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In this letter, we address the problem of phase-only transmit beamforming to
generate a wide beam with an almost flat mainlobe for phased arrays. Instead of
resorting to time-demanding optimization procedures, the proposed method is
grounded on the Fourier analysis and exploits the fact that radiation pattern can be
written as the Fourier transform of the aperture illumination function. In this
context, we consider a complex linear frequency modulated illumination function
and derive the equations allowing for a control of the beam width. The related
computational complexity is linear in the number of the array elements. The
numerical examples show the effectiveness of the proposedmethod in forcing the
desired beam shape with good sidelobes’ properties and also in comparison with
an iterative competitor.

KEYWORDS

beamforming, complex-valued linear frequency modulated signal, flat beam, phase-only
beamforming, radar, transmitter module saturation

1 Introduction

Nowadays, modern radars are equipped with phased arrays whose flexibility allow for
the development of the multifunction systems where the search and track functions (as well
as other advanced functions) coexist without interfering with each other. This capability is
strongly related to the beam agility provided by electronic scanning (Melvin, 2012) or,
equivalently, electronic beamforming. The advances in technology and digitalization have
made it possible to conceive “fully-digital” system architectures with high computational
throughput. In this context, Digital BeamForming (DBF) techniques take advantage of the
aforementioned technological benefits by combining digital samples at the output of each
channel to shape the resulting array beam pattern according to specific requirements and/or
the radar function under operation.

Focusing on the search function, the objective of the system consists in scanning the
search volume of interest subject to requirements related to reaction time, transmitted
energy, priority level assigned to other functions by the system scheduler, and number of
decisions in the unit time interval (Melvin and Scheer, 2013). Therefore, for long-range
radars, the transmitted energy should ensure that the echoes (also including the losses
associated with the channels) of a target located at the maximum distance specified by the
system requirements is sufficient to achieve the required probability of detection. For this
reason, it would be appropriate to use the transmitter amplifiers in their saturation region,
namely to transmit the maximum available power. In such a situation, the number of degrees
of freedom for DBF on transmit decreases since the amplitudes of the weights applied to each
antenna element are constrained to be constant. As a consequence, DBF on transmit can be
accomplished by only exploiting the phase values of the complex weights. In addition, time
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requirements, the size of the solid angle over which the search is
conducted, and the number of range bins within the radar window
might limit the scan strategy due to the number of decisions per unit
time. In this case, it would be suitable to cover the angular region
under surveillance with a low number of pointing directions. To this
end, the mainbeam should be sufficiently wide and with a limited
ripple in order to ensure a coverage that is as uniform as possible
along the azimuth and/or the elevation dimensions.

Most of phase-only (or constant modulus) beamforming
techniques are grounded on iterative/numerical optimization
procedures. In fact, the constant modulus constraint makes the
problem nonconvex and NP-hard (Cong et al., 2022). To solve it,
some solutions are obtained through a semidefinite relaxation of
the constraint to transform the optimization problem into a
convex problem that can be solved by means of well-known
numerical tools [(Gershman et al., 2010; Tranter et al., 2016;
Tranter et al., 2017; Rixon Fuchs et al., 2022), and references
therein]. Other existing strategies exploit statistical and
evolutionary methods to find solutions as close as possible to
the optimal one (Hatam, 2022). Suitable combinations of the
aforementioned approaches can also be found in (Hatam, 2022).
Besides the goodness of the proposed solutions in terms of
optimality, reducing the computational requirements
represents another critical aspect related to the design of
beamforming methods. This fact is corroborated by the effort
of the scientific community aimed at devising fast iterative/
numerical beamforming algorithms (Farina, 1992; Kautz,
1999; Sun and Li, 2003; Demir and Tuncer, 2014; Webster
et al., 2015; Tranter et al., 2016; Alhujaili et al., 2019; Liu
et al., 2020; Pallotta et al., 2021; Zhang et al., 2021; Angeletti
et al., 2022; Cong et al., 2022).

