n] represents the ECG signal with a sampling rate of
360 Hz, and w [n] is the window function. We used the following
functions in this study and each function is illustrated in Figure 2:
window size of 256.

Blackman window: Blackman window is a specific function used
in signal processing and spectral analysis. It was designed to
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smoothly taper the data from zero at the edges to the maximum
value at the center. The Blackman window is characterized by its
main lobe, which is relatively wide and has relatively low side lobes
compared to other window functions (Harris, 1978).
Mathematically, Eq. 9 defines the Blackman window.

w n[ ] � 0.42 − 0.5 cos
2πn
M − 1

( ) + 0.08 cos
4πn
M − 1

( ), 0≤ n≤M − 1

0, otherwise

⎧⎪⎨⎪⎩
(9)

Hann window: The Hann or Hanning window is a popular
window function used in signal processing and spectral analysis and
is a member of the cosine-sum and power-of-sine families. The
endpoint of the Hann window was zero. The resulting side lobes roll
off at approximately 1/ω3 or 18 dB per octave (Harris, 1978). Eq. 10
defines the window function.

w n[ ] � 0.5 − 0.5 cos
2πn
M − 1

( ) � sin 2 πn
M − 1

( ), 0≤ n≤M − 1

0, otherwise

⎧⎪⎨⎪⎩
(10)

Kaiser window: The Kaiser window is used in signal processing
and spectral analysis and is a one-parameter family of window
functions used in finite-impulse designs and spectral analyses (Kuo
and Kaiser, 1966; Harris, 1978). Eqs 11, 12 samples this window.

w n[ ] �
I0 πα

��������������
1 − 2n

M − 1
− 1( )2

√[ ]
I0 πα[ ] , 0≤ n≤M − 1

0, otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (11)

I0 X( ) � ∑∞
k�0

x
2( )k
k!

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦2 (12)

where M denotes the sample length of the signal, the Kaiser window
is characterized by its ability to adjust these parameters by varying a
shape parameter, the value of α, whose value is 3.0 in this study.

Consequently, we transformed the ECG signals into 227 × 227-
pixel images using image transformation methods, as
Figure 3 shows.

2.4 Classification model

We chose a CNN model based on ImageNet, a vast dataset
encompassing myriad images across diverse categories for ECG
classification. CNN models trained on ImageNet are well-equipped
for image classification tasks owing to their feature-extraction
capabilities. We explored the applicability of various ImageNet-
based CNN architectures, including AlexNet, SqueezeNet, ResNet,
and DenseNet.

FIGURE 1
Time-domain waveforms of each wavelet function: (A) Bump wavelet, (B) ricker wavelet, (C) morlet wavelet.

FIGURE 2
Waveforms of each window function: (A) Blackman window, (B) hann window, (C) kaiser window (α = 3.0).
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AlexNet: AlexNet (Krizhevsky et al., 2012) comprises five
convolutional layers paired with max-pooling layers, followed
by three fully connected layers. In addition, it incorporates a
dropout layer and softmax activation. Notably, each layer
employed a Rectified Linear Unit (ReLU) activation function,
replacing the previous tanh function in 2012. This transition to
ReLU is instrumental in accelerating the architectural
performance.

ResNet: ResNet (He et al., 2016) revolutionized the deep
learning architecture by introducing residual blocks. These
blocks allow the network to mitigate the vanishing gradient
problem and facilitate the training of intense networks. In the
residual block, the input is added to the output of a series of
convolutional layers to create skip connections.

DenseNet: DenseNet (Huang et al., 2017) introduces
a densely connected architecture that addresses deep
network information flow and gradient vanishing issues.
DenseNet architectures have multiple densely connected
blocks repeated to form a deep network. Each layer receives
feature maps from all the previous layers, leading to densely
connected blocks.

SqueezeNet: SqueezeNet (Iandola et al., 2016) introduces a
unique architecture featuring “fire modules.” SqueezeNet focuses
on achieving high accuracy while significantly reducing model size
and parameter count. The proposed network achieves this goal using
smaller filter sizes and a streamlined architecture. We used
SqueezeNet v1.1, which requires 2.4x less computation and
slightly fewer parameters than SqueezeNet v1.0 without
sacrificing accuracy.

