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This work focuses on optimizing the estimation of accumulated rain from
measurements of the attenuation level of signals from commercial microwave
links (CMLs). The process of accumulated rain estimation is usually based on
estimation after detection, where it is first determined whether there is rain for a
specific period, and then the accumulated rain at the detected rainy period is
estimated. Naturally, errors in detection affect the accuracy of the consequent
accumulated rain estimation. Traditionally, the detection and the estimation steps
are designed independently. The detection threshold is arbitrarily set at the lowest
level that would be declared as rain, without considering its effect on the
accuracy of the accumulated rain estimation. This study applies a novel
method that sets a detection threshold to optimize estimation after detection
and apply it for accumulated rain estimation. It is based on optimizing a post-
detection estimation risk function that incorporates both the estimation and
detection-related errors; this essentially takes into consideration the coupling of
the detection and the estimation stages and thus optimizes the overall
accumulated rainfall estimation. The proposed approach is applied to actual
CML attenuation measurements taken from a cellular network in Gothenburg,
Sweden. This demonstrates that the proposed method achieves better accuracy
for accumulated rain estimation comparedwith the detection threshold being set
independently.
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1 Introduction

The task of rain estimation based on attenuation measurements from commercial
microwave links (CMLs) has attracted much focus after first being introduced by Messer
et al. (2006) and developed in studies such as Ostrometzky and Messer (2014), D’Amico
et al. (2016), Ostrometzky et al. (2015), Graf et al. (2020), Overeem et al. (2013), and Fencl
et al. (2015).

CMLs as opportunistic sensors for rain monitoring can be used either as an additional
layer of meteorological sensors (mainly in developed countries) or as stand-alone rain-
monitoring infrastructure (mainly in the developing world) where other meteorological
instrumentation is sparse (Zhang et al., 2023). In general, CML hardware is controlled by a
network management system or can be accessed by network providers directly to log and
report the transmitted signal level (TSL) and received signal level (RSL) time series using
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sampling intervals of seconds to minutes (Messer and Sendik, 2015).
The channel attenuation can thus be directly calculated.

The accuracy of the accumulated rain estimation is highly
affected by the preliminary detection step, in which it is detected
whether a specific time frame is wet or dry. Errors in the preliminary
detection step create bias in the subsequent estimation step. In
particular, misdetecting rain events will result in the
underestimation of the accumulated rain. Similarly, falsely
detecting a dry or “no rain” event as rainy will result in
overestimation of the accumulated rain. Therefore, careful design
of the detection step can optimize the performance of both detection
and estimation and reduce inherent bias.

Distinguishing between attenuation due to rain and other-than-
rain attenuation is challenging since the attenuation baseline
fluctuates due to variations in water vapor concentration,
temperature, wind effects, and other phenomena (both during a
rain event and dry periods). Nonetheless, since rain is the major
factor of attenuation for CMLs operating at the K- and E-band
frequency ranges (ITU-R.530, 2009; ITU-R.838, 2005) and its
presence introduces attenuation components other than Gaussian
measurement noise, it is challenging to detect and estimate rain using
CML attenuation measurements. Extraction of the rain-induced
components from the attenuation signal is achieved using different
methods—see reviews in Zhang et al. (2023) and Chwala and
Kunstmann (2019). However, these approaches are based on pre-
set thresholds for detecting rainy periods, followed by rain estimation.