In this letter, we describe a phase-only transmit
beamforming method for phased array that does not rely on
any iterative/numerical optimization routine. It allows us to
generate “an almost” flat beam whose width in terms of angular
coverage can be easily set without running any numerical
procedure when the radar changes its pointing direction. To
this end, we exploit an elementary property of antenna theory,
namely that in the far field, the variation of the electronic field
intensity can be written as the (spatial) Fourier transform of the
aperture illumination function. In the case of phased arrays, the
radiation pattern can be obtained from the Discrete Fourier
Transform (DFT) of the weights applied to each array element
(Skolnik, 2001; Richards, 2014). Therefore, we reason in terms of
the Fourier analysis and we find a sequence of phasors with
constant modulus whose power spectral density satisfies the
system requirements in terms of desired beam width and
flatness. Such an approach is new and appears here for the
first time (at least to the best of authors’ knowledge). Recalling
that the Fourier transform of a complex Linear Frequency
Modulated (LFM) pulse can be approximated by a rectangular
window with a duration equal to the signal bandwidth (see the
stationary phase method) (Papoulis, 1977), a sequence of
weights can be drawn from such a signal. Thus, we establish
the analytical link between the spatial bandwidth and the
angular coverage of interest along the azimuth and elevation
directions also verifying the condition that avoids grating lobes.
The final weights can be obtained through the Hadamard

product between the steering vector at a given pointing
direction and these coefficients, hence requiring a number of
operations that is linear in the number of array elements and
allows for real-time and fast implementation. The numerical
examples are obtained by using synthetic data and comparing
the proposed approach with a suitable iterative competitor. The
results show the superiority of the proposed approach over the
considered iterative competitor in terms of computational
requirements as well as desired response. Specifically, the
variation of the beam width can be accomplished in a
straightforward manner without any iterative and time-
demanding procedure. Moreover, the mainbeam experiences
limited ripples also in the presence of quantized phasors.

The remainder of this letter is organized as follows. The next
section describes the proposed method and provides the link
between the angular sector to be covered and the spatial
frequency bandwidth. Section 3 contains numerical examples
obtained with synthetic data. Finally, concluding remarks and
possible future research tracks are outlined in Section 4.

2 Method description

In this section, we derive a procedure that allows the system
engineer to compute the weights of the beamformer assuming that
the system is equipped with equally spaced elements arrayed in a
rectangular grid as depicted in Figure 1 where the array is looking
towards the z-axis.1 Now, notice that given the Fourier transform of
a finite-duration analog signal, it is possible to express the DFT of a
sequence extracted from the analog signal as a function of the
original spectrum. In fact, the Discrete Time Fourier Transform
(DTFT) of the finite-duration sequence is a periodic extension with a
step equal to the sampling frequency of the analog signal spectrum,
whereas the DFT is obtained by sampling the DTFT within the
fundamental period (Oppenheim and Schafer, 1975). Thus, for
simplicity, we proceed by considering a rectangular continuous
aperture (see also Figure 1) and observe that the two-
dimensional field-intensity pattern is given by (Stutzman and
Thiele, 2012)

E θ, ϕ( ) � ∫+∞

−∞
∫+∞

−∞
a x, y( )ej2πsin θλ x cos ϕ+y sin ϕ( )dxdy, (1)

where a(x, y) is the 2-dimensional aperture illumination function
that accounts for the finite aperture size along the x-axis, Dx say, and
the finite aperture size along the y-axis, Dy say, i.e.,

a x, y( ) � f x, y( )ΠDx x( )ΠDy y( ) (2)

with f(x, y) a generic function and

ΠD t( ) � 1, −D/2≤ t≤D/2,
0, otherwise,

{ (3)

λ is the carrier wavelength, while θ and ϕ are defined in Figure 1. Let
us introduce the direction cosines u = sin θ cos ϕ and v = sin θ sin ϕ
(Mailloux, 2018), then (1) can be recast as

1 It is important to highlight that different covering grids can be considered.
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E θ, ϕ( ) � ∫+∞
−∞∫+∞

−∞a x, y( )ej2π1λ xu+yv( )dxdy
� ∫Dx/2

−Dx/2
∫Dy/2
−Dy/2f x, y( )ej2π1λ xu+yv( )dxdy

∝∫Dx/2
−Dx/2

∫Dy/2
−Dy/2f λα0, λβ0( )ej2πuα0

× ej2πvβ0dα0dβ0,

(4)

where A∝ Bmeans that A is proportional to B, α0 = x/λ, and β0 = y/
λ. Notice that the last equation represents the 2-dimensional Fourier
transform of the illumination function. Therefore, according to the
spectral properties of such a function, different beam shapes can be
obtained.