We selected two models with different depths: ResNet
(ResNet-18 and ResNet-152) and DenseNet (DenseNet-121 and
DenseNet-201). We modified the classifier in the model
architecture into a binary classifier suitable for arrhythmia
classes and downloaded Network-fine-tuned weights pretrained
on ImageNet from PyTorch.

2.5 Activation map

We employed gradient-weighted class activation mapping
(Grad-CAM) to gain insight into the regions that were most
influential in the classification decisions of the models within the
ECG signals. We generated the activation maps of the final
convolutional layer using Grad-CAM to visualize the last
convolutional layer of each CNN architecture.

2.6 Evaluationmetrics and statistical analysis

In this study, we evaluated the performance of each method
using accuracy. Sensitivity and F1-score were also calculated for a
binary comparison between the CWT and STFT. Eqs 13–15 defines
the performance metrics.

Accuracy � TP + TN
TP + FP + FN + TN

(13)

Sensitivity � TP
TP + FN

(14)

F1 − Score � 2 pPrecision p Sensitivity
Precision + Sensitivity

(15)

where TP, FP, TN, and FN represent true positives, false positives,
true negatives, and false negatives, respectively. We calculated
precision as TP/(TP + FP).

We expressed continuous data as mean ± standard error (SE) as
percentages (%), conducted a robust evaluation by performing five-
fold cross-validation on the training set, and used student’s t-tests to
statistically analyze the feature extraction time measurements.

For our research, we performed computations on a system
equipped with an Intel (R) Xeon (R) Silver 4210R CPU
(20 cores, 2.40 GHz), 64 GB of DDR4 RAM, and an NVIDIA
RTX A5000 with 24 GB of dedicated memory. Windows 11 Pro
was the operating system used for the workstations.

FIGURE 3
Visualization of samples of image transformation belonging to each image transformation method and ECG class.
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3 Result

3.1 Feature extraction time

We measured the time required to process 3,000 samples to
assess the computational efficiency of the image-transformation
methods used for feature extraction and the time required to
convert a single segment into 2D images. We plotted the pixel
images for each method. Table 1. Presents the time
measurements.

The CWT took approximately 216.36 milliseconds per segment
on average, whereas the STFT required only approximately
135.36 milliseconds per segment on average, 1.6 times faster than

the CWT. Furthermore, the fastest method, the Kaiser STFT
method, was significantly faster than the other methods (p <
0.05), except for Hann (p = 0.97).

3.2 Performance: comparison between
training from scratch and transfer learning

Figure 4 shows the accuracy scores obtained from both training
approaches across a range of methods that incorporate the
combined features of the CWT and STFT. Each data point
represents the average of all six methods obtained by combining
CWT and STFT.

TABLE 1 Comparison of feature extraction methods and functions in recent ECG classification studies.

References Algorithm Feature extraction method Functions Accuracy (%)

Ozaltin and Yeniay (2023) 2D-CNN + SVM CWT scalogram Bump 94.00

Morlet 98.00

Morse 94.67

Wang et al. (2021) 2D-CNN CWT scalogram Ricker 98.74

Morlet 97.65

Rahuja and Valluru (2021) AlexNet CWT scalogram Morlet 97.30

Niroshana et al. (2021) 2D-CNN CWT scalogram Morse 90.50

STFT spectrogram Blackman 90.51

Huang et al. (2019) 2D-CNN STFT spectrogram Hann 99.00

FIGURE 4
Comparison of accuracy between training from scratch and fine-tune training—models are sorted by parameter count.
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The measurements indicated that fine-tuning the training
improved the performance of the CNN model. The positive
impact of fine-tuning on CNN model performance was evident
through a comparative analysis between training from scratch and
fine-tuned learning approaches. The classification performance of
AlexNet was lowwhenwe performed the training from scratch.When
trained from scratch, it failed to classify (43.37% ± 0.00%). However,
fine-tuning improved the classification performance (70.03% ±
5.70%) within the same epoch, indicating that fine-tuning resolved
the underfitting problem observed during training from scratch.