In order to obtain meaningful rain-intensity estimations from
CMLs, most current approaches focusing on the preliminary task of
classifying between wet and dry periods rely on a test with
comparisons based on a pre-set threshold. For instance, in
Rahimi et al. (2003), wet and dry events were distinguished by a
test based on the correlation between the RSL for different
frequencies, as the rain affects each frequency differently. In
Goldshtein et al. (2009), the classification test used the time-
domain correlation of bidirectional CML signals. In Overeem
et al. (2016), wet periods are identified by analyzing the temporal
correlation of different CMLs in the same area, as it is assumed that,
when rain is present, its effects on nearby CMLs will be similar, and,
thus, the correlation between the CML attenuation signals will
increase (compared to dry periods, in which additive noise plays
a more significant role on the attenuation variations). Schleiss and
Berne (2010) adopt another approach by presenting a wet/dry
classification test by analyzing the local variability of the CML
signal. Such local variability of the CML signals during rainy
events can also be detected in the frequency domain, as
demonstrated by another wet/dry classification method, by
analyzing the spectra of the signal fluctuations (Chwala et al.,
2012). In Wang et al. (2012), wet/dry classification was
performed based on Markov switching models. These approaches
(among many others) leveraged the fact that, during rain events,
attenuation signals properties (such as variance, correlation with
different nearby CMLs, or absolute values) change in a meaningful
and detectable manner. Moreover, when historical data for training
are available, machine learning approaches designed to classify
between wet and dry periods have demonstrated good results
(e.g., Habi and Messer (2018) and Polz et al. (2020)).
Precipitation classification using a decision tree method was
performed by Cherkassky et al. (2013). However, in all the above,

the setting of a detection threshold is arbitrary—there is no
methodology for setting it to detect a rainy period with respect
to false alarms and the misdetect ratio, which could potentially
optimize the consequent estimation approach.

The contribution in this work is in applying an advanced
statistical signal processing tool to accumulated rainfall
monitoring from wireless communication measurements. We
show that a detection threshold that optimizes a novel risk
function, proposed in Weiss et al. (2021), can be applied to a
real-world application of estimation after detection, and that
implementing that threshold in this application improves the
accuracy of accumulated rainfall estimation. We therefore
propose a new method for estimating total accumulated rain by
taking into consideration the preliminary detection step. In
particular, we analyze the effects of the coupling of each step’s
error for the first time in this particular application. The detection
stage is performed by comparing a function of the signal
attenuation measurements against a threshold. The threshold is
set by optimizing a risk function that incorporates errors that relate
to the combined estimation and detection stages (Weiss et al.,
2021). Using this risk function, we account for the impact that the
detection step might have on the accuracy of the accumulated rain
estimation and thus optimize the complete scheme. We tested the
proposed approach by applying it to attenuation measurements
taken by CMLs of an operational cellular network in Gothenburg,
Sweden, and estimated the accumulated rain through periods of
24 h. We show that the detection threshold that optimizes the
proposed risk function agrees with the threshold that empirically
best matches the estimated accumulated rain, with the value
measured by a corresponding rain gauge. In addition, we
compare our methodology with a well-established CML-based
rain detection approach (Schleiss and Berne, 2010) and show
the potential improvement of the overall accuracy of rainfall
estimation that our proposed approach offers.

2 Model and performance
evaluation measure

2.1 Model

We consider the problem of estimating the accumulated rain
from the attenuation level of signals from CMLs, where it should
first be decided if there is rain at the tested time frame. This problem
can be interpreted as an “intensity estimation after detection”
problem (Chaumette et al., 2005; Weiss et al., 2021), where a
decision between two hypotheses is first performed (detection)
and then, based on the resulting decision, estimation of the
unknown parameters under the chosen hypothesis is performed.

The problem of post-detection accumulated rain estimation can
be mathematically described as follows. We consider an observation
vector, x = [x[0],. . .,x[N − 1]]T, which includes the attenuation level
of signals from CMLs with N samples. Then, we assume a given
detector that aims to distinguish between a rain event (hypothesis
H1) and a dry (say “humidity”) event (hypothesis H0) as follows:

ŝ x, γ( ) � H1, if g x( )≥ γ
H0, otherwise

{ , (1)
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where g(·) is a function of the data defining the specific detector
(detailed in Section 2.3). The accuracy of the detection stage depends
on the detection threshold value γ.