As stated in Section 1, we are interested in synthesizing a
radiation pattern by exploiting the phase information only and
that exhibits a tunable width along both azimuth and elevation. To
this end, we set

f x, y( ) � ejπKxx2ejπKyy2 , (5)

that is a 2-dimensional LFM where Kh = Bh/Dh, h ∈ {x, y}, is the so-
called chirp rate along the h-axis and Bh > 0 the corresponding
spatial bandwidth. Replacing (5) in (4), we obtain

E θ,ϕ( ) ∝∫Dx/ 2λ( )
−Dx/ 2λ( )e

jπKxλ
2α20ej2πuα0dα0

× ∫Dy/ 2λ( )
−Dy/ 2λ( )e

jπKyλ
2β20ej2πvβ0dβ0

� ∫Dx/ 2λ( )

−Dx/ 2λ( )
ejπKxλ

2α2e−j2πuαdα︸											︷︷											︸
Fx u( )

× ∫Dy/ 2λ( )

−Dy/ 2λ( )
ejπKyλ

2β2e−j2πvβdβ︸											︷︷											︸
Fy v( )

,

(6)

where F x(u) and F y(v) are the Fourier transforms of
ejπKxλ

2α2ΠDx
λ
(α) and ejπKyλ

2β2ΠDy
λ
(β), respectively. Exploiting [21,

Ch. 8, Theorem 1], the following approximations hold

|F x u( )|≈ CxΠDx/λ
u

λ2Kx

( ),

|F y v( )|≈ CyΠDy/λ v

λ2Ky

( ),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7)

where Cx > 0 and Cy > 0 are suitable constants. As a consequence, the
spatial frequency components are nonnegligible when the following
inequalities hold

−Dx

2λ
≤

u

λ2Kx

≤
Dx

2λ
0 − λBx

2
≤ u≤

λBx

2
, (8)

−Dy

2λ
≤

v

λ2Ky

≤
Dy

2λ
0 − λBy

2
≤ v≤

λBy

2
. (9)

Let us denote by φ and ϑ the azimuth and elevation angles,
respectively, and observe that (Richards, 2014; Mailloux, 2018)

u � cos ϑ sinφ,
v � sin ϑ.

{ (10)

Thus, from (9) and 10, we can write

| sin ϑ|≤ λBy

2
(11)

and denoting by ϑ0 ∈ [0, π/2] the value of ϑ such that the equality
holds, we obtain

sin ϑ0 � λBy

2
. (12)

Now, given ϑ0 ∈ [0, π/2], using (8) and 10, we come up with the
following inequality

| cos ϑ0 sinφ|≤ λBx

2
. (13)

Let φ0 ∈ [0, π/2] be a value for the azimuth angle such that the
equality is true, then, we can write

cos ϑ0 sinφ0 �
λBx

2
. (14)

FIGURE 1
Geometry of the antenna array.
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It follows that Bx and By can be set as

Bx � 2
λ
cos ϑ0 sinφ0,

By � 2
λ
sin ϑ0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

where φ0 and ϑ0 allow for the control of the beam width along the
azimuth and elevation dimensions.

Finally, it is important to underline that if the inter-element
distances Δx and Δy between two adjacent elements along x and y
axes, respectively, are such that Δx ≤ λ

2 and Δy ≤ λ
2, then the spatial

sampling frequency satisfies the Nyquist condition to avoid grating
lobes, i.e.,

2
λ
≥
2
λ
cos ϑ0 sinφ0 and

2
λ
≥
2
λ
sin ϑ0. (16)

Gathering the above results, the illumination function has the
following form

a x, y( ) � ejπ
2 cos ϑ0 sinφ0

λDx
x2e

jπ
2 sin ϑ0
λDy

y2ΠDx x( )ΠDy y( ) (17)

and the corresponding weight vector for the planar rectangular array
is obtained by sampling a(x, y) at the spatial sampling frequency
associated with the array. Assuming that the sampling space is λ/2,
the corresponding weights are

w � f vϑ0 ,yv
T
φ0 ,x

{ } ⊙ v φp, ϑp( ) (18)

where recall that φ0 and ϑ0 control the beam aperture, (·)T stands for
transpose,

vϑ0 ,y �
ejπ

sin ϑ0
Ny

−Ny
2( )2

..