3.3 Performance: comparison of each type
of image transformation methods

Figures 5, 6 illustrate the accuracies of the fine-tuned CNN
architectures, which differ from the functions used in the image
transformation methods.

In CWT methods, as Figure 5 shows, the Morlet function shows
the highest accuracy in SqueezeNet (94.93% ± 0.91%), AlexNet
(92.36% ± 1.59%), and the Ricker function shows the highest
accuracy in DenseNet-121 (95.68% ± 1.11%), ResNet-18
(96.17% ± 0.56%), DenseNet-201 (95.95% ± 0.88%), and ResNet-
152 (95.63% ± 1.05%). Ricker + ResNet-18 was the model-and-
function mixture that exhibited the highest accuracy.

In STFT methods, as Figure 6 shows, the Kaiser method
outperformed the other methods in DenseNet-121 (90.15% ±
0.92%), ResNet-152 (90.26% ± 1.88%), and DenseNet-201
(89.74% ± 2.06%). Hann yielded the best performance in
SqueezeNet (86.66% ± 1.73%), Resnet-18 (90.80% ± 1.79%), and
AlexNet (54.37% ± 8.24%). Hann + ResNet-18 is the combination
with the highest performance.

3.4 Performance: comparison of image
transformation methods

Figure 7 shows the classification performance of eachmethod that
exhibited the highest accuracy among the CWT and STFT methods
for each architecture. As Figure 7 shows, all the CNN architectures are
expected to outperform the STFT architectures. The CWT methods
exhibited extreme variations in performance on AlexNet (accuracy:
+37.99%, sensitivity: +29.61%, F1-Score: +40.25%). Excluding the case
of AlexNet, the CWT method outperformed the STFT method based
on all the performance metrics (Accuracy: +5.37–8.27%, Sensitivity:
+4.56–10.10%, F1-Score: +6.21–10.70%).

3.5 Grad-CAM

Figure 8 shows the Grad-CAM heatmaps of the best
combinations for each transformation method in Section 3.3:
Ricker + ResNet-18 (CWT) and Hann + ResNet-18 (STFT). The
CNN method focused on the red-colored zones.

As Figures 8A, B show, representing the normal class, the
heatmaps of the best CWT and the STFT methods focused
across the entire area about the time component. However,
Figures 8C, D, representing the PVC class, show distinctly

different heatmap distributions. In Figure 8C, the heatmaps of
the best CWT method distinctly concentrate on the abnormal
PVC beats. By contrast, the heatmaps of the best STFT method
predominantly focused on the opposite time component of the
abnormal PVC beats within the PVC class, as Figure 8D shows.

4 Discussion

We conducted a comparative analysis of six feature extraction
methods for the two groups. We compared the performances of
various feature extraction methods in 2D CNN architectures for
ECG using image transformation as the feature extraction method
and suggested the most effective methods for the 2D-CNN
classification model. The key findings of our research can be
summarized as follows: (i) STFT methods have a shorter
execution time than CWT methods. (ii) Fine-tuning training
improved the performance of the 2D-CNN architecture, solving
the underfitting problem when training from scratch. (iii) The CWT
method outperformed the STFT methods. (iii) ResNet-18, which
had the third lowest number of parameters among the model
architectures, exhibited the highest CWT and STFT performance.
(v) In CWT and STFT heatmaps visualized using Grad-CAM,
significantly opposite areas were observed within the PVC class.

We assessed the computational efficiency of the image
transformation, revealing the time required for feature extraction.
The STFT methods outperformed the CWT methods in the image
transformation speed. We attribute the observed difference in
performance between the CWT and STFT methods to the process
differences between the two image transformation methods. In CWT
methods, we utilized separatemodules to perform image transformation
and plot pixel images, which may increase the computational cost and
time required for image transformation. However, in STFTmethods, the
transformation process involves directly converting the signal into
spectrograms without an additional module, leading to a faster image
transformation process than CWT. These findings highlight the
computational efficiency of the image transformation methods
employed for feature extraction. The statistical significance of the
Kaiser window function’s superior performance over other feature
extraction methods emphasizes its efficiency in this context, making
it a promising choice for researchers and practitioners seeking a balance
between computational speed and accuracy in ECG analysis.