We assume that, if there is rain (mathematically, if H1 is
correct), then the measurement model is given by

x[n] � βθ + ω[n], n � 0, . . . , N − 1, (2)
where βθ represents the attenuation caused by rain and θ ∈ [0,Θ] is
an unknown parameter to be estimated which represents the rain-
intensity value (in mm/h). The known range parameter Θ is
determined by past experiments in the specific area. The known
physical parameter β approximates the conversion from rain
intensity to attenuation and depends on environmental
conditions, the properties of the CMLs—such as frequency,
polarization, rain drop size distribution (DSD), and the
surrounding temperature. For the sake of simplicity, the noise
sequence ω[0], . . ., ω[N − 1] is assumed to be Gaussian with zero
mean and known variance σ2. In this application, the noise
contains components other than the Gaussian measurement
noise (Fencl et al., 2020). However, for tractable theoretical
analysis, we assume a simplified model, ignoring these
components, as well as rain fluctuations during the
observation interval.

The accumulated rain estimation after detection method is as
follows: given the observation vector of attenuation measurements
in time frame x, decide whether these attenuation vector values are
induced due to a rain event,H1, or to other-than-rain phenomena,
H0 (no rain), using detector statistics ŝ(x, γ) and comparing it to a
threshold. If H1 (rain model) is chosen, estimate the underlying
parameter, θ, which represents the average rain intensity in that
time frame, using an estimator θ̂(x). Then, multiply it by the length
of the time frame and add it in the summation which will give the
estimation of the accumulated rain. If H0 is chosen, the rain is
estimated as zero. Performing this procedure on all the time frames
in the tested period will result in the accumulated rain estimation
for that period. That is, both the detection and the estimation steps
are based on the same observation vector—x. This setting is
described schematically in Figure 1. Note that this scheme is
rather standard. Our contribution is in the way the detection
threshold is set.

2.2 Joint detection–estimation risk

We use a combined performance measure of
detection–estimation proposed by Weiss et al. (2021) to set up
the system design (i.e., the detection threshold) to improve the
accumulated rainfall estimation after detection.

We were specifically interested in the estimation and detection
errors associated with the existence of rain, represented by
hypothesis H1. In particular, if H0 is true, θ is zero. Following
Weiss et al. (2021), we denote the probability that hypothesisHj was
chosen when the true hypothesis isHi by Pi(ŝ � Hj), i, j = 0, 1. The
conditional expectation given that Hj was chosen while the true
hypothesis is Hi is denoted by Ei[·|ŝ � Hj], i, j = 0, 1. We consider
the following contributions to the risk function based on the
definitions of Weiss et al. (2021).

1. Mean squared selected error

MSSE θ̂, θ, ŝ( ) � P1 ŝ � H1( )
E1 θ̂ − θ( )2|ŝ � H1[ ]

Θ2 . (3)

Here, the term MSSE(θ̂, θ, ŝ) is the squared estimation error of rain
intensity when rain is detected by the detector—ŝ � H1—and the
true model represents that the rain intensity is indeed larger than
zero. Thus, the estimation error is θ̂ − θ.

2. False alarm risk

RiskFA θ̂, ŝ( ) � P0 ŝ � H1( )
E0 θ̂

2|ŝ � H1[ ]
Θ2 . (4)

Here, the term RiskFA(θ̂, ŝ) (falsely) penalizes the wrong addition of
any amount of rain intensity that is larger than zero to the
accumulated rain estimation, due to wrongly detected rain
events. In this case, θ = 0, representing the true value of rain
intensity, is equal to zero. Consequently, the estimation error in
this case is given by θ̂ − 0.