.

ejπ
sin ϑ0
Ny

Ny
2( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

vφ0 ,x �
ejπ

cos ϑ0 sin φ0
Nx

−Nx
2( )2

..

.

ejπ
cos ϑ0 sinφ0

Nx
Nx
2( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

Nx is the number of elements along the x-axis, Ny is the number of
elements along the y-axis, ⊙ is the Hadamard product, and, given
M ∈ CK×M, f (M) ∈ CKM×1 is a vector-valued function that creates a
vector containing the entries of the matrix argument according to
the same ordering used to form the array manifold
v(φp, ϑp) ∈ CN×1, N = NxNy, with φp and ϑp the azimuth and
elevation pointing angles, respectively. Finally, from the above
equation, it turns out that, once the beam aperture has been set,
namely by using φ0 and ϑ0, then the beamfoming operation requires
N complex multiplications.

3 Illustrative examples and discussion

In this section, we provide some numerical examples to
highlight pros. and cons. of the proposed beamforming strategy.
For comparison purposes, we also plot the results obtained by means
of the simple Gradient Projection Algorithm (GPA) proposed in

(Tranter et al., 2017) since it is light from a computational point of
view and allows us to set some constraints to suitably shape the final
beam. Specifically, such an algorithm is used to solve the following
problem

min
�w∈CN×1

‖y − A �w‖2

subject to | �wi|2 � 1, i � 1, . . . , N,

⎧⎪⎨⎪⎩ (21)

where y ∈ CNd×1 is desired target response along Nd directions of
interest, �w � [ �w1, . . . , �wN]T ∈ CN×1 is the weight vector, and
A � [v(φ1, ϑ1), . . . , v(φNd

, ϑNd)]† ∈ CNd×N, with (·)† denoting the
complex conjugate transpose. In the next numerical examples, we
assume that (φn, ϑm) ∈ Θ = { − 60°, − 59.5°, . . ., 59.5°, 60°}×{ − 50°, −
49.5°, . . ., 49.5°, 50°}, where × is the Cartesian product. Finally, the
number of iterations is 1,000, the parameter β of GPA is set to 0.3
(these values are chosen in order to obtain a good compromise
between performance and computational load), and the desired
response vector, y say, is zero over Θ except for the components
corresponding to the set { − 5°, − 4.5°, . . ., 4.5°, 5°}×{ − 5°, − 4.5°, . . .,

FIGURE 2
Radiation pattern [dB] for the proposed strategy obtained
through w with a two-side aperture of 10°: (A) φp = ϑp = 0°, (B) φp =
ϑp = 20°.
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4.5°, 5°} that are equal to
��
N

√
. Notice that choice of y is aimed at

returning a flat beam whose width is 10° in both azimuth and
elevation.

It is clear that GPA is more time-demanding than the proposed
strategy whose advantages in terms of required operations are quite
evident. In fact, as highlighted at the end of the previous section, the
weight vector w is set once and for all and then is multiplied by the
array manifold at a given direction. On the other hand, �w requires
1,000 iterations for each pointing direction. For the parameter values
used in the numerical examples (see below), each iteration takes
about 1.5 s using an Intel i9 vPRO and MATLAB R2018a.

Let us start by investigating the nominal behavior of the
proposed strategy over synthetic data and considering a
uniformly spaced rectangular array with Nx = 65, Ny = 65, and
inter-element spacing λ/2 (notice that in this case the array manifold
as well as the beamforming weights are functionally independent
of λ).

In Figures 2, 3, we show the radiation patterns of the proposed
approach and GPA assuming a two-side aperture of about 10°

(i.e., φ0 = ϑ0 = 5°) and a pointing direction equal to 0° in

FIGURE 3
Radiation pattern [dB] for the GPA obtained through �w with a
two-side aperture of 10°: (A) φp = ϑp = 0°, (B) φp = ϑp = 20°.

FIGURE 4
Cuts at 0° elevation for the GPA and the proposed approach
assuming a two-side aperture of 10° and φp = ϑp = 0°.