We demonstrated the effectiveness of fine-tuned training in
enhancing CNN model performance. The results indicated
significant improvements in accuracy compared with training from
scratch. Notably, fine-tuning significantly improves the classification
performance of AlexNet, which initially exhibited no classification
capability when trained from scratch. Fine-tune training successfully
elevated the accuracy to 92.36% ± 1.59% (Morlet of CWT method),
showcasing the remarkable impact of fine-tuning in overcoming the
underfitting issue evident in the scratch-trained model. This
highlights the effectiveness of transfer learning, in which pre-
trained model weights are leveraged to enhance the initial learning
process by utilizing knowledge from the pre-trained models. In
contrast to training from scratch, fine-tuning mitigates underfitting
issues and enhances learning efficiency, underscoring the importance
of fine-tuning the ECG classification tasks and providing
recommended training strategies.
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FIGURE 6
Classification performance comparison for window functions of STFT image transformation.

FIGURE 5
Classification performance comparison for mother wavelet functions of CWT image transformation.
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Through extensive experiments, we compared the performance
of different feature extraction methods. We examined different
mother wavelet functions (Bump, Ricker, and Morlet) in the
CWT methods and window functions (Blackman, Hann, and
Kaiser) in the STFT methods to determine the most efficient
feature extraction method for improving the classification
performance of 2D-CNN model architectures.

One notable observation is that, in general, the classification
performance of STFT methods is notably lower in AlexNet. This
suggests that the choice of the image transformation method can
significantly affect the performance of CNN models, and certain
methods may be unsuited for specific architectures. Furthermore,
when comparing the best-performing methods, CWT evidently and
consistently outperformed STFT across various CNN architectures.
This finding demonstrates the importance of selecting an appropriate
image transformationmethod for ECG analysis and provides valuable
guidance to researchers. Researchers can make informed choices
regarding selecting feature extraction methods, potentially
improving the diagnostic accuracy of ECG classification tasks. This
research lays the foundation for developing more effective ECG-based
diagnostic tools and underscores the significance of feature extraction
in deep learning-based ECG classification.

From a model perspective, it is worth noting that ResNet-18, the
model with the third-fewest parameters, consistently demonstrated

the best performance across both image transformation methods.
This suggests that a model with parameters such as those of ResNet-
18 is sufficient for effective learning for ECG classification,
considering the information contained in the ECGs after image
transformation. Increasing the number of parameters beyond this
value does not yield a significant performance improvement.

In this study, we observed differences in the feature extraction
performance compared to existing research methodologies in ECG
signal analysis. As Table 2 illustrates, in existing studies using the
CWT as a feature extraction method, the wavelet function used in
the feature extraction method was not unified, and the Morlet
wavelet function was mainly used. However, our research
findings revealed a significant performance improvement when
utilizing the Ricker Wavelet in CWT-based feature extraction.
This wavelet function has not been widely used in previous
studies. The excellent performance of the Ricker Wavelet in this
study suggests that incorporating these changes into existing CWT-
based feature extraction techniques could potentially improve the
performance metrics. This finding contributes to the knowledge
about ECG signal analysis and represents a promising direction for
future research to refine further and optimize classification methods.

Our use of Grad-CAM heatmaps reveals how CNNs focus on
specific areas of ECG signals during classification. We observed distinct
differences in the heatmap distribution within the PVC classes.

FIGURE 7
Classification performances comparison of image transformation methods. Methods in subplots show the highest accuracy in each image
transformation.
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Furthermore, we confirmed that the CWT and STFT heatmaps focused
on opposite areas based on abnormal beats. We hypothesized that the
difference in image transformation results between the two time-
frequency methods may explain why the heatmaps produced by the
CWT method concentrated significantly on abnormal PVC beats, as
Figure 8C shows. In contrast, the heatmaps generated by the STFT
method primarily emphasized the opposite areas of abnormal beats, as
Figures8D shows. Hence, the activation maps generated by the CWT
methods played a role in the observed performance improvement
compared to the STFT.