3. Misdetection risk

RiskMD θ, ŝ( ) � P1 ŝ � H0( ) θ
2

Θ2. (5)

Here, the term RiskMD(θ, ŝ) penalizes the misdetection of rain
events. In this case, the detector falsely detected a “no rain”

FIGURE 1
Post-rain detection estimation of the accumulated rain: CML-recorded attenuation time series are fed into the detector, which detects whether the
attenuation time series is affected by rain. During periods in which rain was detected, an estimation stage was performed in order to establish the
accumulated rainfall amount.
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event, and, thus, the assumed rain intensity estimation in this period
is set to zero, θ̂ � 0. As a result, the estimation error is 0 − θ, and the
penalty increases as the true value of the misdetected intensity of the
rain increases.

The overall risk is given by

R θ̂, θ, ŝ, γ( ) � MSSE θ̂, θ, ŝ( ) + RiskFA θ̂, ŝ( ) + RiskMD θ, ŝ( ). (6)

This risk considers both detection and estimation errors, and its
minimization aims at optimal estimation after the detection of the
accumulated rain. It should be noted that the three terms
contributing to the risk (as detailed in (3)–(5)) are all normalized
by the maximal rain-intensity value Θ; thus, the obtained risk
elements are always between 0 and 1.

This risk function is an adaptation of the risk proposed in Weiss
et al. (2021) to the case of a non-Bayesian (frequentist) setting in
which only one of the hypotheses is true. This is designed to focus on
post-rain-detection estimation, so that errors from “no-rain” periods
are irrelevant. Eq. 6 thus compromises three terms: MSSE (which
takes into account the probability of the detection of rain in cases
where it did occur), the misdetection (MD) term (which takes into
account the probability that we decided no rain given that rain
occurred), and the false alarm (FA) term (which takes into
account the probability that we detected rain but rain was absent).

2.3 Methods

In this subsection, we describe the procedure of post-detection
estimation of the accumulated rain from signal attenuation
measurements obtained from CMLs over a 24-h period, the
calculated risk of (6) for that period, and the proposed detection
threshold optimization.

Following the general scheme described in Figure 5.1, the post-
detection estimation procedure is implemented as follows: given a vector
of signal attenuation measurements over a 24-h period as logged by a
CML, we divide the vector into W non-overlapping windows of N
samples each. For each window, we decide whether it contains times in
which rain fell or not, based on the detector ŝ(x, γ) from (1) with

g(x) � �x, (7)
where �x � 1

N∑N−1
n�0 x[n] in the first experiment (presented in Section

3.3). This sample-mean detector was used in Song et al. (2020). In
the second experiment (presented in Section 3.3), we use the
variance detector used in Schleiss and Berne (2010):

g(x) � 1
N

∑N−1

n�0
(x[n] − �x)2. (8)

If it detects rain (i.e., chooses hypothesis H1), the averaged rain
rate (in mm/hr) throughout the window is estimated by a
constrained maximum likelihood estimator, based on the
measurements model of (2), which is given by

θ̂ � min max
1
βN

∑N−1

n�0
x n[ ], 0⎛⎝ ⎞⎠,Θ⎡⎢⎢⎣ ⎤⎥⎥⎦. (9)

The estimated rain intensity is multiplied by the time interval of the
window, N

fs
, where fs is the CML sampling rate, providing the

estimate of the accumulated rain in that period (in mm). It
should be noted that the analysis of the estimator of (9) is
meaningful only during periods in which the detector chooses
H1. When H0 is chosen, θ̂ � 0.

During the scan of the W windows of the signal attenuation
vector, we calculate 1) mean squared selected error (MSSE) of (3) at
times in which rain was correctly detected; 2) RiskFA of (4) at times in
which rain was falsely detected during a dry period; 3) RiskMD of (5)
at times in which rain was misdetected during a rainy period. These
metrics guide the threshold-setting process, prioritizing estimation
performance over detection performance.