FIGURE 5
Radiation pattern [dB] obtained through w with a two-side
aperture of 20°: (A) φp = ϑp = 0°, (B) φp = ϑp = 20°.
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azimuth and elevation. It turns out that both algorithms allow for a
control of the main beam width, but the GPA experiences a floor
(outside the mainbeam) that is much higher on average than that
related to the newly proposed strategy. This behavior is quite evident
in Figure 4 where we compare the cuts at 0° elevation for both
approaches when φp = ϑp = 0°. In Figure 5, we consider φ0 = ϑ0 = 10°

(i.e., a two-size aperture of about 20°) and two pointing directions as
in Figure 2. Hereafter, the radiation pattern returned by the GPA is
not shown since numerical examples not reported here for brevity
confirm the superiority of the proposed approach as highlighted by
the previous figures. Figure 5 shows that by varying φ0 and ϑ0 in (19)
and (20), it is possible to control the beam width in both azimuth
and elevation without resorting to any iterative procedure. In
Figure 6, we consider an extreme pointing direction, namely φ =
50° and ϑ = 10°. In such a situation, the proposed approach still
continues to guarantee the desired beam width but at the price of an
increased level of the sidelobes towards the boundary region (as
expected due to the spatial sampling).

To provide a more quantitative analysis, in Figure 7 we show
different elevation cuts (along azimuth) assuming φp = ϑp = 20° and
φ0 = ϑ0 = 5° in Subfigure 7a while φp = ϑp = 0° and φ0 = ϑ0 = 10° in
Subfigure 7b. From the inspection of the figure, we notice that there
exists a “transition band” of about 15° with a “stopband” that is
about 30 dB below the “passband”when φ0 = ϑ0 = 5° and 25 dB when
φ0 = ϑ0 = 10°. Moreover, the ripple extension in the mainlobe is less
than 5 dB in both cases.

In Figure 8, we show the effects of quantization on the beam
formation (0° elevation cut). Specifically, we uniformly quantize the
real and imaginary parts of the beamformer weights with a dynamic
range given by [−1, 1]. In the figure, the uniform quantizer considers
Nb = 2, 4, 6, 8 bits and we set φ0 = ϑ0 = 5° and φp = ϑp = 0°. It can be
noticed that for Nb = 2 the peaks of the sidelobes are in between
[−25, − 20] dB against the original values that are around −37.5 dB.
Nevertheless, for Nb = 4, the peaks of the sidelobe levels are in

FIGURE 6
Radiation pattern [dB] obtained through w with a two-side
aperture of 5°, φp = 50°, and ϑp = 10°.

FIGURE 7
Azimuth cuts at different elevations [dB] obtained through w: (A)
φp = ϑp = 20° and φ0 = ϑ0 = 5°, (B) φp = ϑp = 0° and φ0 = ϑ0 = 10°.

FIGURE 8
Radiation pattern along azimuth (0° elevation cut) for different
quantization levels.
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between −35 dB and −30 dB and follow more strictly the original
evolution for Nb > 4. This behavior is confirmed by the inspection of
Figure 9 that contains the magnitude histograms of the sidelobe
regions for the considered sets of bits. Specifically, the “sidelobe
region” is defined as the entire angular region of interest except for
the set of angles within [−15°, 15°] × [−15°, 15°]. The root mean
square errors (computed by averaging over the considered pointing
directions) between the 2-dimensional original and quantized
patterns are shown in Table 1. It turns out that the error values
are quite low and, as expected, decrease when the number of
quantization levels grows. On the other hand, widening the beam
leads to an increase of the error.

4 Conclusion

In this paper, we have shown that an arbitrarily wide and
almost flat beam can be obtained by exploiting the Fourier
transform of LFM complex signals. To this end, we had to
derive the connection between the LFM signal parameters
and the beam width to achieve the straightforward tuning of

the beam shape. The proposed method has a significant practical
value since it does not resort to time-demanding optimization
procedures. The illustrative examples have shown that the
proposed method can give rise to beams whose width can be
efficiently controlled by suitable tuning parameters, i.e., φ0, ϑ0,
φp, and ϑp. More importantly, it exhibits better sidelobes
properties than the iterative competitor and its computational
requirements are significantly lighter than those related to the
iterative competitor that launches a cyclic procedure for each
pointing direction in the region of interest.

Future research tracks might encompass the investigation of
illumination functions leading to different beam shapes under the
required constraints or the experimentation of the proposed method
on real radar systems with more populated array aperture.
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