Although our study provides substantial advancements in ECG
classification using CNNs, it has several limitations. First, our study
focused on binary classification, limiting their applicability to more
complex medical diagnoses. Future research should expand the

proposed methodology to include multiclass classification scenarios
to address this issue. Specifically, we propose adopting a 5-class AAMI
arrhythmia classification labeling standard to enhance our work’s
practical applicability and relevance in diverse medical settings.

Although using Grad-CAM to visualize the focus of CNN
architectures is highly beneficial, it has limitations regarding
resolution and object localization. In addition, Grad-CAM can fail
to localize multiple abnormal beats properly. This can be overcome by
developing visualization techniques with higher resolution and
accuracy for simultaneous object localization, such as Grad-CAM++
(Chattopadhay et al., 2018), which provides higher resolution and
accuracy in localizing multiple abnormal ECG patterns.

Another limitation is our reliance on pre-trained CNN models
from ImageNet. Although this approach benefits from established

FIGURE 8
Grad-CAM heatmap of Best Combination in Each Transformation Method: (A) Normal Class—CWT method, (B) Normal Class—STFT method, (C)
PVC Class—CWT method, (D) PVC Class—STFT method.
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metrics, it may limit the depth of understanding of how these models
specifically adapt to and perform ECG signal analysis. Future studies
should explore and develop CNN models specifically designed and
trained for ECG signal analysis, potentially leading to more accurate
and clinically relevant results. By improving the fine-tuning
methods, such as new learning image datasets after initializing
the weights of some layers (Han et al., 2018), we can secure a
good image search performance for existing weights and the ability
to solve specific problems of ECG signals simultaneously.

Furthermore, while the MIT-BIH Arrhythmia Database was
chosen for the detailed and comprehensive annotation of ectopic
beats, we acknowledge this study’s generalizability limitations. The
specificity of our focus on ectopic beat detection posed a challenge in
identifying datasets aligned with our research criteria. This has
emerged as a notable limitation in our study, which we fully
acknowledge. Considering the limitations identified in our
current study, we will undertake further research as more diverse
and comprehensive ECG datasets become available. This
commitment pertains to dataset variety and addresses the
limitations associated with binary classification discussed earlier
in our current approach. In addition, we plan to explore and refine
signal-processing techniques, including appropriate resampling and
denoising methods tailored to diverse datasets. By overcoming this
limitation, we aimed to enhance the applicability of our
methodology to a broader spectrum of medical diagnostic
scenarios that often involve complex, multiclass conditions.

5 Conclusion

In this study, we offer valuable insights into the utilization of
CNNs for ECG classification and present a comprehensive
analysis of various feature extraction methods. The presented
research findings collectively contribute to the expanding
knowledge on applying CNNs to ECG classification. Through
time-frequency-method-based image transformation, we
confirmed high classification performance without needing
models with many parameters. In addition, we validated the
improvement in 2D-CNN ECG classification performance
through transfer learning.

These findings collectively contribute to the growing body of
knowledge regarding the application of CNNs in ECG classification.
Our research highlights the significance of fine-tuned training and
selecting appropriate image transformation methods for ECG

classification, providing clear guidelines for practitioners and
researchers. These insights can enhance the accuracy and
efficiency of ECG interpretation, benefiting clinicians and
patients. In addition, measuring the computational efficiency by
measuring the feature extraction time for each method will improve
arrhythmia detection methods in various clinical scenarios, such as
emergency care, where rapid and accurate ECG interpretation is
critical. Furthermore, our research, conducted using single-lead
signal data, allows future application of our findings to patient-
centered medical technologies, such as wearable electrocardiogram
monitors, which enables our enhanced classification techniques to
provide continuous, real-time analysis to detect and intervene in
cardiac health problems early. Further research in this area could
explore additional image-transformation methods to improve the
capabilities of CNNs for ECG analysis.
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TABLE 2 Execution time of time-frequency methods.

Methods Function Average
(ms)

SD (ms) p-value

CWT Bump 214.16 44.39 <0.05

Ricker 206.62 41.03 <0.05

Morlet 228.29 83.89 <0.05

STFT Blackman 136.58 29.55 <0.05

Hann 134.76 27.25 0.97

Kaiser 134.73 30.64 -
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