As ground-truth values for the risk calculation, we use
measurements from rain gauges that are located near the CMLs.
For rain intensity values, we converted the rain-gauge
measurements to mm/h. The classification to “rainy” and “dry”
windows’ ground-truth is also based on the rain-gauge
measurements. Note that the risk calculation presented is not
accurate, especially for windows of long duration, as the
calculation is valid under the assumption that the rain intensity
remains constant within each window. This is obviously incorrect
and will result in an error. However, when considering windows
that are relatively short, the resulting error is smaller and thus
affects the overall results to only a small degree. The procedures of
the post-detection estimation of the accumulated rain and risk
calculation were repeated for different threshold values and a
different number of windows, W, in the range 100–280 in the
first experiment and 23 per day1 in the second experiment.

3 Experimental demonstration

3.1 Data

We demonstrate our presented approach using actual
attenuation measurements taken by CMLs. The CMLs operated
as part of the backhaul of a cellular network in Gothenburg, Sweden,
in 2015–2016. The data were collected by Ericsson AB and the
Swedish Meteorological and Hydrological Institute (SMHI). We
used four dual-channel CMLs near Gothenburg and their
corresponding closest rain gauges. A map of the locations of the
four dual-channel CMLs and their corresponding rain gauges is
presented in Figure 5.1 in Ostrometzky (2017).

Since being first introduced in Messer et al. (2006), CMLs have
been widely used for rain intensity estimation in many scenarios
(e.g. Graf et al., 2020; Fencl et al., 2015; Chwala and Kunstmann,
2019; Overeem et al., 2016). Most research has been based on a
simplified relationship between rain intensity and rain-induced
microwave link attenuation given by the power law (Olsen
et al., 1978):

A � aRbL, (10)
where A is the attenuation due to rain in dB, R is the CML averaged
rain rate (in mm/h), L is the microwave link length (in km), and a, b

1 Setting each window to cover a full hour of measurements, excluding the

last hour to ensure full alignment of the data
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are coefficients determined by the specific CML frequency
polarization and by the DSD. Table 5.1 in Ostrometzky (2017)
details all relevant properties of the CMLs, which are a subset of the
CMLs publicly available in Andersson et al. (2022) and the
corresponding power law parameters used in (10) for the four
CMLs. For convenience, we summarize the CMLs’ properties
in Table 1.

Based on Tables 1 and (10), we calculated parameter β of (2) by
approximating b to be equal to 1 (and thus β = aL).

The data include signal attenuation measurements taken by the
four dual-channel CMLs, collected over two 24-h periods: 2 June
and 25 July 2015. The attenuation measurement sampling rate was
0.1 Hz (one sample every 10 s), and the measurements are reported
in dB. Each CML was coupled with its closest rain gauge. The rain
gauges produced measurements at intervals of 1 min, measuring
the accumulated rain in the interval (in mm). For more
information about the rain gauges and CMLs used, see
Ostrometzky (2017).

TABLE 1 Properties of the available CMLs: path length (Length), frequency (Freq.), polarization (Pol.), and power law coefficients of (10), taken from ITU.

CML no. and channel Length (km) Freq. (GHz) Pol. H/V a (ITU838.3) b (ITU838.3)

1a 2.872 28.1785 H 0.2081 0.9661

1b 2.872 29.1865 H 0.2256 0.9562

2a 1.742 38.5280 V 0.3956 0.8517

2b 1.742 37.2680 V 0.3688 0.8603

3a 1.206 38.5280 V 0.3956 0.8517

3b 1.206 37.2680 V 0.3688 0.8603

4a 1.283 38.3180 V 0.3911 0.8531

4b 1.283 37.3240 V 0.3700 0.8599

FIGURE 2
Results forW=100 orW=280 for each of the channels aof the CMLs detailed in Table 1. In each panel, the top rowpresents the risk (in arbitrary units)
versus the threshold value (in arbitrary units), where theminimum risk is the point marked in red. The bottom row in each panel presents the accumulated
rain estimation (in mm) (blue) and the ground-truth accumulated rain from the rain gauge (orange) versus the threshold.
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We evaluate the performance of the proposed approach for the
sample-mean detector in Section 3.2 and for the variance detector
in Section 3.3.

3.2 First experiment—the sample-
mean detector

In the first experiment, we performed the detection using the
sample-mean detector from 1 and 7. Figure 2 presents a
comparison between 1) the empirical threshold obtained by
optimizing the risk and 2) the theoretical threshold that yields
the most accurate accumulated rain estimation with respect to
(w.r.t.) the ground-truth value from the rain gauges. Each figure
presents the results for different dates (2 June or 25 July 2015) and
varying window numbers W (100 or 280). In each figure, the first
row presents the risk versus the threshold value for the four links,
and the second row presents the ground-truth and the
accumulated rain estimation versus the threshold. The
theoretical threshold is the best threshold according to the
accuracy of the accumulated rain estimation w.r.t. the ground
truth from the rain gauge is indicated at the intersection of the blue
graph and the orange line in the bottom row, showing that there is
good resemblance between the theoretical threshold determined in
the intersection points and the empirical2 threshold determined by

optimizing the risk (the red points) for all values of the number of
windows. These results show that the value of the detection
threshold that minimizes the proposed risk agrees with the
value of the threshold that best matches the estimated
accumulated rain with the value measured by the corresponding
rain gauge.

Figure 3 presents the accumulated rain estimation for the
empirical threshold that minimizes the risk versus the ground-
truth value of accumulated rain from the rain gauges. Each group
of points with the same color represents results from one of the
four dual-channel links and on one of the two examined dates.
The different points in each group correspond to estimation done
with different values of the number of windows W and on
different channels. It is apparent that the estimation points fit
well with the ground-truth values from the rain gauges, with a
slight overestimation. Indeed, the design parameter W, which
corresponds to the number of windows, affects the accuracy of a
given scenario. Figure 4 presents the empirical threshold that
minimizes the risk (corresponding to the red points in Figure 2)
versus the theoretical threshold that yields the most accurate
estimation w.r.t. the rain gauge (corresponding to the
intersection points of the blue and orange graphs in Figure 2).
Like Figure 3, each group of points represents estimation from a
single link at a specific date, and the different points correspond
to a different number of windows and channels. It is apparent
that the empirical threshold values fit the theoretical ones well,
with a slight underestimation of the threshold which results in an
overestimation of the accumulated rain (Figure 3).

As can be seen in Figure 2, different thresholds minimize the risk
for a specific link on different days. This raises the question of how to
select one threshold that will be used for a specific link. For that
purpose, we tested the accumulated rainfall estimation performance

FIGURE 3
Accumulated rain estimation from theCMLs (channel a from Table 1) versus accumulated rain according to the rain gauge. Each group of points with
the same color represents estimation based on one dual-channel link for different dates and varying window numbers, W.

2 It is worth noting the outlier in the results for link3 during the 2 June event.

This anomaly might correspond with the fact that, in this case, the function

has a number of local minima points, as is evident from the relevant plots

in Figure 2.
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when one threshold is applied in each direction of the link for all
dates. The threshold we took is the average of the threshold values
that minimize the risk on the different dates. The results are
presented in Figure 5, which shows that, in most cases and rain
events, taking the same averaged threshold value per link produces
good results.

3.3 Second experiment—the
variance detector

In this experiment, we performed the detection using the
variance detector from (1) and 8. We compare the accumulated
rain estimation results when using our method for setting the

FIGURE 4
Empirical versus theoretical threshold. Each group of points with the same color represents estimation based on one dual-channel link for different
dates and varying window numbers, W.

FIGURE 5
Accumulated rain estimation from the CMLs versus accumulated rain according to the rain gauge. Each group of points with the same color
represents estimation based on one dual-channel link for different dates and varying window numbers, W. For each link, direction, and number of
windows, the same averaged threshold was used for all dates.
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detection threshold with the results obtained by the method for
setting the threshold suggested in Schleiss and Berne (2010). In
order to calculate the threshold based on the method in Schleiss and
Berne (2010), we used attenuation measurements of dry periods
during 12 days from the four CMLs in Gothenburg. We divided the
dry-period attenuation measurement vectors to windows of 60 min
and calculated the variance estimator for each window:

σ̂2W � 1
NW

∑NW−1

n�0
(x[n] − �x)2, (11)

where �x is the sample-mean over the window W and NW is the
number of samples in this window. We finally set the detection
threshold for each link to the 99% quantile of the variance estimators
σ̂2W of this link.

Figure 6 presents the accumulated rain estimation results when
the threshold was set by the proposed minimum-risk method and by
the reference method from Schleiss and Berne (2010) versus the
ground-truth value of accumulated rain from the rain gauges. Each
group of points represents the estimation from a single link for
different dates, and the different points correspond to a varying
number of windows and channels of the link. It can be seen that the
estimation results obtained using the proposed method (denoted in
Figure 6 by the “·”marker) fit the ground-truth values better than the
estimation results obtained when setting the threshold using the
reference method (denoted in Figure 6 by the “+” marker). When
calculating the root mean square error (RMSE) of the accumulated
rain estimation compared to the accumulated rain from the rain
gauges, we received 6.9 mm using our method and 18.8 mm using
the reference method. This demonstrative comparison implies that
considering the accumulated rainfall estimation error during the

detection stage can result in better total accumulated rainfall
estimation compared to the conventional approaches in which
the detection and estimation stages are decoupled.

4 Discussion and conclusion

In this study, we utilized the risk function suggested in Weiss
et al. (2021) for the problem of post-detection accumulated rain
estimation in order to set an optimal detection threshold. The
considered risk used for the optimization penalizes both
estimation and detection-related errors. Using actual
measurements from operational CMLs and reference
measurements from nearby rain gauges, we show that this
approach significantly improves the accuracy of the accumulated
rain estimation, relative to a method of setting the detection
threshold based on the 99% quantile of the variance estimates
over dry periods. We showed that the threshold that minimizes
the empirical risk has good resemblance to the theoretical threshold
that best matches the estimated accumulated rain with the value
measured by the corresponding rain gauge.

In deriving the theoretical results, we assumed some
simplifying assumptions as mentioned throughout the paper.
Specifically, we assumed that the power law parameter b (of
(10)) is equal to 1 and the rain is assumed to fall at a constant
intensity within the short time window, and we ignore noise and
interference components other than additive measurement noise.
These assumptions are obviously not accurate, especially when
using CMLs operating at high or low frequencies (for which 0.5 <
b < 2 values are away from 1) and in locations where very strong
and short bursts of rain are common. Nonetheless, as the empirical

FIGURE 6
Accumulated rain estimation from the CMLs versus accumulated rain according to the rain gauge for the proposed method (.) and the reference
method of 99% quantile of variance estimators in a dry period (+) (Schleiss and Berne, 2010).
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results show, practical robustness exists, and a deviation from the
assumed approximations does not significantly change the results.
However, future research may adapt the proposed approach to a
more realistic rainfall model.

Lastly, it is worth noting that selecting the specific number of
the effective size (i.e., the time-duration) of each window W (as
described in Section 2) should be taken with consideration of the
local climate in the area of interest. On the one hand, choosing a
size W that is too long might reduce the accuracy if the rain
variability changes significantly within each W; on the other
hand, choosing W that is too short will result in fewer samples
from which the risk is calculated, thus also negatively affecting
the accuracy. In the experiment presented in this paper, we
indeed show that a range of selected sizes of W all give similar
outcomes. However, this might not be the case for
different areas.

Future research can also focus on designing not only the
detection threshold in a given estimation after detection scheme
but also specific detection or estimation methods designated for
accumulated rain that optimize the proposed joint
detection–estimation risk. In addition, new performance bounds
could be developed for this task, similar to the MSE bounds in post-
model-selection estimation (Meir and Routtenberg, 2021; Nadav
and Routtenberg, 2023).
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